interpolation_function

Create an interpolation function

Description

Create an interpolation function, using the same implementation as would be available from C code. This will give very similar answers to R’s \texttt{splinefun} function. This is not the primary intended use of the package, which is mostly designed for use from C/C++. This function primarily exists for testing this package, and for exploring the interface without writing C code.

Usage

\begin{verbatim}
interpolation_function(x, y, type, scalar = FALSE,
fail_on_extrapolate = FALSE)
\end{verbatim}

Arguments

\begin{itemize}
\item \texttt{x} \hspace{1cm} Independent variable
\item \texttt{y} \hspace{1cm} Dependent variable
\item \texttt{type} \hspace{1cm} Character string indicating the interpolation type ("constant", "linear" or "spline").
\item \texttt{scalar} \hspace{1cm} Return a function that will compute only a single \texttt{x} input at a time. This is more similar to the C interface and is equivalent to dropping the first dimension of the output.
\item \texttt{fail_on_extrapolate} \hspace{1cm} Logical, indicating if extrapolation should cause an failure (rather than an NA value)
\end{itemize}

Value

A function that can be used to interpolate the function(s) defined by \texttt{x} and \texttt{y} to new values of \texttt{x}.

Examples

\begin{verbatim}
Some data to interpolate
x <- seq(0, 8, length.out = 20)
y <- sin(x)
xx <- seq(min(x), max(x), length.out = 500)

Spline interpolation
f <- cinterpolate::interpolation_function(x, y, "spline")
plot(f(xx) ~ xx, type = "l")
lines(sin(xx) ~ xx, col = "grey", lty = 2)
points(y ~ x, col = "red", pch = 19, cex = 0.5)

Linear interpolation
\end{verbatim}
```r
f <- cinterpolate::interpolation_function(x, y, "linear")
plot(f(xx) ~ xx, type = "l")
lines(sin(xx) ~ xx, col = "grey", lty = 2)
points(y ~ x, col = "red", pch = 19, cex = 0.5)

# Piecewise constant interpolation
f <- cinterpolate::interpolation_function(x, y, "constant")
plot(f(xx) ~ xx, type = "s")
lines(sin(xx) ~ xx, col = "grey", lty = 2)
points(y ~ x, col = "red", pch = 19, cex = 0.5)

# Multiple series can be interpolated at once by providing a
# matrix for 'y'. Each series is interpolated independently but
# simultaneously.
y <- cbind(sin(x), cos(x))
f <- cinterpolate::interpolation_function(x, y, "spline")
matplot(xx, f(xx), type = "l", lty = 1)
```
Index

interpolation_function, 2
splinefun, 2