Package ‘colourvision’

August 1, 2018

Type Package
Title Colour Vision Models
Version 2.0.2
Date 2018-08-01
Author Felipe M. Gawryszewski
Maintainer Felipe Malheiros Gawrysewski <f.gawry@gmail.com>
Description Colour vision models, colour spaces and colour thresholds. Provides flexibility to build user-defined colour vision models for n number of photoreceptor types. Also includes Vorobyev & Osorio (1998) Receptor Noise Limited models, Chittka (1992) colour hexagon, and Endler & Mielke (2005) model. Models have been extended to accept any number of photoreceptor types.
License GPL-2
Imports graphics, stats, utils, rgl, Matrix
Suggests testthat, knitr, rmarkdown, corrplot
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2018-08-01 16:30:02 UTC

R topics documented:

colourvision-package .. 2
bee .. 4
colour_space .. 5
CTTKhexagon .. 6
CTTKhexagon3D ... 8
CTTKmodel .. 10
D65 ... 12
deltaS .. 13
EMline .. 14
EMmodel .. 15
Description

Colour vision models, colour spaces and colour thresholds. Provides flexibility to build user-defined colour vision models for n number of photoreceptor types. Also includes Vorobyev & Osorio (1998) Receptor Noise Limited models, Chittka (1992) colour hexagon, and Endler & Mielke (2005) model. Models have been extended to accept any number of photoreceptor types.

Details

The DESCRIPTION file:

```
Pacakge:   colourvision
Type:     Package
Title:    Colour Vision Models
Version:  2.0.2
Date:     2018-08-01
Author:   Felipe M. Gawryszewski
Maintainer: Felipe Malheiros Gawrysewski <f.gawry@gmail.com>
Description: Colour vision models, colour spaces and colour thresholds. Provides flexibility to build user-defined colour vision models for n number of photoreceptor types. Also includes Vorobyev & Osorio (1998) Receptor Noise Limited models, Chittka (1992) colour hexagon, and Endler & Mielke (2005) model. Models have been extended to accept any number of photoreceptor types.
License:  GPL-2
Imports:  graphics, stats, utils, rgl, Matrix
Suggests: testthat, knitr, rmarkdown, corrplot
```
Index of help topics:

- CTTKhexagon: Chittka (1992) colour hexagon
- CTTKhexagon3D: Chittka (1992) colour space for tetrachromatic animals.
- CTTKmodel: Chittka (1992) colour vision model
- D65: CIE Standard Illuminant D65 in quantum flux (umol/m2/s)
- ELine: Endler and Mielke (2005) 1-D colour space
- EMmodel: Endler and Mielke (2005) colour vision model
- EMtetrahedron: Endler and Mielke (2005) tetrahedron colour space
- EMtriangle: Endler and Mielke (2005) triangle colour space
- GENmodel: N-dimensional generic colour vision model
- GENplot: Generic model colour space 2D and 1D plot
- GENplot3d: Generic model colour space 3D plot
- Q: Total photon capture
- Qr: Photoreceptor relative quantum catch
- RNLMmodel: Receptor Noise Limited Models (Vorobyev & Osorio 1998)
- RNLPLOT: Receptor noise limited model 2D and 1D plot
- RNLPLOT3D: Receptor noise limited model 3D plot
- Rb: Brazilian savannah background reflectance spectrum.
- bee: Honeybee photoreceptors
- colour_space: N-dimensional colour spaces
- colourvision-package: Colour Vision Models
- deltaS: Chromaticity distances
- energytoflux: Irradiance from energy to quantum units.
- logistic: Logistic curve
- noise_e: Receptor noise
- photor: Photoreceptor sensitivity spectra.
- plot.colourvision: Plot colour vision models into chromaticity diagrams
- plot3d.colourvision: Plot colour vision models into 3D chromaticity diagrams.
- radarplot: Radar plot
- spec.denoise: Smooth function for reflectance spectra.

Author(s)
Felipe M. Gawryszewski
Maintainer: Felipe Malheiros Gawrysewski <f.gawry@gmail.com>
References

Examples

```r
#Honeybee photoreceptor sensitivity curves
data("bee")

#Grey background:
## with 10 percent. reflectance from 300 to 700nm:
Rb <- data.frame(300:700, rep(10, length(300:700)))

## Read CIE D65 standard illuminant already converted to quantum flux:
data("D65")

##Reflectance data
## with a sigmoid spectrum and midpoint at 500nm and 550 nm
R1<-logistic(x=seq(300,700,1), x0=500, L=50, k=0.04)
R2<-logistic(x=seq(300,700,1), x0=550, L=50, k=0.04)
R<-cbind(R1, R2[,2])

## Run colour vision model:
model<-CTKmodel(photo="tri", R=R, I=D65, Rb=Rb, C=bee)

#plot data in the colour space
plot(model)
```

Description

Honeybee (Apis mellifera) photoreceptor sensitivity curves.

Usage

`data("bee")`

Format

A data frame with 401 observations on the following 4 variables.

- **Wavelength** a numeric vector
- **UV** a numeric vector
- **Blue** a numeric vector
- **Green** a numeric vector
colour_space

Details

Original data were interpolated to 1nm intervals from 300 to 700nm.

Source

Examples

data("bee")
plot(bee[,2]-bee[,1], col = "violet", type="l", xlab="Wavelength(nm)", ylab= "Absorbance")
lines(bee[,3]-bee[,1], col = "blue", type="l")
lines(bee[,4]-bee[,1], col = "green", type="l")

colour_space N-dimensional colour spaces

description

Generates a colour space based on any number of photoreceptor types and finds a colour locus for a given photoreceptor output.

Usage

colour_space(n, type="length", length=NA, edge=NA, q=rep(1,n), recep.noise=FALSE, e=NA)

Arguments

n Number of photoreceptor types. Function accepts any number of photoreceptor types >=2. For instance, trichromatic: n=3; tetrachromatic: n=4, etc.

type Whether the colour space should be built with a fixed vector length (type="length"), or a fixed distance between vertices (type="edge"; e.g. Pike 2012 and Renoult et al. 2015).

length Vector length used to construct the colour space. Used when type="length". Typically length=1.

edge Edge length used to construct the colour space. Used when type="edge".

q Photoreceptor output values

recep.noise Whether receptor noise should be used to calculate colour locus coordinates.

e Vector representing photoreceptor noises. Used when recep.noise=TRUE

Details

This function is used internally in colour vision models.
Value
A list with the following dimensions:

coordinates Colour locus of photoreceptor output values q in the colour space
vector_matrix Matrix of column vectors, each representing one photoreceptor type

Author(s)
Felipe M. Gawryszewski <f.gawry@gmail.com>

References

See Also
Q, Qr, CTTKmodel, EMmodel, RNLmodel, GENmodel

Examples

```r
# A trichromatic colour space based on Endler and Mielke (2005)
tri<-colour_space(n=3, length=0.75, q=c(0.5,0.2,0.3))

# showing:
#(1) Limits of the colour space (triangle)
plot(0, ylim=c(-1,1), xlim=c(-1,1), asp=1, ylab="X2", xlab="X1", type="n")
polygon(x=tri$vector_matrix[1,], y=tri$vector_matrix[2,], lty=2)

#(2) Vectors (length=0.75) used to build the colour space (arrows)
arrows(x0=0,y0=0, x1=tri$vector_matrix[1,1], y1=tri$vector_matrix[2,1], col="red")
arrows(x0=0,y0=0, x1=tri$vector_matrix[1,2], y1=tri$vector_matrix[2,2], col="red")
arrows(x0=0,y0=0, x1=tri$vector_matrix[1,3], y1=tri$vector_matrix[2,3], col="red")

#(3) Colour loci of given photoreceptor outputs
points(x=tri$coordinates[[1]], y=tri$coordinates[[2]], pch=21, col="blue", bg="blue")
```

Description
Plots Chittka (1992) colour hexagon for trichromatic animals and a line plot for dichromatic animals.
CTTKhexagon

Usage

CTTKhexagon(x, y, photo=3,
 vnames=c(expression(E[1]), expression(E[2]), expression(E[3])),
 pch=16, bty="n", yaxt="n", xaxt="n", col="black",
 xlim="auto", ylim="auto", asp=1, ann=FALSE,
 axes=FALSE, vectors=FALSE, ...)

Arguments

x x-coordinate
y y-coordinate. y=0 when photo=2
photo Number of photoreceptor types. photo=3 for a trichromatic animal, and photo=2
 for a dichromatic animal.

vnames Vector names.
pch see par function.
bty see par function.
yaxt see par function.
xaxt see par function.
col see par function.
xlim see plot function. Default calculates xlim automatically.
ylim see plot function. Default calculates ylim automatically.
asp see plot function.
ann see par function.
axes see plot.default function.
vectors Whether vectors representing direction of photoreceptor outputs should be plotted.

... Other arguments passed to plot function.

Author(s)

Felipe M. Gawryszewski <f.gawry@gmail.com>

References

Chittka, L. 1992. The colour hexagon: a chromaticity diagram based on photoreceptor excitations

See Also

CTTKmodel, CTTKhexagon3D
Examples

```r
## Honeybee photoreceptor sensitivity curves
data("bee")

## Grey background:
## with 7 percent reflectance from 300 to 700nm:
Rb <- data.frame(300:700, rep(7, length(300:700)))

## Read CIE D65 standard illuminant already converted to quantum flux:
data("D65")

## Reflectance data
## with a sigmoid spectrum and midpoint at 500nm and 550 nm
R1<-logistic(x=seq(300,700,1), x0=500, L=50, k=0.04)
R2<-logistic(x=seq(300,700,1), x0=550, L=50, k=0.04)
R<-cbind(R1, R2[,2])

## Run colour vision model:
model<-CTTKmodel(photo="tri", R=R, I=D65, Rb=Rb, C=bee)

## Plot data in the colour space
CTTKhexagon(x=model[,"X1"], y=model[,"X2"])
```

CTTKhexagon3D
Chittka (1992) colour space for tetrachromatic animals.

Description

Plots a hexagonal trapezohedron representing Chittka (1992) colour space for tetrachromatic animals (Thery and Casas, 2002).

Usage

```r
CTTKhexagon3D(x, y, z, s.col = "red", f.col = "black",
vnames = c("E1","E2","E3","E4"), type = "p",
radius = 0.01, add = F, xlab = "", ylab = "", zlab = "",
box = F, axes = F, ylim = c(-1, 1), xlim = c(-1, 1),
zlim = c(-1,1), aspect = T, vectors=F, ...)
```

Arguments

- `x` x coordinate of points to be plotted
- `y` y coordinate of points to be plotted
- `z` z coordinate of points to be plotted
- `s.col` Colour to be used for plotted items. See `plot3d`
- `f.col` Colour of tetrahedron lines. See `plot3d`
vnames Vector names.
type see plot3d function.
radius see plot3d function.
add see plot3d function.
xlab see plot3d function.
ylab see plot3d function.
zlab see plot3d function.
box see plot3d function.
axes see plot3d function.
ylim see plot3d function.
xlim see plot3d function.
zlim see plot3d function.
aspect see plot3d function.
vectors Whether vectors representing direction of photoreceptor outputs should be plotted.
 Other arguments passed to function plot3d.

Author(s)
Felipe M. Gawryszewski <f.gawry@gmail.com>

References

See Also
CTTKmodel, CTTKhexagon

Examples

```r
## Not run:
library(rgl)
CTTKhexagon3D(x=0,y=0,z=0)

## End(Not run)
```
CTTKmodel

Chittka (1992) colour vision model

Description

Chittka (1992) colour hexagon extended to animals with any number of photoreceptors types.

Usage

CTTKmodel(photo=ncol(C)-1, R, I, Rb, C,
interpolate=TRUE, nm=seq(300,700,1))

Arguments

photo
Number of photoreceptor types. Model accepts any number of photoreceptor types (>=2). For instance, dichromatic: photo=2; trichromatic: photo=3; tetrachromatic: photo=4, etc. Default gets number of photoreceptor types from C argument.

R
Reflectance of observed objects. A data frame with first column corresponding to wavelength values and following columns with reflectance values. R must be in the same scale as Rb (percentage or proportion).

I
Irradiance spectrum. A data frame with two columns only: first column corresponding to wavelength values and second column with irradiance values. Irradiance values must be in quantum flux units.

Rb
Background reflectance. A data frame with two columns only: first column corresponding to wavelength values and second column with reflectance values. Rb must be in the same scale as R (percentage or proportion).

C
Photoreceptor sensitivity curves, from lowest to longest lambda-max. A data frame: first column corresponding to wavelength values and following columns with photoreceptor sensitivity values (see function photor).

interpolate
Whether data files should be interpolated before further calculations. See approx.

nm
A sequence of numeric values specifying where interpolation is to take place. See approx.

Details

The original model is available for trichromatic animals only. Thery and Casas (2002) derived a version for tetrachromatic animals which is implemented here. In colourvision, this model was extended to any number of photoreceptors types (Gawryszewski 2018; see also Pike 2012). The colour hexagon in Chittka (1992) has a vector of length = 1.0 The chromaticity coordinates in colourvision preserve the same vector length. Photoreceptor outputs (E_i) are calculated by:

$$E_i = \frac{q_i}{q_i + 1}$$
where \(q_i \) is given by \(Qr \).

Then, for trichromatic vision, coordinates in the colour space are found by (Chittka 1992):

\[
X_1 = \frac{\sqrt{3}}{2} (E_3 - E_1) \\
X_2 = E_2 - \frac{1}{2}(E_1 + E_3)
\]

For tetrachromatic vision (Thery and Casas 2002):

\[
X_1 = \frac{\sqrt{3} \sqrt{2}}{3} (E_3 - E_4) \\
X_2 = E_1 - \frac{1}{3}(E_2 + E_3 + E_4) \\
X_3 = \frac{2 \sqrt{2}}{3} \left(\frac{1}{2}(E_3 + E_4) - E_2 \right)
\]

For a pentachromatic animal following the same vector length:

\[
X_1 = \frac{5}{2 \sqrt{2 \sqrt{5}}} (E_2 - E_1) \\
X_2 = \frac{5 \sqrt{2}}{2 \sqrt{2 \sqrt{5}}} (E_3 - \frac{E_1 + E_2}{2}) \\
X_3 = \frac{5 \sqrt{3}}{4 \sqrt{5}} (E_4 - \frac{E_1 + E_2 + E_3}{3}) \\
X_4 = E_5 - \frac{E_1 + E_2 + E_3 + E_4}{4}
\]

Value

\(Qri \) Photoreceptor photon catch values after the von Kries transformation (see function \(Qr \)).

\(Ei \) Photoreceptor output values. Values can vary from 0 to 1.

\(Xi \) Coordinates in the colour space.

\(\text{deltas} \) Euclidean distance to the origin of the colour space. It represents the conspicuousness of the stimulus (\(r \)) in relation to the background (\(r_b \)).

Author(s)

Felipe M. Gawryszewski <f.gawry@gmail.com>

References

See Also

CTTKhexagon, CTTKhexagon3D, photor, RNLmodel, EMmodel, deltaS

Examples

```r
## Photoreceptor sensitivity curves
## with lambda max at 350nm, 450nm and 550nm:
C <- photor(lambda.max=c(350,450,550))

## Grey background
## with 10 percent reflectance from 300 to 700nm:
Rb <- data.frame(300:700, rep(10, length(300:700)))

## Read CIE D65 standard illuminant
data("D65")

## Reflectance data
## with a sigmoid spectrum and midpoint at 500nm
R <- logistic(x=seq(300,700,1), x0=500, L=50, k=0.04)

## Run model
model <- CTTKmodel(photo=3, R=R, I=D65,
                    Rb=Rb, C=C)

# plot
plot(model)
```

D65

CIE Standard Illuminant D65 in quantum flux (umol/m²/s)

Description

CIE Standard Illuminant D65. Datum has already been converted to quantum flux (umol/m²/s) and therefore can be used in colour vision models directly.

Usage

data("D65")

Format

A data frame with 107 observations on the following 2 variables.

1. `nm` a numeric vector
2. `standard ILLuminant D65` a numeric vector

Source

http://www.cie.co.at/
deltaS

Examples

data("D65")
plot(D65, type="l")

deltaS

Chromaticity distances

Description

Calculates a matrix with all possible pairwise comparison between stimulus reflectance spectra based on a given colour vision model output.

Usage

deltaS(model)

Arguments

model Output of a colour vision model.

Value

A matrix with pairwise chromaticity distances.

Author(s)

Felipe M. Gawryszewski <f.gawry@gmail.com>

See Also

CTTKmodel, RNLmodel, EMmodel, GENmodel

Examples

Photoreceptor sensitivity curves
with lambda max at 350nm, 450nm and 550nm:
C< photor(lambda.max=c(350,450,550))

Grey background
with 10 percent reflectance from 300 to 700nm:
Rb <- data.frame(300:700, rep(10, length(300:700)))

Read CIE D65 standard illuminant
data("D65")

Reflectance data
with a sigmoid spectrum and midpoint at 500nm
R1< logistic(x=seq(300,700,1), x0=450, L=50, k=0.04)
R2< logistic(x=seq(300,700,1), x0=500, L=50, k=0.04)
R3<-logistic(x=seq(300,700,1), x0=550, L=50, k=0.04)
R<-cbind(R1,R2[,2],R3[,2])

Run model
model<-CTTKmodel(photo=3, R=R, I=D65,
Rb=Rb, C=C)

#Chromaticity distances between R1, R2 and R3
deltaS(model)

ELine

Endler and Mielke (2005) 1-D colour space

Description

Plots a colour space for dichromatic Endler and Mielke (2005) colour vision model.

Usage

```r
ELine(x,y=rep(0, length(x)), type="length", 
vnames=c("E1","E2"), 
ylim="auto", xlim="auto", 
ann=FALSE, axes = FALSE, ...)
```

Arguments

- `x`: x-coordinate
- `y`: y-coordinate
- `type`: Whether the colour space should be built with a fixed vector length, or a fixed edge length (distance between vertices).
- `vnames`: Vector names
- `ylim`: see `plot` function.
- `xlim`: see `plot` function.
- `ann`: see `par` function.
- `axes`: see `plot.default` function.
- `...`: Other arguments passed to `plot`.

Details

The original model is available for tetrachromatic animals only. Colour space is built either with a vector length = 0.75 or a edge length = sqrt(3/2), to match the tetrahedron proposed by Endler and Mielke (2005).

Author(s)

Felipe M. Gawryszewski <f.gawry@gmail.com>
EMmodel

References

See Also
EMtriangle, EMtetrahedron, EMmodel

Examples
EMline(x=0.1, pch=16, col="red")

Description
Endler and Mielke (2005) colour vision model extended to animals with any number of photoreceptor types.

Usage
EMmodel(photo = ncol(C)-1, type="length", R, I, Rb, C, interpolate=TRUE, nm=seq(300, 700, 1))

Arguments

- **photo**: Number of photoreceptor types. Model accepts any number of photoreceptor types (>=2). For instance, dichromatic: photo=2; trichromatic: photo=3; tetra-chromatic: photo=4, etc. Default gets number of photoreceptor types from C argument.

- **type**: Whether the colour space should be built with a fixed vector length (type="length"), or a fixed edge length (distance between vertices; type="edge").

- **R**: Reflectance of observed objects. A data frame with first column corresponding to wavelength values and following columns with reflectance values. R must be in the same scale as Rb (percentage or proportion).

- **I**: Irradiance spectrum. A data frame with two columns only: first column corresponding to wavelength values and second column with irradiance values. Irradiance values must be in quantum flux units.

- **Rb**: Background reflectance. A data frame with two columns only: first column corresponding to wavelength values and second column with reflectance values. Rb must be in the same scale as R (percentage or proportion).

- **C**: Photoreceptor sensitivity curves, from lowest to longest lambda-max. A data frame: first column corresponding to wavelength values and following columns with photoreceptor sensitivity values (see function photor).
interpolate Whether data files should be interpolated before further calculations. See approx.

Details

The original model is available for tetrachromatic animals only. In colour vision, the model was extended to any number of photoreceptors types (see also Pike 2012 formula).

First, relative quantum catches are log-transformed:

\[f_i = \ln q_i \]

where \(q_i \) is the relative quantum catch of photoreceptor type \(i \), given by \(Qr_i \). The model uses only relative output values, so that photoreceptor outputs are given by:

\[E_i = \frac{f_i}{\sum_{i=1}^{n} f_i} \]

For tetrachromatic vision (Endler and Mielke 2005):

\[\begin{align*}
X1 &= \sqrt{\frac{3}{2}} \left(1 - \frac{E_2 - E_3 - E_4}{2}\right) \\
X2 &= \frac{-1 + 3E_3 + E_1}{2\sqrt{2}} \\
X3 &= E_1 - \frac{1}{4}
\end{align*} \]

Tetrachromatic chromaticity diagram (tetrahedron) in Endler and Mielke (2005) has a vector of length = 0.75 and and edge length = \(\sqrt{3/2} \). The chromaticity coordinates for other colour spaces may preserve either the same vector length or edge length.

For instance, for dichromatic vision coordinate (X1) in the colour space preserving the same vector length is found by:

\[X1 = \frac{3}{4}(E_2 - E_1) \]

Whereas for trichromatic vision coordinates (X1 and X2) are found by:

\[\begin{align*}
X1 &= \frac{3\sqrt{3}}{8}(E_2 - E_1) \\
X2 &= \frac{3}{4}(E_3 - \frac{E_2 + E_1}{2})
\end{align*} \]

Value

\(Qr_i \) Photoreceptor photon catch values after the von Kries transformation (see function \(Qr \)).

\(E_i \) Photoreceptor outputs after conversion to relative values.

\(X_i \) Coordinates in the colour space.

\(\delta S \) Euclidean distance to the origin of the colour space. It represents the conspicuousness of the stimulus (R) in relation to the background (Rb).
Author(s)
Felipe M. Gawryszewski <f.gawry@gmail.com>

References

See Also
EMline, EMtriangle, EMtetrahedron, photor, CTKmodel, RNLmodel, GENmodel

Examples
```r
## Photoreceptor sensitivity curves
## with lambda max at 350nm, 450nm and 550nm:
C<-photor(lambda.max=c(350,450,550))

## Gray background
## with 7 percent reflectance from 300 to 700nm:
Rb <- data.frame(300:700, rep(7, length(300:700)))

## Read CIE D65 standard illuminant
data("D65")

## Reflectance data
## with a sigmoid spectrum and midpoint at 500nm and 550 nm
R1<-logistic(x=seq(300,700,1), x0=500, L=50, k=0.04)
R2<-logistic(x=seq(300,700,1), x0=550, L=50, k=0.04)
R<-cbind(R1, R2)
R[,2]<-R[,2]+10
R[,3]<-R[,3]+10

## Run model
model<-EMmodel(photo=3, type="edge",
               R=R, I=D65, Rb=Rb, C=C)
plot(model)
```

EMtetrahedron Endler and Mielke (2005) tetrahedron colour space

Description
Plots Endler and Mielke (2005) tetrahedron colour space for tetrachromatic animals.
Usage

EMtetrahedron(x, y, z, s.col = "red", f.col = "black",
 vnames = c("u","s","m","l"), type = "p",
 radius = 0.01, add = F, xlab = "",
 ylab = "", zlab = "", box = F, axes = F,
 ylim = c(-0.75, 0.75), xlim = c(-0.75, 0.75),
 zlim = c(-0.75, 0.75), aspect = T,
 mar = c(1, 1, 1, 1), vectors=FALSE, ...)

Arguments

x x coordinate of points to be plotted
y y coordinate of points to be plotted
z z coordinate of points to be plotted
s.col Colour to be used for plotted items. See plot3d.
f.col Colour of tetrahedron lines. See plot3d.
vnames Vector names.
type see plot3d function.
radius see plot3d function.
add see plot3d function.
xlab see plot3d function.
ylab see plot3d function.
zlab see plot3d function.
box see plot3d function.
axes see plot3d function.
ylim see plot3d function.
xlim see plot3d function.
zlim see plot3d function.
aspect see plot3d function.
mar see plot3d function.
vectors Whether vectors representing direction of photoreceptor outputs should be plotted.
... Other arguments passed to function plot3d.

Author(s)

Felipe M. Gawryszewski <f.gawry@gmail.com>

References

See Also

EMtriangle, EMmodel

Examples

```r
## Not run:
library(rgl)
EMtetrahedron(x=0, y=0, z=0)

## End(Not run)
```

EMtriangle

Endler and Mielke (2005) triangle colour space

Description

Plots a triangle colour space for trichromatic Endler and Mielke (2005) colour vision model.

Usage

```r
EMtriangle(x, y, type=c("length", "edge"), vnames=c("u", "s", "m"),
          ylim=c(-0.9, 0.9), xlim=c(-0.9, 0.9),
          pch=16, bty="n", yaxt="n", xaxt="n",
          col="black", asp=1, ann=FALSE, vectors=FALSE, ...)
```

Arguments

- `x`: x-coordinate
- `y`: y-coordinate
- `type`: Whether the colour space should be built with a fixed vector length, or a fixed edge length (distance between vertices).
- `vnames`: Vector names
- `ylim`: see `plot` function.
- `xlim`: see `plot` function.
- `pch`: see `par` function.
- `bty`: see `par` function.
- `yaxt`: see `par` function.
- `xaxt`: see `par` function.
- `col`: see `par` function.
- `asp`: see `plot` function.
- `ann`: see `par` function.
- `vectors`: Whether vectors representing direction of photoreceptor outputs should be plotted.
- `...`: Other arguments passed to `plot`.
energytoflux

Details
The original model is available for tetrachromatic animals only. Trichromatic version is imple-
mented in colourvision based on Pike (2012) formula. The triangle is built either with a vec-
tor length = 0.75 or a edge length = sqrt(3/2), to match the tetrahedron proposed by Endler and
Mielke (2005). Doris Gomez derived a trichromatic version which is available in software AVI-
COL (Gomez, 2006) and was previously implemented here (colourvision v0.1).

Author(s)
Felipe M. Gawryszewski <f.gawry@gmail.com>

References
Soc 86:405-431.
Gomez, D. 2006. AVICOL, a program to analyse spectrometric data. Last update october 2011. Free
executable available at:
http://sites.google.com/site/avicolprogram/ or from the author at <dodogomez@yahoo.fr>

See Also
EMtetrahedron, EMmodel

Examples
EMtriangle(x=0,y=0, type="length", pch=16, col="red")

energytoflux Irradiance from energy to quantum units.

Description
Convert Irradiance datum from energy units (uW/cm2/nm) to quantum flux units (umol/m2/s)

Usage
energytoflux(datum)

Arguments
datum A data frame with first column corresponding to wavelength values and sec-
 ond column with irradiance values. Irradiance values must be in energy units
 (uW/cm2/nm).
Value

A data frame with first column corresponding to wavelength values and second column with irradiance values in umol/m2/s.

Author(s)

Felipe M. Gawryszewski <f.gawry@gmail.com>

GENmodel

N-dimensional generic colour vision model

Description

A flexible function to build colour vision models based on any number of photoreceptor types (Gawryszewski 2018).

Usage

```r
GENmodel(photo=ncol(C)>1, type="length", length=NA, edge=NA, 
R, I, Rb=NA, C, vonKries = TRUE, func, unity=FALSE, 
recep.noise=FALSE, noise.given=TRUE, e=NA, v=NA, n=NA, 
interpolate=TRUE, nm=seq(300,700,1))
```

Arguments

- **photo**: Number of photoreceptor types. Model accepts any number of photoreceptor types (>2). For instance, dichromatic: `photo=2`; trichromatic: `photo=3`; tetra-chromatic: `photo=4`, etc. Default gets number of photoreceptor types from `C` argument.

- **type**: Whether the colour space should be built with a fixed vector length (`type="length"`), or a fixed distance between vertices (`type="edge"`; e.g. Pike 2012 and Renoult et al. 2015).

- **length**: Vector length used to construct the colour space. Used when `type="length"`. Typically `length=1`.

- **edge**: Edge length used to construct the colour space. Used when `type="edge"`.

- **R**: Reflectance of observed objects. A data frame with first column corresponding to wavelength values and following columns with reflectance values. `R` must be in the same scale as `Rb`.

- **I**: Irradiance spectrum. A data frame with two columns only: first column corresponding to wavelength values and second column with irradiance values. Irradiance values must be in quantum flux units.

- **Rb**: Background reflectance. A data frame with two columns only: first column corresponding to wavelength values and second column with reflectance values. `Rb` must be in the same scale as in `R`.
Photoreceptor sensitivity curves, from lowest to longest lambda-max. A data frame: first column corresponding to wavelength values and following columns with photoreceptor sensitivity values (see function `photor`).

Whether the von Kries transformation should be applied to photoreceptor photon catches. Calculates the ratio between stimulus and background photoreceptor photon catches.

Transformation of photoreceptors inputs. For instance, `func=log` for a ln-transformation.

Whether sum of photoreceptor output should be normalized to 1, as in `EMmodel`.

Logical. Whether chromaticity distances should be calculated based on receptor noises.

Logical. Whether receptor noise is provided (noise.given = TRUE) or calculated from photoreceptor relative abundances (noise.given = FALSE). Used when `recep.noise=TRUE`.

Receptor noise of each photoreceptor type. Used when `recep.noise = TRUE` and `noise.given = TRUE`.

Relative number of each photoreceptor type in the retina. Used to calculate e when `recep.noise = TRUE` and `noise.given = TRUE`.

Noise-to-signal ratio of a single photoreceptor. Used to calculate e when `recep.noise = TRUE` and `noise.given = TRUE`.

Whether data files should be interpolated before further calculations. See `approx`.

A sequence of numeric values specifying where interpolation is to take place. See `approx`.

Noise of photoreceptor channels. Calculated only when `recep.noise=TRUE`.

Photoreceptor photon catch values from R. Relative Photoreceptor photon catches when `vonKries=TRUE`. See functions `Q` and `Qr`.

Photoreceptor outputs.

Stimulus colour locus coordinates in the colour space

Euclidean distance to the origin of the colour space. It represents the conspicuousness of the stimulus (R) in relation to the background (Rb)

Felipe M. Gawryszewski <f.gawry@gmail.com>

See Also

Q, qr, CTTKmodel, EMmodel, RNLMmodel, colour_space

Examples

A trichromatic colour vision model based on Endler and Mielke (2005)

Photoreceptor sensitivity curves
with lambda max at 350nm, 450nm and 550nm:
C <- photor(lambda.max=c(350, 450, 550))

Gray background
with 7 percent reflectance from 300 to 700nm:
Rb <- data.frame(300:700, rep(7, length(300:700)))

Read CIE D65 standard illuminant
data("D65")

Reflectance data
with a sigmoid spectrum and midpoint at 500nm and 550 nm
R1 <- logistic(x=seq(300,700,1), x0=500, L=50, k=0.04)
R2 <- logistic(x=seq(300,700,1), x0=550, L=50, k=0.04)
R <- cbind(R1, R2[,2])
R[,2] <- R[,2]+10
R[,3] <- R[,3]+10

Run model
model <- GENmodel(length=0.75, R=R, I=D65, Rb=Rb, C=C,
 func=log, unity=TRUE)

plot(model)

GENplot

Generic model colour space 2D and 1D plot

Description

Plots models based on the GENmodel() function for trichromatic and dichromatic animals.

Usage

GENplot(model, photo, col.names=c("X1","X2"),
vectors=TRUE, vnames=TRUE, vsize="auto",
ylab="y", xlab="x", xlim="auto", ylim="auto", asp=1, ...)

Arguments

model Output of a colour vision model.
photo Number of photoreceptor types.
col.names Column names to be plotted.
vectors Whether vectors representing direction of photoreceptor outputs should be plotted.
vnames Whether vector names should be plotted.
vsize Length of vectors to be plotted. Default calculates length automatically.
ylab y-axis range. Default calculates range automatically. See \texttt{par} function.
xlab x-axis range. Default calculates range automatically. See \texttt{par} function.
xlim see \texttt{par} function.
ylim see \texttt{par} function.
asp see \texttt{plot} function.
... Other arguments passed to \texttt{plot} function.

Author(s)

Felipe M. Gawryszewski <f.gawry@gmail.com>

See Also

\texttt{CTTKhexagon, CTTKhexagon3D, EMtriangle, EMtetrahedron, RNLplot, RNLplot3d, GENplot3d, plot.colourvision, plot3d.colourvision}

\begin{tabular}{ll}
\hline
GENplot3d & \textit{Generic model colour space 3D plot} \\
\hline
\end{tabular}

Description

Plots models based on the GENmodel() function for tetrachromatic animals.

Usage

\begin{verbatim}
GENplot3d(model, col.names=c("X1","X2","X3"),
 vectors=TRUE, vnames=TRUE, vsize="auto",
 xlab="x", ylab="y", zlab="z",
 xlim="auto", ylim="auto", zlim="auto", asp=1, ...)
\end{verbatim}
Arguments

- `model`: Output of a colour vision model.
- `col.names`: Column names to be plotted.
- `vectors`: Whether vectors representing direction of photoreceptor outputs should be plotted.
- `vnames`: Whether vector names should be plotted.
- `vsize`: Length of vectors to be plotted. Default calculates length automatically.
- `xlab`, `ylab`, `zlab`: see `par3d` function.
- `xlim`, `ylim`, `zlim`: x-axis range. Default calculates range automatically. See `par3d` function.
- `asp`: see `plot3d` function.
- `...`: Other arguments passed to `plot3d` function.

Author(s)

Felipe M. Gawryszewski <f.gawry@gmail.com>

See Also

- `CTTKhexagon`, `CTTKhexagon3D`, `EMtriangle`, `EMtetrahedron`, `RNLplot`, `RNLplot3d`, `GENplot`, `plot.colourvision`, `plot3d.colourvision`

Description

Generates a logistic curve.

Usage

```r
logistic(x = seq(300, 700, 1), x0, L, k)
```

Arguments

- `x`: Range.
- `x0`: Midpoint value.
- `L`: Maximum value.
- `k`: Steepness of the curve
Author(s)
Felipe M. Gawryszewski <f.gawry@gmail.com>

References
https://en.wikipedia.org/wiki/Logistic_function

Examples
l<-logistic(x=seq(300,700,1), x0=650, L=50, k=0.04)
plot(l, type="l")

noise_e Receptor noise

Description
Receptor noise either provided by the user or based on noise-to-signal ratio of a single photoreceptor and the relative abundance of photoreceptor types in the retina. This function is used internally in Receptor Noise Limited models.

Usage
noise_e(noise, e, v, n)

Arguments
noise Logical. Whether receptor noise is provided (noise = TRUE) or calculated from photoreceptor relative abundances (noise = FALSE)
e Receptor noise of each photoreceptor type. It is used when noise = TRUE
v Noise-to-signal ratio of a single photoreceptor.
n Relative abundance of the photoreceptor in the retina.

Author(s)
Felipe M. Gawryszewski <f.gawry@gmail.com>

References

See Also
RNLmodel, RNLthres, GENmodel, colour_space
photor

Photoreceptor sensitivity spectra.

Description
Generates photoreceptor sensitivity spectra based on lambda-max values.

Usage
photor(lambda.max, lambda = seq(300, 700, 1), beta.band = FALSE)

Arguments
lambda.max Vector with photoreceptor wavelength at maximum sensitivity values, in increasing order.
lambda Range and interval to calculate the sensitivity curves.
beta.band Logical. Whether or not to include a beta-band in the sensitivity curve.

Value
A data frame with first column corresponding to wavelength values and following columns with photoreceptor sensitivity values

Author(s)
Felipe M. Gawryszewski <f.gawry@gmail.com>

References

See Also
CTTKmodel, EMmodel, RNLmodel, RNLthres

Examples
Generates photoreceptor sensitivity
values with lambda max at 350nm, 450nm and 550nm:
C<-photor(lambda.max=c(350,450,550))

plot(C[,2]-C[,1], type="l", col="violet")
lines(C[,3]-C[,1], type="l", col="blue")
lines(C[,4]-C[,1], type="l", col="green")
Description

Plotting method for objects of class `colourvision`. Plotting method for animals with two or three photoreceptor types.

Usage

```r
## S3 method for class 'colourvision'
plot(x, ...)
```

Arguments

- `x` Object of class "colourvision".
- `...` Additional arguments passed to the plot function. See `CTKhexagon` for Chittka (1992) model (`CTKmodel`) plotting arguments; `EMtriangle` and `EMline` for Endler and Mielke (2005) model (`EMmodel`) plotting arguments; `RNLPplot` for RNL plotting arguments; and `GENplot` for generic model (`GENmodel`) plotting arguments.

Author(s)

Felipe M. Gawryszewski <f.gawry@gmail.com>

References

See Also

`plot3d.colourvision`, `EMtriangle`, `CTKhexagon`, `EMmodel`, `CTKmodel`, `RNLPmodel`, `RNLTthres`

Examples

```r
# Trichromatic
# Photoreceptor sensitivity curves
C <- photor(lambda.max = c(350, 450, 550))

# Gray background
Rb <- data.frame(300:700, rep(7, length(300:700)))

# Read CIE D65 standard illuminant
data("D65")
```
Reflectance data
RI<logistic(x=seq(300,700,1), x0=500, L=50, k=0.04)
RI[,2]<-RI[,2]+10

Run models
model<-EMmodel(photo=3,
R=R1, I=I65, Rb=RB, C=C)
plot(model)

model<-CTKmodel(photo=3,
R=R1, I=I65, Rb=RB, C=C)
plot(model)

model<-RNLmodel(model="log", photo=3,
R=R1, I=I65, Rb=RB, C=C, noise=TRUE, e=c(0.13, 0.06, 0.12))
plot(model)

colour threshold
model<-RNLthres(photo=3, I=I65, Rb=RB, C=C,
noise=TRUE, e=c(0.13, 0.06, 0.12))
plot(model)

Dichromatic
Photoreceptor sensitivity curves
c<-photor(lambda.max=c(400,550))

Run models
model<-EMmodel(photo=2,
R=R1, I=I65, Rb=RB, C=C)
plot(model)

model<-EMmodel(photo=2, type="edge",
R=R1, I=I65, Rb=RB, C=C)
plot(model)

model<-CTKmodel(photo=2,
R=R1, I=I65, Rb=RB, C=C)
plot(model)

model<-RNLmodel(model="log", photo=2,
R=R1, I=I65, Rb=RB, C=C, noise=TRUE, e=c(0.13, 0.06))
plot(model)

colour threshold
model<-RNLthres(photo=2, I=I65, Rb=RB, C=C,
noise=TRUE, e=c(0.13, 0.06))
plot(model)

plot3d.colourvision Plot colour vision models into 3D chromaticity diagrams.
Description

'plot3d' method for objects of class `colourvision`. Plotting method for animals with four photoreceptor types.

Usage

```r
## S3 method for class 'colourvision'
plot3d(x, ...)
```

Arguments

- `x` Object of class "colourvision".
- `...` Additional arguments passed to the `plot3d` function. See `CTKhexagon3D` for Chittka (1992) model (`CTKmodel`) plotting arguments; `EMtetrahedron` for Endler and Mielke (2005) model (`EMmodel`) plotting arguments; `RNLplot3d` for RNL plotting arguments; and `GENplot3d` for generic model (`GENmodel`) plotting arguments.

Author(s)

Felipe M. Gawryszewski <f.gawry@gmail.com>

References

See Also

`plot.colourvision`, `EMtetrahedron`, `CTKhexagon3D`, `EMmodel`, `CTKmodel`, `RNLmodel`

Examples

```r
## Not run:
## Photoreceptor sensitivity curves
C <- photor(lambda.max=c(350,420,490,560))

## Gray background
Rb <- data.frame(300:700, rep(7, length(300:700)))

## Read CIE D65 standard illuminant data("D65")

## Reflectance data
R1 <- logistic(x=seq(300,700,1), x0=500, L=50, k=0.04)
R1[,2] <- R1[,2]+10
```
Total photon capture

Description

Total photoreceptor photon capture for a given irradiance, reflectance and photoreceptor sensitivity curve. This function is used internally in colour vision models.

Usage

`Q(R,I,C,interpolate,nm)`

Arguments

- **R**: Reflectance of observed object. A data frame with two columns only: first column corresponding to wavelength values and second column with reflectance values.
- **I**: Irradiance spectrum. A data frame with two columns only: first column corresponding to wavelength values and second column with irradiance values. Irradiance values must be in quantum flux units.
- **C**: Photoreceptor sensitivity curve. A data frame with two columns only: first column corresponding to wavelength values and second column with photoreceptor absorbance values.
- **interpolate**: Whether data files should be interpolated before further calculations. See `approx`.
- **nm**: A sequence of numeric values specifying where interpolation is to take place. See `approx`.

Value

Gives the total photoreceptor photon capture.
Author(s)
Felipe M. Gawryszewski <f.gawry@gmail.com>

References

See Also
qr, CTTKmodel, EMmodel, RNLMmodel, RNLTthres, GENmodel

Description
von Kries transformation. Photoreceptors are assumed to be adapted to the background. This function is used internally in colour vision models.

Usage
Qr(R, I, Rb, C, interpolate, nm)

Arguments
R
Reflectance of observed object. A data frame with two columns only: first column corresponding to wavelength values and second column with reflectance values.

I
Irradiance spectrum. A data frame with two columns only: first column corresponding to wavelength values and second column with irradiance values. Irradiance values must be in quantum flux units.

Rb
Background reflectance. A data frame with two columns only: first column corresponding to wavelength values and second column with reflectance values. Photoreceptors are assumed to be adapted to the background reflectance.

C
Photoreceptor sensitivity curve. A data frame with two columns only: first column corresponding to wavelength values and second column with photoreceptor absorbance values.

interpolate
Whether data files should be interpolated before further calculations. See approx.

nm
A sequence of numeric values specifying where interpolation is to take place. See approx.
Details

For the von Kries transformation, first the quantum catches of the observed reflectance and the environmental background are calculated (see Q). Then:

$$q_i = \frac{Q_i}{Q_{bi}}$$

where Q_i is the quantum catch arising from the observed object and Q_{bi} is the quantum catch from the background, for each one of the photoreceptor types (i).

Value

Photoreceptor relative quantum catch.

Author(s)

Felipe M. Gawryszewski <f.gawry@gmail.com>

References

See Also

CTTKmodel, EMmodel, RNLmodel, RNLthres, GENmodel

radarplot

Radar plot

Description

Plots quantum catches or E-values (photoreceptor outputs) into a radar plot.

Usage

radarplot(model, item=c("Qr", "E"), item.labels=FALSE, item.lwd=1,
 border=NULL, radar.lwd=1, radar.col="grey",
 length="auto", xlim="auto", ylim="auto",
 xlab="", ylab="", asp=1, add = FALSE, ...)
Arguments

model Output of a colour vision model.
item Whether photoreceptor inputs (Qr) or outputs (E) should be plotted.
item.labels Logical. Whether vector names should be plotted.
item.lwd Width of lines connecting item values.
border Colour of lines connecting item values. See polygon.
radar.lwd Width of lines representing item vectors.
radar.col Colour of lines representing item vectors.
length Length of item vectors. Default calculates length automatically.
xlim x-axis range. Default calculates range automatically. See plot function.
ylim y-axis range. Default calculates range automatically. See plot function.
xlab see par function.
ylab see par function.
asp see par function.
add Logical. Whether data should be added to an existing plot.
... Other arguments passed to plot.

Author(s)
Felipe M. Gawryszewski <f.gawry@gmail.com>

Examples

###Photoreceptor sensitivity curves
###with lambda max at 350nm, 450nm and 550nm:
C<~photor(lambda.max=c(350,450,550))

Grey background
with 10 percent reflectance from 300 to 700nm:
Rb <- data.frame(300:700, rep(10, length(300:700)))

Read CIE D65 standard illuminant
data("D65")

Reflectance data
with a sigmoid spectrum and midpoint at 500nm
R1<-logistic(x=seq(300,700,1), x0=450, L=50, k=0.04)
R2<-logistic(x=seq(300,700,1), x0=500, L=50, k=0.04)
R3<-logistic(x=seq(300,700,1), x0=550, L=50, k=0.04)
R<-cbind(R1,R2[,2],R3[,2])

Run model
model<~CTTKmodel(photo=3, R=R, I=D65,
 Rb=Rb, C=C)

#Radarpplot
radarplot(model, border=c(”violet”, ”red”, ”blue”), item=”E”, item.labels=TRUE)
Brazilian savannah background reflectance spectrum.

Description

Brazilian savannah background reflectance spectrum calculated by the average reflectance of leaf, leaf litter, tree bark and twigs.

Usage

```
data("Rb")
```

Format

A data frame with 401 observations on the following 2 variables.

- `x`: numeric vector
- `cerrado`: numeric vector

Source

Receptor Noise Limited Models (Vorobyev & Osorio 1998)

Description

Receptor noise limited colour vision models (Vorobyev & Osorio 1998; Vorobyev et al. 1998) extended to any number of photoreceptor types.

Usage

```
RNLmodel(model = c("linear", "log"), photo=ncol(C)-1, R1, R2=Rb, Rb, I, C,
  noise = FALSE, v=NA, n=NA, e=NA,
  interpolate = TRUE, nm = seq(300, 700, 1),
  coord="colourvision")
```
Arguments

model

model="linear" can be used only if comparison is to be made between two very similar colours.

photo
Number of photoreceptor types. Model accepts any number of photoreceptor types (>=2). For instance, dichromatic: *photo=2*; trichromatic: *photo=3*; tetrachromatic: *photo=4*, etc. Default gets number of photoreceptor types from *C* argument.

R1
Reflectance of observed objects. A data frame with first column corresponding to wavelength values and following columns with reflectance values. *R1* must be in the same scale as *R2* and *Rb* (percentage or proportion).

R2
Reflectance to be compared against *R1*. *R2=Rb* if comparison is to be made against the background. A data frame with two columns only: first column corresponding to wavelength values and second column with reflectance values. *R2* must be in the same scale as *R1* and *Rb* (percentage or proportion).

Rb
Background reflectance. A data frame with two columns only: first column corresponding to wavelength values and second column with reflectance values. *Rb* must be in the same scale as *R1* and *R2* (percentage or proportion).

I
Irradiance spectrum. A data frame with two columns only: first column corresponding to wavelength values and second column with irradiance values. Irradiance values must be in quantum flux units.

C
Photoreceptor sensitivity curves, from lowest to longest lambda-max. A data frame: first column corresponding to wavelength values and following columns with photoreceptor sensitivity values (see function *photor*).

noise
Logical. Whether receptor noise is provided (*noise = TRUE*) or calculated from photoreceptor relative abundances (*noise = FALSE*).

e
Receptor noise of each photoreceptor type. Used when *noise = TRUE*

n
Relative number of each photoreceptor type in the retina. Usually increases with lambda-max. Used to calculate *e* when *noise = FALSE*.

v
Noise-to-signal ratio of a single photoreceptor. Used to calculate *e* when *noise = FALSE*.

interpolate
Whether data files should be interpolated before further calculations. See *approx*.

nm
A sequence of numeric values specifying where interpolation is to take place. See *approx*.

coord
Whether colour locous coordinates should be calculated by the method (coord="colourvision") by Gawryszewski (under review), or by alternative (coord="alternative": available for 2-4 photoreceptor types only) methods (Hempel de Ibarra et al. 2001; Renoult et al. 2017).

Details

The receptor noise limited model was originally developed to calculate ΔS between two reflectance curves directly, without finding colour locus coordinates (e.g. x,y; Vorobyev and Osorio 1998).
This function uses later formulae to find colour loci in a chromaticity diagram (similarly to Hempel de Ibarra et al. 2001; Renoult et al. 2015).

In lack of a direct measurement, receptor noise \((e_i) \) can be estimated by the relative abundance of photoreceptor types in the retina, and a measurement of a single photoreceptor noise-to-signal ratio:

\[
e_i = \frac{\nu}{\sqrt{\eta_i}}
\]

where \(\nu \) is the noise-to-signal ratio of a single photoreceptor, and \(\eta \) is the relative abundance of photoreceptor \(i \) in the retina. Alternatively, noise may be dependent of the intensity, but this possibility is not implement in colourvision yet. Noise dependent of intensity usually holds for low light conditions only (Vorobyev et al. 1998).

Value

- \(e_i \) Noise of photoreceptor channels.
- \(Q_{ri,R1} \) Photoreceptor photon catch values from \(R1 \), after the von Kries transformation (see function \(qr \)).
- \(Q_{ri,R2} \) Photoreceptor photon catch values from \(R2 \), after the von Kries transformation (see function \(qr \)).
- \(E_{i,R1} \) Photoreceptor outputs from the stimulus (\(R1 \))
- \(E_{i,R2} \) Photoreceptor outputs from \(R2 \)
- \(X_{i,R1} \) Coordinates in the colour space for \(R1 \)
- \(X_{i,R2} \) Coordinates in the colour space for \(R2 \). Equals zero when \(R1=Rb \)
- \(\delta S \) Euclidean distance from \(R1 \) to \(R2 \). It represents the conspicuousness of the stimulus (\(R1 \)) in relation to the background when \(R1=Rb \).

Author(s)

Felipe M. Gawryszewski <f.gawry@gmail.com>

References

See Also

photor, RNLthres, CTTKmodel, EMmodel, GENmodel
Examples

```r
#1
## Photoreceptor sensitivity spectra
## with lambda max at 350nm, 450nm and 550nm:
C <- photor(lambda.max=c(350,450,550))

## Grey background
## with 7 percent reflectance from 300 to 700nm:
Rb <- data.frame(300:700, rep(7, length(300:700)))

## Read CIE D65 standard illuminant:
data("D65")

## Reflectance data of R1 and R2
R1.1 <- logistic(x=seq(300,700,1), x0=500, L=50, k=0.04)
R1.2 <- logistic(x=seq(300,700,1), x0=400, L=50, k=0.04)
R1.1 <- R1.1[,2]+10
R1.2 <- R1.2[,2]+10
R1 <- data.frame(w=w, R1.1=R1.1, R1.2=R1.2)

R2 <- logistic(x=seq(300,700,1), x0=550, L=50, k=0.04)
R2[,2] <- R2[,2]+10

## Run model
model <- RNLMmodel(photo=3, model="log",
                  R1=R1, R2=R2, Rb=Rb, I=D65, C=C,
                  noise=TRUE, e = c(0.3, 0.06, 0.12))

## Plot
plot(model)

#2
## Pentachromatic animal
## Photoreceptor sensitivity spectra
## with lambda max at 350, 400, 450, 500, and 550nm:
C <- photor(lambda.max=c(350,400,450,500,550))

## Grey background
## with 7 percent reflectance from 300 to 700nm:
Rb <- data.frame(300:700, rep(7, length(300:700)))

## Read CIE D65 standard illuminant:
data("D65")

## Reflectance data of R1
R1[1] <- logistic(x=seq(300,700,1), x0=500, L=50, k=0.04)
R1[,2] <- R1[,2]+10

## RNLM model
RNLMmodel(photo=5, model="log",
          R1=R1, R2=Rb, Rb=Rb, I=D65, C=C,
          noise=TRUE, e = c(0.3, 0.06, 0.12))
```

```
RNLplot

RNLplot Noise limited model 2D and 1D plot

Description
Plots receptor noise limited model (RNL) for trichromatic and dichromatic animals.

Usage
RNLplot(model, photo, item="R1",
         vectors=TRUE, vnames=TRUE, vsize="auto",
         xlab="x", ylab="y", xlim="auto", ylim="auto", asp=1, ...)

Arguments
model     Output of a colour vision model.
photo     Number of photoreceptor types.
item      Model output item to be plotted. Default plots stimulus data. See RNLmodel.
vectors   Whether vectors representing direction of photoreceptor outputs should be plotted.
vnames    Whether vector names should be plotted.
vsize     Length of vectors to be plotted. Default calculates length automatically.
xlab      x-axis range. Default calculates range automatically. See par function.
ylab      y-axis range. Default calculates range automatically. See par function.
xlim      see par function. Default calculates xlim automatically.
ylim      see par function. Default calculates ylim automatically.
asp        see plot function.
...        Other arguments passed to plot function.

Author(s)
Felipe M. Gawryszewski <f.gawry@gmail.com>

See Also
CTKhexagon, CTKhexagon3D, EMtriangle, EMtetrahedron, RNLplot3d, plot.colourvision, plot3d.colourvision
Examples

```r
dichromat
C <- photor(lambda.max=c(450, 550))
Rb <- data.frame(300:700, rep(7, length(300:700)))
data("D65")
R1.1 <- logistic(x=seq(300, 700, 1), x0=500, L=50, k=0.04)
R1.2 <- logistic(x=seq(300, 700, 1), x0=400, L=50, k=0.04)
w <- R1.1[1,1]
R1.1 <- R1.1[2,] + 10
R1.2 <- R1.2[2,] + 10
R1 <- data.frame(w, R1.1=R1.1, R1.2=R1.2)
model <- RNLmodel(model="log",
 R1=R1, Rp=Rb, I=D65, C=C,
 noise=TRUE, e = c(0.13, 0.06))
plot(model)
```

```r
trichromat
C <- photor(lambda.max=c(350, 450, 550))
Rb <- data.frame(300:700, rep(7, length(300:700)))
data("D65")
R1.1 <- logistic(x=seq(300, 700, 1), x0=500, L=50, k=0.04)
R1.2 <- logistic(x=seq(300, 700, 1), x0=400, L=50, k=0.04)
w <- R1.1[1,1]
R1.1 <- R1.1[2,] + 10
R1.2 <- R1.2[2,] + 10
R1 <- data.frame(w, R1.1=R1.1, R1.2=R1.2)
model <- RNLmodel(model="log",
 R1=R1, Rp=Rb, I=D65, C=C,
 noise=TRUE, e = c(0.13, 0.06, 0.12))
plot(model)
```

---

**RNLplot3d**

*Receptor noise limited model 3D plot*

**Description**

Plots receptor noise limited model (RNL) for tetrachromatic animals.

**Usage**

```r
RNLplot3d(model, item="R1",
 vectors=TRUE, vnames=TRUE, vsize="auto",
 xlab="x", ylab="y", zlab="z",
 xlim="auto", ylim="auto", zlim="auto", asp=1, ...)
```

**Arguments**

- `model`: Output of a colour vision model.
- `item`: Model output item to be plotted. Default plots stimulus data. See `RNLmodel`.
vectors Whether vectors representing direction of photoreceptor outputs should be plotted.
vnames Whether vector names should be plotted.
vsiz Length of vectors to be plotted. Default calculates length automatically.
xlab see par3d function.
ylab see par3d function.
zlab see par3d function.
xlim x-axis range. Default calculates range automatically. See par3d function.
ylim y-axis range. Default calculates range automatically. See par3d function.
zlim z-axis range. Default calculates range automatically. See par3d function.
asp see plot3d function.
... Other arguments passed to plot3d function.

Author(s)
Felipe M. Gawryszewski <f.gawry@gmail.com>

See Also
CTTKhexagon, CTTKhexagon3D, EMtriangle, EMtetrahedron, RNL.plot, plot.colourvision, plot3d.colourvision

---

**RNLthres**

*Colour thresholds based on the Receptor Noise Limited Model (Vorobyev & Osorio 1998).*

### Description

Colour thresholds based on receptor noise for any number of photoreceptor types (Vorobyev & Osorio 1998).

### Usage

```r
RNLthres(photo=ncol(C)-1, Rb, I, C, noise=TRUE, v=NA, n=NA, e=NA,
interpolate=TRUE, nm=seq(300,700,1))
```

### Arguments

- **photo** Number of photoreceptor types. Model accepts any number of photoreceptor types (>=2). For instance, dichromatic: photo=2; trichromatic: photo=3; tetra-chromatic: photo=4, etc. Default gets number of photoreceptor types from C argument.
- **Rb** Background reflectance. A data frame with two columns only: first column corresponding to wavelength values and second column with reflectance values.
Irradiance spectrum. A data frame with two columns only: first column corresponding to wavelength values and second column with irradiance values. Irradiance values must be in quantum flux units.

Photoreceptor sensitivity curves, from lowest to longest lambda-max. A data frame: first column corresponding to wavelength values and following columns with photoreceptor sensitivity values (see function `photor`).

Logical. Whether receptor noise is provided (noise = TRUE) or calculated from photoreceptor relative abundances (noise = FALSE).

Receptor noise of each photoreceptor type. Used when noise = TRUE

Relative number of each photoreceptor type in the retina. Usually increases with lambda-max. Used to calculate e when noise = FALSE.

Noise-to-signal ratio of a single photoreceptor. Used to calculate e when noise = FALSE.

Whether data files should be interpolated before further calculations. See `approx`.

A sequence of numeric values specifying where interpolation is to take place. See `approx`.

Details

Colour thresholds based on receptor noise limited model as in Vorobyev and Osorio (1998). In lack of a direct measurement, receptor noise ($e_i$) can be estimated by the relative abundance of photoreceptor types in the retina, and a measurement of a single photoreceptor noise-to-signal ratio:

$$e_i = \frac{\nu}{\sqrt{\eta_i}}$$

where $\nu$ is the noise-to-signal ratio of a single photoreceptor, and $\eta$ is the relative abundance of photoreceptor $i$ in the retina. Alternatively, noise may be dependent of the intensity, but this possibility is not implement in `colourvision` yet. Noise dependent of intensity usually holds for low light conditions only (Vorobyev et al. 1998).

Value

A data.frame with the following columns:

```
nm Wavelength in nm.
T Colour threshold value.
S Log of sensitivity value (inverse of threshold).
```

Author(s)

Felipe M. Gawryszewski <f.gawry@gmail.com>

References

**spec.denoise**

Smooth function for reflectance spectra.

---

**Description**

Applies a `smooth.spline` for data frame containing spectrometric data.

**Usage**

```r
spec.denoise(specfiles, spar = 0.7, ...)
```

**Arguments**

- `specfiles` A data frame with first column representing wavelength values and following columns with reflectance data.
- `spar` see `smooth.spline`. Smoothing parameter, typically (but not necessarily) in (0,1].
- `...` Other arguments passed to function `smooth.spline`.

**Value**

A data frame with first column representing wavelength values and following columns with reflectance data.
Author(s)

Felipe M. Gawryszewski <f.gawry@gmail.com>
Index

*Topic datasets
  bee, 4
  D65, 12
  Rb, 35

*Topic package
  colourvision-package, 2

approx, 10, 16, 22, 31, 32, 36, 42

bee, 4

colour_space, 5, 23, 26
colourvision (colourvision-package), 2
colourvision-package, 2
CTTKhexagon, 6, 9, 12, 24, 25, 28, 39, 41
CTTKhexagon3D, 7, 8, 12, 24, 25, 30, 39, 41
CTTKmodel, 6, 7, 9, 10, 13, 17, 23, 27, 28, 30, 32, 33, 37

D65, 12
deltaS, 12, 13

EMline, 14, 17, 28
EMmodel, 6, 12, 13, 15, 15, 19, 20, 22, 23, 27, 28, 30, 32, 33, 37
EMtetrahedron, 15, 17, 17, 20, 24, 25, 30, 39, 41
EMtriangle, 15, 17, 19, 19, 24, 25, 28, 39, 41
electrotoflux, 20

GENmodel, 6, 13, 17, 21, 26, 28, 30, 32, 33, 37
GENplot, 23, 25, 28
GENplot3d, 24, 24, 30

logistic, 25

noise_e, 26

par, 7, 14, 19, 24, 34, 39
par3d, 25, 41
photor, 10, 12, 15, 17, 22, 27, 36, 37, 42, 43

plot, 7, 14, 19, 24, 34, 39
plot.colourvision, 24, 25, 28, 30, 39, 41
plot.default, 7, 14
plot3d, 8, 9, 18, 25, 41
plot3d.colourvision, 24, 25, 28, 29, 39, 41
polygon, 34

Q, 6, 22, 23, 31, 33
Qr, 6, 11, 16, 22, 23, 32, 32, 37

radarplot, 33
Rb, 35
RNLinmodel, 6, 12, 13, 17, 23, 26–28, 30, 32, 33, 35, 39, 40, 43
RNLinplot, 24, 25, 28, 39, 41
RNLinplot3d, 24, 25, 30, 39, 40
RNLtihes, 26–28, 32, 33, 37, 41

smooth.spline, 43
spec.denoise, 43