Package ‘crosstalkr’

August 16, 2021

Title Identification of Functionally Relevant Sub-Graphs
Version 0.7.0
Description Provides a general framework for the identification of nodes that are functionally related to a set of seeds in graph structured data. In addition to being optimized for use with generic graphs, we also provides support to analyze protein-protein interactions networks from online repositories. Our methods are similar to those described in Nibbe et.al (2010). <doi:10.1371/journal.pcbi.1000639>.
License GPL (>= 3)
biocViews
Imports curl (>= 4.2), rlang, stats, magrittr, withr, readr, dplyr, stringr, tidyrl, tibble, igraph, Matrix, ensembldb, foreach, doParallel, ggplot2, EnsDb.Hsapiens.v79
Encoding UTF-8
RoxygenNote 7.1.1
Suggests tidygraph, ggraph, testthat (>= 2.0.0), knitr, rmarkdown, covr
Config/testthat/edition 2
VignetteBuilder knitr
NeedsCompilation no
Author Davis Weaver [aut, cre] (0000-0003-3086-497X)
Maintainer Davis Weaver <davis.weaver@case.edu>
Repository CRAN
Date/Publication 2021-08-16 08:30:10 UTC

R topics documented:

 as_gene_symbol ... 2
 bootstrap_null ... 3
 check_crosstalk ... 4
as_gene_symbol

Description

Convert from most other representations of gene name to gene.symbol

Usage

as_gene_symbol(x, edb = NULL)

Arguments

x vector of ensemble.gene ids, ensemble.peptide ids, ensemble.transcript ids or entrez gene ids
edb ensemble database object

Value

vector of gene symbols

Examples

#1) from numeric formatted entrez id
as_gene_symbol(1956)

#2) from character formatted entrez id
as_gene_symbol("1956")

#3) from ensemble gene id
as_gene_symbol("ENSG00000146648")
#4) From a vector of entrez ids
as_gene_symbol(c("123", "1956", "2012"))

bootstrap_null

Bootstrap null distribution for significance testing

Description

This function will generate a bootstrapped null distribution to identify significant vertices in a PPI given a set of user-defined seed proteins. Bootstrapping is done by performing random walk with repeats repeatedly over "random" sets of seed proteins. Degree distribution of user-provided seeds is used to inform sampling.

Usage

```r
bootstrap_null(
  seed_proteins,
  g,
  n = 1000,
  agg_int = 100,
  gamma = 0.6,
  eps = 1e-10,
  tmax = 1000,
  norm = TRUE,
  set_seed = NULL,
  cache = NULL,
  seed_name = NULL,
  ncores = 1
)
```

Arguments

- `seed_proteins`: user defined seed proteins
- `g`: igraph object
- `n`: number of random walks with repeats to create null distribution
- `agg_int`: number of runs before we need to aggregate the results - necessary to save memory. set at lower numbers to save even more memory.
- `gamma`: restart probability
- `eps`: maximum allowed difference between the computed probabilities at the steady state
- `tmax`: the maximum number of iterations for the RWR
- `norm`: if True, w is normalized by dividing each value by the column sum.
- `set_seed`: integer to set random number seed - for reproducibility
check_crosstalk

cache A filepath to a folder downloaded files should be stored, inherits from user-available functions

seed_name Name to give the cached ngull distribution - must be a character string

ncores Number of cores to use - defaults to 1. Significant speedup can be achieved by using multiple cores for computation.

Value
data frame containing mean/standard deviation for null distribution

Examples

g <- prep_biogrid()
bootstrap_null(seed_proteins = c("EGFR", "KRAS"), g= g, ncores = 1, n = 10)

check_crosstalk Check to make sure incoming object is a valid crosstalk df.

Description
This function is a helper function for plot_ct that verifies the input is a valid output of compute_crosstalk

Usage
check_crosstalk(crosstalk_df)

Arguments

crosstalk_df a dataframe containing the results of compute_crosstalk

Value
message if not correct object type, null otherwise
compute_crosstalk

Identify proteins with a statistically significant relationship to user-provided seeds.

Description

compute_crosstalk returns a dataframe of proteins that are significantly associated with user-defined seed proteins. These identified "crosstalkers" can be combined with the user-defined seed proteins to identify functionally relevant subnetworks. Affinity scores for every protein in the network are calculated using a random-walk with repeats (sparseRWR). Significance is determined by comparing these affinity scores to a bootstrapped null distribution (see bootstrap_null).

Usage

```r
compute_crosstalk(  
  seed_proteins,  
  g = NULL,  
  use_ppi = TRUE,  
  ppi = "stringdb",  
  n = 1000,  
  gamma = 0.6,  
  eps = 1e-10,  
  tmax = 1000,  
  norm = TRUE,  
  set_seed,  
  cache = NULL,  
  min_score = 400,  
  seed_name = NULL,  
  ncores = 1,  
  significance_level = 0.95,  
  p_adjust = "bonferroni",  
  agg_int = 100  
)
```

Arguments

- `seed_proteins` : user defined seed proteins
- `g` : igraph network object.
- `use_ppi` : should g be the human protein-protein interaction network. If false, user must provide an igraph object in g
- `ppi` : character string describing the ppi to use: currently only "stringdb" is supported.
- `n` : number of random walks with repeats to create null distribution
- `gamma` : restart probability
- `eps` : maximum allowed difference between the computed probabilities at the steady state
tmax the maximum number of iterations for the RWR
norm if True, w is normalized by dividing each value by the column sum.
set_seed integer to set random number seed - for reproducibility
cache A filepath to a folder downloaded files should be stored, inherits from user-available functions
min_score minimum connectivity score for each edge in the network.
seed_name Name to give the cached ngull distribution - must be a character string
ncores Number of cores to use - defaults to 1. Significant speedup can be achieved by using multiple cores for computation.

significance_level user-defined significance level for hypothesis testing
p_adjust adjustment method to correct for multiple hypothesis testing: defaults to "bonferroni". see p.adjust.methods for other potential adjustment methods.
agg_int number of runs before we need to aggregate the results - necessary to save memory. set at lower numbers to save even more memory.

Value
data frame containing affinity score, p-value, for all "crosstalkers" related to a given set of seeds

Examples

#1) easy to use for querying biological networks - n = 10000 is more appropriate for actual analyses
compute_crosstalk(c("EGFR", "KRAS"), n =10)

#2) Also works for any other kind of graph- just specify g (must be igraph formatted as of now)
g <- igraph::sample_gnp(n = 1000, p = 10/1000)
compute_crosstalk(c(1,3,5,8,10), g = g, use_ppi = FALSE, n = 100)

crosstalkr A package for the identification of functionally relevant subnetworks from high-dimensional omics data.

Description
crosstalkr provides a key user function, compute_crosstalk as well as several additional functions that assist in setup and visualization (under development).
crosstalkr functions

compute_crosstalk calculates affinity scores of all proteins in a network relative to user-provided seed proteins. Users can use the human interactome or provide a network represented as an igraph object.

sparseRWR performs random walk with restarts on a sparse matrix. Compared to dense matrix implementations, this should be extremely fast.

bootstrap_null Generates a null distribution based on n calls to sparseRWR

setup_init manages download and storage of interactome data to speed up future analysis

plot_ct allows users to visualize the subnetwork identified in compute_crosstalk. This function relies on the ggraph framework. Users are encouraged to use ggraph or other network visualization packages for more customized figures.

crosstalk_subgraph converts the output of compute_crosstalk to a tidygraph object containing only the identified nodes and their connections to the user-provided seed_proteins. This function also adds degree, degree_rank, and seed_label as attributes to the identified subgraph to assist in plotting.

crosstalk_subgraph

Helper function to generate subgraph from crosstalk_df output of compute_crosstalk

Description

Useful if the user wants to carry out further analysis or design custom visualizations.

Usage

crosstalk_subgraph(crosstalk_df, g, seed_proteins)

Arguments

crosstalk_df a dataframe containing the results of compute_crosstalk
g igraph network object.
seed_proteins user defined seed proteins

Value

a tidygraph structure containing information about the crosstalkr subgraph

Examples

Not run:
ct_df <- compute_crosstalk(c("EGFR", "KRAS"))
g <- prep_biogrid()
crosstalk_subgraph(ct_df, g = g, seed_proteins = c("EGFR", "KRAS"))

End(Not run)
detect_inputtype

Description
Determine which format of gene is used to specify by user-defined seed proteins

Usage
detect_inputtype(x)

Arguments
x vector of gene symbols

Value
"gene_symbol", "entrez_id", "ensemble_id" or "other"

dist_calc

Description
Internal function that computes the mean/stdev for each gene from a wide-format data frame.

Usage
dist_calc(df, seed_proteins)

Arguments
df numeric vector
seed_proteins user defined seed proteins

Value
a data frame containing summary statistics for the computed null distribution
ensembl_type

Determine if ensembl id is a Protein, gene, or transcript_id

Description

Determine if ensembl id is a Protein, gene, or transcript_id

Usage

ensembl_type(x)

Arguments

x vector or single gene symbol

Value

character: "PROTEINID", "GENEID", "TRANSCRIPTID"

final_dist_calc

Internal function that computes the mean/stdev for each gene from a wide-format data frame.

Description

This function is called by the high-level function "bootstrap_null".

Usage

final_dist_calc(df_list)

Arguments

df_list : list of dataframes from foreach loop in bootstrap_null

Value

a dataframe
is_ensembl

Determine if a character vector contains ensembl gene_ids

Description
Determine if a character vector contains ensembl gene_ids

Usage
is_ensembl(x)

Arguments
x vector or single gene symbol

Value
logical

is_entrez

Determine if a character vector contains entrez gene_ids

Description
Determine if a character vector contains entrez gene_ids

Usage
is_entrez(x)

Arguments
x vector or single gene symbol

Value
logical
match_seeds

Description

This function will generate n character vectors of seeds to be passed to sparseRWR as part of the construction of a bootstrapped null distribution for significance testing.

Usage

```r
match_seeds(g, seed_proteins, n, set_seed = NULL)
```

Arguments

- `g` igraph object representing the network under study, specified by "ppi" in bootstrap_null
- `seed_proteins` user defined seed proteins
- `n` number of random walks with repeats to create null distribution
- `set_seed` integer to set random number seed - for reproducibility

Value

list of character vectors: randomly generated seed proteins with a similar degree distribution to parent seed proteins

norm_colsum

Description

Function to normalize adjacency matrix by dividing each value by the colsum.

Usage

```r
norm_colsum(w)
```

Arguments

- `w` The adjacency matrix of a given graph in sparse format - dgCMatrix

Value

input matrix, normalized by column sums
Examples

1) Normalize by column sum on a simple matrix
v1 = c(1,1,1,0)
v2 = c(0,0,0,1)
v3 = c(1,1,1,0)
v4 = c(0,0,0,1)
w = matrix(data = c(v1,v2,v3,v4), ncol = 4, nrow = 4)
norm_colsum(w)

plot_ct

Plot subnetwork identified using the compute_crosstalk function

Description

Convenience function for plotting crosstalkers - if you want to make more customized/dynamic figures, there are lots of packages that can facilitate that, including: visnetwork, ggraph, and even the base R plotting library

Usage

plot_ct(crosstalk_df, g, label_prop = 0.1, prop_keep = 0.4)

Arguments

crosstalk_df a dataframe containing the results of compute_crosstalk

g igraph network object.

label_prop Proportion of nodes to label - based on degree

prop_keep How many proteins do we want to keep in the visualization (as a proportion of total) - subsets on top x proteins ranked by affinity score

Value

NULL, draws the identified subgraph to device

Examples

Not run:
ct_df <- compute_crosstalk(c("EGFR", "KRAS"))
g <- prep_biogrid()
plot_ct(ct_df, g = g)

End(Not run)
prep_biogrid

Prepare biogrid for use in analyses

Description

Prepare biogrid for use in analyses

Usage

```r
prep_biogrid(cache = NULL)
```

Arguments

- `cache` A filepath to a folder downloaded files should be stored, inherits from user-available functions

Value

list containing Adjacency matrix from stringdb dataset and igraph object built from the adjacency matrix.

prep_stringdb

Prepare Stringdb for use in analyses

Description

Prepare Stringdb for use in analyses

Usage

```r
prep_stringdb(cache = NULL, edb = "default", min_score = NULL)
```

Arguments

- `cache` A filepath to a folder downloaded files should be stored, inherits from user-available functions
- `edb` ensemble database object
- `min_score` minimum connectivity score for each edge in the network.

Value

list containing Adjacency matrix from stringdb dataset and igraph object built from the adjacency matrix.
setup_init
Helper function for first-time use of crosstalkr package

Description
Helper function for first-time use of crosstalkr package

Usage
```r
setup_init(cache = NULL, min_score)
```

Arguments
- **cache**: A filepath to a folder downloaded files should be stored, inherits from user-available functions
- **min_score**: minimum connectivity score for each edge in the network.

Value
directory on users computer containing the different adjacency matrices for future use.

sparseRWR
Perform random walk with repeats on a sparse matrix

Description
This function borrows heavily from the RWR function in the RANKS package (cite here)

Usage
```r
sparseRWR(seed_proteins, w, gamma = 0.6, eps = 1e-10, tmax = 1000, norm = TRUE)
```

Arguments
- **seed_proteins**: user defined seed proteins
- **w**: The adjacency matrix of a given graph in sparse format - dgCMatrix
- **gamma**: restart probability
- **eps**: maximum allowed difference between the computed probabilities at the steady state
- **tmax**: the maximum number of iterations for the RWR
- **norm**: if True, w is normalized by dividing each value by the column sum.

Value
numeric vector, affinity scores for all nodes in graph relative to provided seeds
Examples

1) Run Random walk with restarts on a simple matrix
v1 = c(1,1,1,0)
v2 = c(0,0,0,1)
v3 = c(1,1,1,0)
v4 = c(0,0,0,1)
w = matrix(data = c(v1,v2,v3,v4), ncol = 4, nrow = 4)
sparseRWR(seed_proteins = c(1,3), w = w, norm = TRUE)

2) Works just as well on a sparse matrix
v1 = c(1,1,1,0)
v2 = c(0,0,0,1)
v3 = c(1,1,1,0)
v4 = c(0,0,0,1)
w = matrix(data = c(v1,v2,v3,v4), ncol = 4, nrow = 4)
w = Matrix::Matrix(w, sparse = TRUE)
sparseRWR(seed_proteins = c(1,4), w = w, norm = TRUE)

3) Sample workflow for use with human protein-protein interaction network

g <- prep_biogrid()
w <- igraph::as_adjacency_matrix(g)
sparseRWR(seed_proteins = c("EGFR", "KRAS"), w = w, norm = TRUE)
Index

as_gene_symbol, 2
bootstrap_null, 3
check_crosstalk, 4
compute_crosstalk, 5
crosstalk_subgraph, 7
crosstalkr, 6
detect_inputtype, 8
dist_calc, 8
ensembl_type, 9
final_dist_calc, 9
is_ensembl, 10
is_entrez, 10
match_seeds, 11
norm_colsum, 11
p.adjust.methods, 6
plot_ct, 12
prep_biogrid, 13
prep_stringdb, 13
setup_init, 14
sparseRWR, 14