Package ‘countfitteR’

September 30, 2020

Type Package

Title Comprehensive Automatized Evaluation of Distribution Models for Count Data

Version 1.4

Maintainer Jaroslaw Chilimoniuk <jaroslaw.chilimoniuk@gmail.com>

Description A large number of measurements generate count data. This is a statistical data type that only assumes non-negative integer values and is generated by counting. Typically, counting data can be found in biomedical applications, such as the analysis of DNA double-strand breaks. The number of DNA double-strand breaks can be counted in individual cells using various bioanalytical methods. For diagnostic applications, it is relevant to record the distribution of the number data in order to determine their biomedical significance (Roediger, S. et al., 2018. Journal of Laboratory and Precision Medicine. <doi:10.21037/jlpm.2018.04.10>). The software offers functions for a comprehensive automated evaluation of distribution models of count data. In addition to programmatic interaction, a graphical user interface (web server) is included, which enables fast and interactive data-scientific analyses. The user is supported in selecting the most suitable counting distribution for his own data set.

License GPL-3

Encoding UTF-8

LazyData true

VignetteBuilder knitr

Suggests dplyr, DT, gridExtra, knitr, pander, reshape2, rmarkdown, shinythemes, shinyssloaders, shinyWidgets, spelling, testthat

Date 2020-09-30

BugReports https://github.com/BioGenies/countfitteR/issues

RoxygenNote 7.1.1

Imports ggplot2, MASS, shiny, stats, pscl, tools, utils

Language en-US

NeedsCompilation no
Author Jaroslaw Chilimoniuk [cre, ctb]
 (<https://orcid.org/0000-0001-5467-018X>),
 Alicja Gosiewska [ctb] (<https://orcid.org/0000-0001-6563-5742>),
 Jadwiga Słowik [ctb] (<https://orcid.org/0000-0003-3466-8933>),
 Michal Burdukiewicz [aut] (<https://orcid.org/0000-0001-8926-582X>),
 Stefan Roediger [ctb] (<https://orcid.org/0000-0002-1441-6512>)

Repository CRAN

Date/Publication 2020-09-30 21:30:02 UTC

R topics documented:

- countfitteR-package ... 2
- case_study ... 3
- case_study_all .. 3
- case_study_APC .. 3
- case_study_FTIC .. 4
- compare_fit ... 4
- countfitteR_gui .. 5
- decide .. 5
- fit_counts ... 6
- plot_fitcmp ... 7
- process_counts ... 7
- select_model .. 8
- sim_dat .. 8
- summary_fitlist ... 9
- validate_counts ... 10
- zinb .. 11
- zip .. 11

Index 13

countfitteR-package countfitteR - a framework for fitting count distributions in R

Description

The countfitteR package is a toolbox for the analysis of count data.

Acknowledgements

countfitteR is a wrapper around existing count models in R. To standardize error messages and ease up the integration, we slightly modified the zeroinfl function by Achim Zeileis.

Author(s)

Jaroslaw Chilimoniuk, Stefan Roediger, Michal Burdukiewcz
Examples

```r
set.seed(15390)
library(countfitteR)
df <- data.frame(pois = rpois(25, 0.3),
                 binom = rbinom(25, 1, 0.8))

cmp <- compare_fit(df, fitlist = fit_counts(df, model = "all"))
```

Description

shorter version of the case_study_FITC. Used as an example in shiny app, when the user will not load his own count data.

Usage

case_study

case_study_all Case study with two fluorescent dyes

Description

element data extracted from Aklides system and merged into one file. Counts in this file will not fit properly, due to the fact that we integrated into the file counts with two different fluorescent dyes used.

Usage

case_study_all

case_study_APC Case study for APC dye

Description

element data extracted from Aklides system. Counts with only APC fluorescent dye were merged.

Usage

case_study_APC
Case study for FITC dye

Description

example data extracted from Aklides system. Counts with only FITC fluorescent dye were merged.

Usage

case_study_FITC

compare_fit

Compare fits

Description

Compare empirical distribution of counts with the distribution defined by the model fitted to counts.

Usage

compare_fit(count_list, fitlist = fit_counts(count_list, model = "all"))

Arguments

count_list A list of counts. Each count should be in separate column, rows should represent values of these counts.

fitlist a list of fits, as created by fit_counts.

Value

A data.frame with distribution values for each unique count. Count is the name of the original count, model is the name of distribution model, x is unique count value, n is the frequency of unique counts, value is result of calculations made by chosen distribution model.

Examples

df <- data.frame(poisson = rpois(25, 0.3), binomial = rbinom(25, 1, 0.8))
compare_fit(df, fitlist = fit_counts(df, model = "all"))
countfitteR_gui

Description
Launches graphical user interface that analyses given count data and chooses the best performing distribution model.

Usage
countfitteR_gui()

Warning
Any ad-blocking software may cause malfunctions.

Author(s)
Jaroslaw Chilimoniuk, Stefan Roediger, Michal Burdukiewcz

Examples
if(interactive()) {
 countfitteR_gui()
}

decide

Description
Select the most appropriate distribution for the count data in the html-friendly format.

Usage
decide(summary_fit, separate)

Arguments
summary_fit a result of the summary_fitlist function.
separate logical. If TRUE, each count is separately fitted to the model. If FALSE, all counts are fitted to the same models having the count name as the independent variable.

See Also
fit_counts
fit_counts

Fit counts to distributions

Description

Fit counts to distributions

Usage

fit_counts(counts_list, separate = TRUE, model, level = 0.95, ...)

Arguments

counts_list A list of count data. Each count should be in separate column, rows should represent values of that counts.

separate logical. If TRUE, each count is separately fitted to the model. If FALSE, all counts are fitted to the same models having the count name as the independent variable.

model single character: "pois", "nb", "zinh", "zip", "all". If "all", all possible model are fitted.

level Confidence level, default is 0.95.

... Dots parameters are ignored.

Value

The list of fitted models. Names are names of original counts, an underline and a name of model used. confint is a matrix with the number of rows equal to the number of parameters. Rownames are names of parameters. The columns contain respectively lower and upper confidence intervals.

Examples

def <- data.frame(poisson = rpois(25, 0.3), binomial = rbinom(25, 1, 0.8))
fit_counts(df, model = "pois"
plot_fitcmp

Description

Compare empirical distribution of counts with the distribution defined by the model fitted to counts. The bar charts represent theoretical counts depending on the chosen distribution. Red dots describe the real number of counts.

Usage

```r
plot_fitcmp(fitcmp)
```

Arguments

- `fitcmp` You need to input data frame that is created by `compare_fit` function.

Examples

```r
df <- data.frame(poisson = rpois(25, 0.3), binomial = rbinom(25, 1, 0.8))
fitcmp <- compare_fit(df, fitlist = fit_counts(df, model = "all"))
plot_fitcmp(fitcmp)
```

process_counts

Description

Converts data in a table-like formats into lists of counts.

Usage

```r
process_counts(x)
```

Arguments

- `x` data.frame or matrix.

Details

- `case_study` does not consider NAs and NaNs effectively omitting them (as per the `is.na` function).

Value

A list of counts.
select_model
Select the most appropriate model

Description
Select the most appropriate model

Usage

```r
select_model(fitlist)
```

Arguments

- `fitlist`: a list of fits, as created by `fit_counts`.

Value

A `data.frame` with two columns: `count` representing the name of the count and `chosen model` with the model with the lowest BIC.

Examples

```r
set.seed(1)
df <- data.frame(poisson1 = rpois(50, 2),
                 poisson2 = rpois(50, 5),
                 zip1 = rZIP(50, 2, 0.7),
                 zip2 = rZIP(50, 5, 0.7))
fitlist_separate <- fit_counts(df, model = c("pois", "zip"))
select_model(fitlist_separate)
```

sim_dat
Data created from simulation of NB Poiss

Description
Data created from simulation of NB Poiss

Usage

```r
sim_dat
```
Examples

```r
# code used to generate the data
# be warned: the simulations will take some time
## Not run:
library(dplyr)
set.seed(15390)
sim_dat <- do.call(rbind, lapply(10^(-3L:2), function(single_theta)
  do.call(rbind, lapply(1L:10/2, function(single_lambda)
    do.call(rbind, lapply(1L:100, function(single_rep) {
      foci <- lapply(1L:10, function(dummy) rnbinom(600, size = single_theta, mu = single_lambda))
      names(foci) <- paste0("C", 1L:10)
      fit_counts(foci, separate = TRUE, model = "all") %>%
        summary_fitlist %>%
        mutate(between = single_lambda < upper & single_lambda > lower) %>%
        group_by(model) %>%
        summarize(prop = mean(between)) %>%
        mutate(replicate = single_rep, lambda = single_lambda, theta = single_theta)
    }))
  )))
## End(Not run)
```

summary_fitlist
Summary of estimates

Description

Counts are fitted to model(s) using the count name as the explanatory variable. Estimates are presented in the table below along with the BIC values of their models. Estimated coefficients of models (lambda for all distributions, theta for NB and ZINB, r for ZIP and ZINB).

Usage

`summary_fitlist(fitlist)`

Arguments

- `fitlist`
a list of fits, as created by `fit_counts`.

Value

Data frame with summarised results of all distribution models.

- Count: the name of the original count.
- lambda: \(\lambda \) - Poisson mean, lower and upper confidence intervals.
- BIC: Bayesian information criterion
validate_counts

• theta: θ - dispersion parameter
• r: probability of excess zeros.

See Also

fit_counts

Examples

df <- data.frame(poisson = rpois(25, 0.3), binomial = rbinom(25, 1, 0.8))
f <- fit_counts(df, model = "all")
summary_fitlist(f)

data(case_study)
process_counts(case_study)
Zero-inflated negative binomial distribution

Description
Density and random generation for the zero-inflated negative binomial distribution.

Usage
rZINB(n, size, mu, r)
dZINB(x, size, mu, r)

Arguments
- n: number of random values to return.
- size: target for number of successful trials, or dispersion parameter (the shape parameter of the gamma mixing distribution). Must be strictly positive, need not be integer.
- mu: mean.
- r: probability of excess zeros.
- x: vector of (non-negative integer) quantiles.

See Also
Negative binomial distribution: NegBinomial.

Examples
rZINB(15, 1.9, 0.9, 0.8)

Zero-inflated Poisson distribution

Description
Density and random generation for the zero inflated Poisson distribution.

Usage
dZIP(x, lambda, r)
rZIP(n, lambda, r)
Arguments

- **x**: vector of (non-negative integer) quantiles.
- **lambda**: vector of (non-negative) means.
- **r**: probability of excess zeros.
- **n**: number of random values to return.

See Also

Poisson distribution: [Poisson](#).

Examples

rZIP(15, 1.9, 0.9)
Index

* **Poisson**
 - countfitteR_gui, 5

* **count**
 - countfitteR_gui, 5

* **datasets**
 - case_study, 3
 - case_study_all, 3
 - case_study_APC, 3
 - case_study_FITC, 4
 - sim_dat, 8

* **zero-inflated**
 - countfitteR_gui, 5

 - case_study, 3
 - case_study_all, 3
 - case_study_APC, 3
 - case_study_FITC, 4
 - compare_fit, 4
 - countfitteR (countfitteR-package), 2
 - countfitteR-package, 2
 - countfitteR_gui, 5

 - decide, 5
 - dZINB (znb), 11
 - dZIP (zip), 11

 - fit_counts, 4, 5, 6, 8–10

 - is.na, 7

 - NegBinomial, 11

 - plot_fitcmp, 7
 - Poisson, 12
 - process_counts, 7

 - rZINB (znb), 11
 - rZIP (zip), 11

 - select_model, 8
 - sim_dat, 8

summary_fitlist, 5, 9

validate_counts, 10

zeroinfl, 2

ZINB (znb), 11

znb, 11

ZIP (zip), 11

zip, 11