Package ‘corrr’

November 24, 2020

Type Package
Version 0.4.3
Title Correlations in R
Description A tool for exploring correlations.
 It makes it possible to easily perform routine tasks when
 exploring correlation matrices such as ignoring the diagonal,
 focusing on the correlations of certain variables against others,
 or rearranging and visualizing the matrix in terms of the
 strength of the correlations.
Depends R (>= 3.3.0)
Imports dplyr (>= 1.0.0), ggplot2 (>= 2.2.0), seriation (>= 1.2-0),
 purrr (>= 0.2.2), tibble (>= 2.0), ggrepel (>= 0.6.5), rlang
 (>= 0.4.0)
Suggests testthat (>= 2.1.0), knitr (>= 1.13), rmarkdown (>= 0.9.6),
 dbplyr (>= 1.2.1), DBI, RSQLite, sparklyr (>= 0.9), covr
VignetteBuilder knitr
Encoding UTF-8
LazyData yes
License MIT + file LICENSE
BugReports https://github.com/tidymodels/corrr/issues
RoxygenNote 7.1.1.9000
NeedsCompilation no
Author Max Kuhn [aut, cre],
 Simon Jackson [aut],
 Jorge Cimentada [aut]
Maintainer Max Kuhn <max@rstudio.com>
Repository CRAN
Date/Publication 2020-11-24 16:00:02 UTC
R topics documented:

as_cordf ... 2
as_matrix ... 3
colpair_map ... 3
correlate .. 4
dice ... 5
fashion ... 6
first_col ... 7
focus ... 7
focus_if .. 8
network_plot .. 9
pair_n ... 10
rearrange .. 11
retract .. 11
rplot ... 12
shave ... 13
stretch ... 14

Index 15

| as_cordf | Coerce lists and matrices to correlation data frames |

Description

A wrapper function to coerce objects in a valid format (such as correlation matrices created using the base function, cor) into a correlation data frame.

Usage

as_cordf(x, diagonal = NA)

Arguments

x A list, data frame or matrix that can be coerced into a correlation data frame.

diagonal Value (typically numeric or NA) to set the diagonal to

Value

A correlation data frame

Examples

x <- cor(mtcars)
as_cordf(x)
as_cordf(x, diagonal = 1)
as_matrix

Convert a correlation data frame to matrix format

Description

Convert a correlation data frame to original matrix format.

Usage

as_matrix(x, diagonal)

Arguments

x A correlation data frame. See correlate or as_cordf.
diagonal Value (typically numeric or NA) to set the diagonal to

Value

Correlation matrix

Examples

x <- correlate(mtcars)
as_matrix(x)

colpair_map

Apply a function to all pairs of columns in a data frame

Description

colpair_map() transforms a data frame by applying a function to each pair of its columns. The result is a correlation data frame (see correlate for details).

Usage

colpair_map(.data, .f, ..., .diagonal = NA)

Arguments

.data A data frame or data frame extension (e.g. a tibble).
.f A function.
... Additional arguments passed on to the mapped function.
.diagonal Value at which to set the diagonal (defaults to NA).
Value

A correlation data frame (cor_df).

Examples

```r
## Using `stats::cov` produces a covariance data frame.
colpair_map(mtcars, cov)

## Function to get the p-value from a t-test:
calc_p_value <- function(vec_a, vec_b){
  t.test(vec_a, vec_b)$p.value
}
colpair_map(mtcars, calc_p_value)
```

Correlation Data Frame

Description

An implementation of stats::cor(), which returns a correlation data frame rather than a matrix. See details below. Additional adjustment include the use of pairwise deletion by default.

Usage

```r
correlate(
  x,
  y = NULL,
  use = "pairwise.complete.obs",
  method = "pearson",
  diagonal = NA,
  quiet = FALSE
)
```

Arguments

- `x` a numeric vector, matrix or data frame.
- `y` NULL (default) or a vector, matrix or data frame with compatible dimensions to `x`. The default is equivalent to `y = x` (but more efficient).
- `use` an optional character string giving a method for computing covariances in the presence of missing values. This must be (an abbreviation of) one of the strings "everything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs".
- `method` a character string indicating which correlation coefficient (or covariance) is to be computed. One of "pearson" (default), "kendall", or "spearman": can be abbreviated.
- `diagonal` Value (typically numeric or NA) to set the diagonal to
- `quiet` Set as TRUE to suppress message about method and use parameters.
Details

This function returns a correlation matrix as a correlation data frame in the following format:

- A tibble (see `tibble`)
- An additional class, "cor_df"
- A "term" column
- Standardized variances (the matrix diagonal) set to missing values by default (NA) so they can be ignored in calculations.

As of version 0.4.3, the first column of a `cor_df` object is named "term". In previous versions this first column was named "rownames".

Value

A correlation data frame `cor_df`

Examples

```r
## Not run:
correlate(iris)
## End(Not run)
correlate(iris[-5])
correlate(mtcars)
## Not run:
# Also supports DB backend and collects results into memory
library(sparklyr)
sc <- spark_connect(master = "local")
mtcars_tbl <- copy_to(sc, mtcars)
mtcars_tbl %>%
  correlate(use = "pairwise.complete.obs", method = "spearman")
spark_disconnect(sc)
## End(Not run)
```

Description

Returns a correlation table with the selected fields only
Usage

dice(x, ...)

Arguments

x
A correlation table, class cor_df

... A list of variables in the correlation table

Examples

dice(correlate(mtcars), mpg, wt, am)

fashion

Fashion a correlation data frame for printing.

Description

For the purpose of printing, convert a correlation data frame into a noquote matrix with the correlations cleanly formatted (leading zeros removed; spaced for signs) and the diagonal (or any NA) left blank.

Usage

fashion(x, decimals = 2, leading_zeros = FALSE, na_print = "")

Arguments

x
Scalar, vector, matrix or data frame.

decimals
Number of decimal places to display for numbers.

leading_zeros
Should leading zeros be displayed for decimals (e.g., 0.1)? If FALSE, they will be removed.

na_print
Character string indicating NA values in printed output

Value

noquote. Also a data frame if x is a matrix or data frame.
Examples

Examples with correlate()
library(dplyr)
mtcars %>% correlate() %>% fashion()
mtcars %>% correlate() %>% fashion(decimals = 1)
mtcars %>% correlate() %>% fashion(leading_zeros = TRUE)
mtcars %>% correlate() %>% fashion(na_print = "*")

But doesn't have to include correlate()
mtcars %>% fashion(decimals = 3)
c(0.234, 134.23, -.23, NA) %>% fashion(na_print = "X")

__first_col__

Add a first column to a data.frame

Description

Add a first column to a data.frame. This is most commonly used to append a term column to create a cor_df.

Usage

```r
first_col(df, ..., var = "term")
```

Arguments

- `df` : Data frame
- `...` : Values to go into the column
- `var` : Label for the column, with the default "term"

Examples

```r
first_col(mtcars, 1:nrow(mtcars))
```

__focus__

Focus on section of a correlation data frame.

Description

Convenience function to select a set of variables from a correlation matrix to keep as the columns, and exclude these or all other variables from the rows. This function will take a `correlate` correlation matrix, and expression(s) suited for `dplyr::select()`. The selected variables will remain in the columns, and these, or all other variables, will be excluded from the rows based on `same`. For a complete list of methods for using this function, see `select`.
Usage

focus(x, ..., mirror = FALSE)

focus_(x, ..., .dots, mirror)

Arguments

x cor_df. See correlate.
...
One or more unquoted expressions separated by commas. Variable names can be used as if they were positions in the data frame, so expressions like ‘x:y’ can be used to select a range of variables.
mirror Boolean. Whether to mirror the selected columns in the rows or not.
.dots Use focus_ to do standard evaluations. See select.

Value

A tbl or, if mirror = TRUE, a cor_df (see correlate).

Examples

library(dplyr)
x <- correlate(mtcars)
focus(x, mpg, cyl) # Focus on correlations of mpg and cyl with all other variables
focus(x, -disp, -mpg, mirror = TRUE) # Remove disp and mpg from columns and rows

x <- correlate(iris[-5])
focus(x, -matches("Sepal")) # Focus on correlations of non-Sepal variables with Sepal variables.

focus_if Conditionally focus correlation data frame

Description

Apply a predicate function to each column of correlations. Columns that evaluate to TRUE will be included in a call to focus.

Usage

focus_if(x, .predicate, ..., mirror = FALSE)

Arguments

x Correlation data frame or object to be coerced to one via as_cordf.
.predicate A predicate function to be applied to the columns. The columns for which .predicate returns TRUE will be included as variables in focus.
...
Additional arguments to pass to the predicate function if not anonymous.
mirror Boolean. Whether to mirror the selected columns in the rows or not.
Value

A tibble or, if mirror = TRUE, a correlation data frame.

Examples

```r
library(dplyr)
any_greater_than <- function(x, val) {
  mean(abs(x), na.rm = TRUE) > val
}

x <- correlate(mtcars)

x %>% focus_if(any_greater_than, .6)
x %>% focus_if(any_greater_than, .6, mirror = TRUE) %>% network_plot()
```

Description

Output a network plot of a correlation data frame in which variables that are more highly correlated appear closer together and are joined by stronger paths. Paths are also colored by their sign (blue for positive and red for negative). The proximity of the points are determined using multidimensional clustering.

Usage

```r
network_plot(
  rdf,
  min_cor = 0.3,
  legend = TRUE,
  colours = c("indianred2", "white", "skyblue1"),
  repel = TRUE,
  curved = TRUE,
  colors
)
```

Arguments

- `rdf`: Correlation data frame (see `correlate`) or object that can be coerced to one (see `as_cordf`).
- `min_cor`: Number from 0 to 1 indicating the minimum value of correlations (in absolute terms) to plot.
- `legend`: Boolean indicating whether a legend mapping the colors to the correlations should be displayed.
- `colours, colors`: Vector of colors to use for n-color gradient.
pair_n

repel Should variable labels repel each other? If TRUE, text is added via `geom_text_repel` instead of `geom_text`

curved Should the paths be curved? If TRUE, paths are added via `geom_curve`; if FALSE, via `geom_segment`

Examples

```r
x <- correlate(mtcars)
network_plot(x)
network_plot(x, min_cor = .1)
network_plot(x, min_cor = .6)
network_plot(x, min_cor = .7, colors = c("red", "green"), legend = TRUE)
```

pair_n **Number of pairwise complete cases.**

Description

Compute the number of complete cases in a pairwise fashion for x (and y).

Usage

```r
pair_n(x, y = NULL)
```

Arguments

- **x** a numeric vector, matrix or data frame.
- **y** NULL (default) or a vector, matrix or data frame with compatible dimensions to x. The default is equivalent to y = x (but more efficient).

Value

Matrix of pairwise sample sizes (number of complete cases).

Examples

```r
pair_n(mtcars)
```
rearrange

Re-arrange a correlation data frame

Description

Re-arrange a correlation data frame to group highly correlated variables closer together.

Usage

```r
rearrange(x, method = "PC", absolute = TRUE)
```

Arguments

- `x`: cor_df. See `correlate`.
- `method`: String specifying the arrangement (clustering) method. Clustering is achieved via `seriate`, which can be consulted for a complete list of clustering methods. Default = "PCA".
- `absolute`: Boolean whether absolute values for the correlations should be used for clustering.

Value

cor_df. See `correlate`.

Examples

```r
x <- correlate(mtcars)

rearrange(x) # Default settings
rearrange(x, method = "HC") # Different seriation method
rearrange(x, absolute = FALSE) # Not using absolute values for arranging
```

retract

Creates a data frame from a stretched correlation table

Description

retract does the opposite of what `stretch` does.

Usage

```r
retract(.data, x, y, val)
```
Arguments

.data A data.frame or tibble containing at least three variables: x, y and the value
x The name of the column to use from .data as x
y The name of the column to use from .data as y
val The name of the column to use from .data to use as the value

Examples

x <- correlate(mtcars)
x <- stretch(x)
retract(xs)

rplot

Plot a correlation data frame.

Description

Plot a correlation data frame using ggplot2.

Usage

rplot(
 rdf,
 legend = TRUE,
 shape = 16,
 colours = c("indianred2", "white", "skyblue1"),
 print_cor = FALSE,
 colors,
 .order = c("default", "alphabet")
)

Arguments

rdf Correlation data frame (see correlate) or object that can be coerced to one (see as_cordf).
legend Boolean indicating whether a legend mapping the colors to the correlations should be displayed.
shape geom_point aesthetic.
colours, colors Vector of colors to use for n-color gradient.
print_cor Boolean indicating whether the correlations should be printed over the shapes.
.order Either "default", meaning x and y variables keep the same order as the columns in x, or "alphabet", meaning the variables are alphabetized.
shave

Details

Each value in the correlation data frame is represented by one point/circle in the output plot. The size of each point corresponds to the absolute value of the correlation (via the size aesthetic). The color of each point corresponds to the signed value of the correlation (via the color aesthetic).

Value

Plots a correlation data frame

Examples

```r
x <- correlate(mtcars)
rplot(x)

# Common use is following rearrange and shave
x <- rearrange(x, absolute = FALSE)
x <- shave(x)
rplot(x)
rplot(x, print_cor = TRUE)
rplot(x, shape = 20, colors = c("red", "green"), legend = TRUE)
```

Description

Convert the upper or lower triangle of a correlation data frame (cor_df) to missing values.

Usage

`shave(x, upper = TRUE)`

Arguments

- `x` cor_df. See `correlate`.
- `upper` Boolean. If TRUE, set upper triangle to NA; lower triangle if FALSE.

Value

cor_df. See `correlate`.

Examples

```r
x <- correlate(mtcars)
shave(x) # Default: shave upper triangle
shave(x, upper = FALSE) # shave lower triangle
```
stretch

Stretch correlation data frame into long format.

Description

`stretch` is a specified implementation of `tidyr::gather()` to be applied to a correlation data frame. It will gather the columns into a long-format data frame. The term column is handled automatically.

Usage

```r
stretch(x, na.rm = FALSE, remove.dups = FALSE)
```

Arguments

- `x` cor_df. See `correlate`.
- `na.rm` Boolean. Whether rows with an NA correlation (originally the matrix diagonal) should be dropped? Will automatically be set to TRUE if mirror is FALSE.
- `remove.dups` Removes duplicate entries, without removing all NAs.

Value

tbl with three columns (x and y variables, and their correlation)

Examples

```r
x <- correlate(mtcars)
stretch(x) # Convert all to long format
stretch(x, na.rm = FALSE) # omit NAs (diagonal in this case)

x <- shave(x) # use shave to set upper triangle to NA and then...
stretch(x, na.rm = FALSE) # omit all NAs, therefore keeping each
    # correlation only once.
```
Index

as_cordf, 2, 3, 8, 9, 12
as_matrix, 3

colpair_map, 3
cor, 2
correlate, 3, 4, 7–9, 11–14
dice, 5
fashion, 6
first_col, 7
focus, 7, 8
focus_(focus), 7
focus_if, 8

g geom_curve, 10
g geom_point, 12
g geom_segment, 10
g geom_text, 10

g geom_text_repel, 10

network_plot, 9
pair_n, 10

rearrange, 11
retract, 11
rplot, 12

select, 7, 8
seriate, 11
shave, 13
stretch, 14
tibble, 5