Package ‘ciftiTools’

November 20, 2020

Type Package

Title Tools for Reading and Visualizing CIFTI Brain Files

Version 0.1.6.0

Maintainer Amanda Mejia <mandy.mejia@gmail.com>

Description CIFTI files contain brain imaging data in ``gray-ordinates'', which represent the gray matter as cortical surface vertices (left and right) and subcortical voxels (cerebellum, basal ganglia, and other deep gray matter). 'ciftiTools' uses the Connectome Workbench to read CIFTI files into R and apply common pre-processing steps (e.g. smoothing, resampling). It also provides tools for visualizing the cortical surface with GIFTI files, and for visualizing the subcortical volume.

Depends R (>= 3.5.0)

License GPL-3

Encoding UTF-8

LazyData true

Imports gifti (> 0.7.5), grDevices, oro.nifti, RNifti, RColorBrewer, xml2

Suggests fields, ggplot2, ggpubr, knitr, rmarkdown, papayar, rgl, testthat (>= 2.1.0), covr

RoxygenNote 7.1.1

URL https://github.com/mandymejia/ciftiTools

BugReports https://github.com/mandymejia/ciftiTools/issues

NeedsCompilation no

Author Amanda Mejia [aut, cre],
Damon Pham [ctb] (<https://orcid.org/0000-0001-7563-4727>)

Repository CRAN

Date/Publication 2020-11-20 10:20:05 UTC
R topics documented:

add_surf ... 3
as.xifti ... 4
brainstructures_Param_all ... 7
brainstructures_Param_LR ... 8
ciftiTools.getOption ... 8
ciftiTools.listOptions .. 9
ciftiTools.setOption .. 9
cifti_fname_Param ... 9
Connectome_Workbench_Description 10
demo_files .. 10
expand_color_pal .. 11
get_wb_cmd_path .. 11
info_cifti ... 12
is.cifti ... 14
is.surf ... 15
is.xifti ... 16
labels_Description .. 17
make_color_pal .. 18
make_surf .. 20
original_fnames_Param_resampled 21
parc_borders ... 21
plot.surf ... 22
plot.xifti ... 22
read_cifti .. 23
read_dir_Param_separated ... 26
resample_cifti .. 26
resample_cifti_from_template 30
resample_gifti .. 31
resample_surf .. 32
resamp_fnames_Param ... 33
resamp_keep_Param ... 34
resamp_res_Param Optional ... 34
resamp_res_Param Required ... 34
rgl_interactive_plots_Description 35
rgl_static_plots_Description 35
ROI_brainstructures_Param_LR 36
ROY_BIG_BL .. 36
run_wb_cmd .. 37
separate_cifti .. 38
sep_fnames_Param ... 40
sep_keep_Param ... 41
smooth_cifti .. 41
substructure_table .. 43
summary.surf .. 44
summary.xifti .. 44
supported_intents ... 45
add_surf

Description

Add left or right cortical surface geometry to a "xifti" object.

Usage

add_surf(xifti, surfL = NULL, surfR = NULL)
Arguments

- **xifti**: Object of class "xifti". See `is.xifti` and `make.xifti`.
- **surfL**: (Optional) Left brain surface model. Can be a file path to a GIFTI surface geometry file (ends in "*.surf.gii"), a "gifti" object representing surface geometry, or a "surf" object.
- **surfR**: (Optional) Right brain surface model. Can be a file path to a GIFTI surface geometry file (ends in "*.surf.gii"), a "gifti" object representing surface geometry, or a "surf" object.

Details

- `surfL` will be added to `xifti$surf$cortex_left` and `surfR` will be added to `xifti$surf$cortex_right`. Any existing surfaces will be overwritten.

Value

the "xifti" object with added surface geometry components.

as.xifti
Assemble a "xifti" object from data

Description

Assembles cortical data, subcortical data, and/or surface geometry to form a "xifti" object. The inputs must be data objects (vectors, matrices or arrays, depending on the argument). `as.xifti` can be used to combine the files written by `separate_cifti`, or read individual components independent of any CIFTI file.

Usage

```r
as.xifti(
  cortexL = NULL,
  cortexL_mwall = NULL,
  cortexR = NULL,
  cortexR_mwall = NULL,
  mwall_values = c(NA, NaN),
  subcortVol = NULL,
  subcortLabs = NULL,
  subcortMask = NULL,
  surfL = NULL,
  surfR = NULL,
  col_names = NULL,
  HCP_32k_auto_mwall = TRUE
)
```

```r
as_xifti(
```

```r
)```
as.xifti

cortexL = NULL,
cortexL_mwall = NULL,
cortexR = NULL,
cortexR_mwall = NULL,
mwall_values = c(NA, NaN),
subcortVol = NULL,
subcortLabs = NULL,
subcortMask = NULL,
surfL = NULL,
surfR = NULL
)

as.cifti(
cortexL = NULL,
cortexL_mwall = NULL,
cortexR = NULL,
cortexR_mwall = NULL,
mwall_values = c(NA, NaN),
subcortVol = NULL,
subcortLabs = NULL,
subcortMask = NULL,
surfL = NULL,
surfR = NULL
)

as_cifti(
cortexL = NULL,
cortexL_mwall = NULL,
cortexR = NULL,
cortexR_mwall = NULL,
mwall_values = c(NA, NaN),
subcortVol = NULL,
subcortLabs = NULL,
subcortMask = NULL,
surfL = NULL,
surfR = NULL
)

Arguments

cortexL, cortexL_mwall

Left cortex data and ROI. Each must be a data matrix or vector.
If cortexL_mwall is not provided, cortexL should have data for all vertices on the left cortical surface ($V_L \times T$ data matrix). There will not be a mask for the medial wall. Not providing the medial wall mask is appropriate for ".dlabels.nii" files where the medial wall may have its own label and therefore should not be treated as missing data.
If cortexL_mwall is provided, cortexL should either have data for all vertices on the left cortical surface ($V_L \times T$ data matrix, with filler values e.g. 0
or NaN for medial wall vertices), or have data only for non-medial wall vertices 
\(( (V_L - mwall_L) x T \) data matrix). The medial wall mask will be the 0 values 
in \text{cortex}\_mwall. The medial wall mask should be provided whenever the 
medial wall should be treated as missing data.

Since the unmasked cortices must have the same number of vertices, \( V_L \) should 
match \( V_R \).

cortexR, cortexR\_mwall

Right cortex data and ROI. Each must be a data matrix or vector.

If \text{cortexR}\_mwall is not provided, \text{cortexR} should have data for all vertices 
on the right cortical surface \(( V_R x T \) data matrix) that are not a mask for the medial wall.

Not providing the medial wall mask is appropriate for ".dlab\_s\_nii" files where the 
medial wall may have its own label and therefore should not be treated as 
missing data.

If \text{cortexR}\_mwall is provided, \text{cortexR} should either have data for all vertices 
on the right cortical surface \(( V_R x T \) data matrix, with filler values e.g. 0 or 
NaN for medial wall vertices), or have data only for non-medial wall vertices 
\(( (V_R - mwall_R) x T \) data matrix). The medial wall mask will be the 0 values 
in \text{cortex}\_mwall. The medial wall mask should be provided whenever the 
medial wall should be treated as missing data.

Since the unmasked cortices must have the same number of vertices, \( V_L \) should 
match \( V_R \).

mwall\_values

If \text{cortex}[L/R]\_mwall was not provided, or if it was invalid (i.e. bad length or 
all TRUE), the medial wall mask will be inferred from rows in \text{cortex}[L/R] that 
are constantly one of these values. Default: \( c(\text{NA,NaN}) \). If \text{NULL}, do not attempt 
to infer the medial wall from the data values. \text{NULL} should be used if NA or NaN 
are legitimate values that non-medial wall vertices might take on.

subcortVol, subcortLabs, subcortMask

\text{subcortVol} represents the data values of the subcortex. It is either a 3D/4D 
numeric array \(( i\times j\times k\times T \)), or a vectorized matrix \(( V_S \) voxels by \( T \) measurements). 
If it’s vectorized, the voxels should be in spatial order \(( i \) index increasing fastest, 
then \( j \), then \( k \)).

\text{subcortLabs} represents the brainstructure labels of each voxel: see \text{substructure\_table}. 
It is either a 3D data array \(( i\times j\times k \)) of integer brainstructure indices, or a \( V_S \) 
length vector in spatial order with brainstructure names as factors or integer 
indices. The indices should be 3-21 (1 and 2 correspond to left and right cortex, 
respectively) or 1-19 (cortex labels omitted), with 0 representing out-of-mask 
voxels.

\text{subcortMask} is logical 3D data array \(( i\times j\times k \)) where TRUE values indicate sub-
cortical voxels (in-mask). If it is not provided, the mask will be inferred from 
voxels with labels 0, NA, or NaN in \text{subcortLabs}. If \text{subcortLabs} are vectorized 
and \text{subcortMask} is not provided, the mask cannot be inferred so an error will 
occur.

surfL, surfR

(Optional) Surface geometries for the left or right cortex. Can be a surface GIFTI 
file path or "surf" object; see \text{make\_surf} for a full description of valid inputs.

col\_names

Names of each measurement/column in the data.
HCP_32k_auto_mwall

If left and/or right cortex data is provided, and the number of vertices matches that of the HCP 32k mesh (29696 on left, and 29716 on right), should the medial wall masks be added to the "xifti" if not provided? Default: TRUE.

Details

Each data or surface component is optional. Metadata components (cortex[L/R]_mwall, subcortLabs, and subcortMask) will be ignored if its corresponding data component is not provided. If no data or surface components are provided, then the template_xifti will be returned.

If cortical data are provided without a corresponding medial wall mask, or if the provided mask is invalid or empty, then the medial wall will be inferred from data rows that are constantly a value in mwall_values. But if mwall_values is NULL, no attempt to infer the medial wall will be made and the medial wall metadata entry will be NULL.

The total number of greyordinates will be \( G = (V_L - mwall_L) + (V_R - mwall_R) + V_S \): \( V_L - mwall_L \) left vertices, \( V_R - mwall_R \) right vertices and \( V_S \) subcortical voxels. \( T \), the total number of measurements (columns of data), must be the same for each brainstructure.

Value

A "xifti" object

---

**brainstructures**

**Arguments**

- **brainstructures**: Character vector indicating which brain structure(s) to obtain: "left" (left cortical surface), "right" (right cortical surface) and/or "subcortical" (subcortical and cerebellar gray matter). Can also be "all" (obtain all three brain structures). Default: "all".

If a brain structure is indicated but does not exist, a warning will be raised and that brain structure will be skipped.
brainstructures_Param_LR

brainstructures

Description

brainstructures

Arguments

brainstructures

Character vector indicating which brain structure(s) to obtain: "left" (left cortical surface), "right" (right cortical surface) and/or "subcortical" (subcortical and cerebellar gray matter). Can also be "all" (obtain all three brain structures). Default: c("left","right") (cortical surface only).

If a brain structure is indicated but does not exist, a warning will be raised and that brain structure will be skipped.

ciftiTools.getOption

Get ciftiTools option

Description

Gets an R option (with prefix "ciftiTools_") value. See ciftiTools.listOptions.

Usage

ciftiTools.getOption(opt)

Arguments

opt The option.

Value

The value, val
ciftiTools.listOptions

List ciftiTools options

Description
List ciftiTools options

Usage
ciftiTools.listOptions()

Value
data.frame describing the options

ciftiTools.setOption
Set ciftiTools option

Description
Sets an R option (with prefix "ciftiTools_") See ciftiTools.listOptions.

Usage
ciftiTools.setOption(opt, val)

Arguments
opt The option.
val The value to set the option as.

Value
The new value, val

cifti_fname_Param
cifti_fine

Description
cifti_fname

Arguments
cifti_fname File path of CIFTI-format data (ending in ".d*.nii").
Connectome Workbench Description

Connectome Workbench

Description

Connectome Workbench

Connectome Workbench Requirement

This function uses a system wrapper for the 'wb_command' executable. The user must first download and install the Connectome Workbench, available from https://www.humanconnectome.org/software/get-connectome-workbench. The wb_path argument is the full file path to the Connectome Workbench folder. (The full file path to the 'wb_cmd' executable also works.)

demo_files Get example files

Description

Get the file paths of the example CIFTI and surface GIFTI files included with ciftiTools.

Usage

demo_files()

Details

These files are from NITRC: cifti-2_test_data-1.2.zip at https://www.nitrc.org/frs/?group_id=454

Value

A list with CIFTI file names in the first entry, and surface file names in the second.
**expand_color_pal**

Interpolates between entries in the input palette to make a larger palette with at least MIN_COLOR_RES entries.

**Description**

Interpolates between entries in the input palette to make a larger palette with at least MIN_COLOR_RES entries.

**Usage**

```
expand_color_pal(pal, MIN_COLOR_RES = 255)
```

**Arguments**

- **pal**
  The color palette to expand, as a data.frame with two columns: "color" (character: color hex codes) and "value" (numeric).
- **MIN_COLOR_RES**
  The minimum number of entries to have in the output palette. Because of rounding, there may be more than this number of entries.

**Value**

A data.frame with two columns: "color" (character: color hex codes) and "value" (numeric)

---

**get_wb_cmd_path**

Get the Connectome Workbench command path

**Description**

Retrieves the Connectome Workbench path from the ciftiTools_wb_path option or the provided argument. This path can be the Connectome Workbench folder or the 'wb_command' executable.

**Usage**

```
get_wb_cmd_path(wb_path = NULL, verbose = FALSE)
```

**Arguments**

- **wb_path**
  (Optional) Path to Connectome Workbench folder or executable. If not provided, should be set with ciftiTools.setOption("wb_path","path/to/workbench").
- **verbose**
  Default: FALSE.
**info_cifti**  
*Get CIFTI metadata*

**Description**

Get CIFTI metadata from the NIFTI header and XML using the Connectome Workbench command `-nifti-information`. The information is formatted as the meta component in a "xifti" object (see `template_xifti`), and includes:

1. medial wall masks for the left and right cortex
2. the subcortical labels (ordered spatially)
3. the subcortical mask
4. other NIFTI intent-specific metadata

**Usage**

```r
info_cifti(cifti_fname, wb_path = NULL)
infoCIfTI(cifti_fname, wb_path = NULL)
infocii(cifti_fname, wb_path = NULL)
```

**Arguments**

- `cifti_fname`: File path of CIFTI-format data (ending in ".d*.nii").
- `wb_path`: (Optional) Path to Connectome Workbench folder or executable. If not provided, should be set with `ciftiTools.setOption("wb_path","path/to/workbench")`.

**Details**

Additional metadata depends on the type of CIFTI file:

1. "dtseries"
   - (a) `time_start` Start time
   - (b) `time_step` The TR
   - (c) `time_unit` Unit of time
2. "dscalar"
   - (a) `names` Name of each data column
3. "dlabels"
   - (a) `names` (Names of each data column.)
   - (b) `labels` (List of `Lx5` data.frames. Row names are the label names. Column names are Key, Red, Green, Blue, and Alpha. List entry names are the names of each data column.)

**Value**

The metadata component of a "xifti" for the input CIFTI file
Label Levels

`xifti$meta$subcort$labels` is a factor with the following levels:

1. Cortex-L
2. Cortex-R
3. Accumbens-L
4. Accumbens-R
5. Amygdala-L
6. Amygdala-R
7. Brain Stem
8. Caudate-L
9. Caudate-R
10. Cerebellum-L
11. Cerebellum-R
12. Diencephalon-L
13. Diencephalon-R
14. Hippocampus-L
15. Hippocampus-R
16. Pallidum-L
17. Pallidum-R
18. Putamen-L
19. Putamen-R
20. Thalamus-L
21. Thalamus-R

These correspond to the same structures as given by `ft_read_cifti` in the `cifti-matlab` MATLAB toolbox.

Connectome Workbench Requirement

This function uses a system wrapper for the `wb_command` executable. The user must first download and install the Connectome Workbench, available from https://www.humanconnectome.org/software/get-connectome-workbench. The `wb_path` argument is the full file path to the Connectome Workbench folder. (The full file path to the `wb_cmd` executable also works.)
is.cifti  

Validate a "xifti" object

Description

Check if object is valid for a "xifti" object. This alias for is.xifti is offered as a convenience, and a message will warn the user. We recommend using is.xifti instead.

Usage

is.cifti(x, messages = TRUE)

Arguments

x  The putative "xifti" object.
messages  If x is not a "xifti" object, print messages explaining the problem? Default is TRUE.

Details

Requirements: it is a list with the same structure as template_xifti. The size of each data entry must be compatible with its corresponding mask (medial wall for the cortex and volumetric mask for the subcortex). Metadata should be present if and only if the corresponding data is also present. The surfaces can be present whether or not the cortex data are present.

See the "Label Levels" section for the requirements of xifti$meta$subcort$labels.

Value

Logical. Is x a valid "xifti" object?

Label Levels

xifti$meta$subcort$labels is a factor with the following levels:

1. Cortex-L
2. Cortex-R
3. Accumbens-L
4. Accumbens-R
5. Amygdala-L
6. Amygdala-R
7. Brain Stem
8. Caudate-L
9. Caudate-R
10. Cerebellum-L
11. Cerebellum-R
12. Diencephalon-L
13. Diencephalon-R
14. Hippocampus-L
15. Hippocampus-R
16. Pallidum-L
17. Pallidum-R
18. Putamen-L
19. Putamen-R
20. Thalamus-L
21. Thalamus-R

These correspond to the same structures as given by ft_read_cifti in the cifti-matlab MATLAB toolbox.

---

is.surf

**Validate a surface (vertices + faces)**

**Description**

Check if object is valid for `xifti$surf$cortex_left` or `xifti$surf$cortex_right`, where `xifti` is a "xifti" object.

**Usage**

```markdown
is.surf(x)
```

**Arguments**

- **x**
  
  The putative surface.

**Details**

This is a helper function for `is.xifti`.

Requirements: the surface must be a list of three components: "vertices", "faces", and "hemisphere". The first two should each be a numeric matrix with three columns. The values in "vertices" represent spatial coordinates whereas the values in "faces" represent vertex indices defining the face. Thus, values in "faces" should be integers between 1 and the number of vertices. The last list entry, "hemisphere", should be "left", "right", or NULL indicating the brain hemisphere which the surface represents.
Value

Logical. Is x a valid surface?

Description

Check if object is valid for a "xifti" object.

Usage

is.xifti(x, messages = TRUE)

is_xifti(x, messages = TRUE)

Arguments

x
messages

The putative "xifti" object.
If x is not a "xifti" object, print messages explaining the problem? Default is TRUE.

Details

Requirements: it is a list with the same structure as template_xifti. The size of each data entry must be compatible with its corresponding mask (medial wall for the cortex and volumetric mask for the subcortex). Metadata should be present if and only if the corresponding data is also present. The surfaces can be present whether or not the cortex data are present. See the "Label Levels" section for the requirements of xifti$meta$subcort$labels.

Value

Logical. Is x a valid "xifti" object?

Label Levels

xifti$meta$subcort$labels is a factor with the following levels:

1. Cortex-L
2. Cortex-R
3. Accumbens-L
4. Accumbens-R
5. Amygdala-L
6. Amygdala-R
7. Brain Stem
8. Caudate-L
9. Caudate-R
10. Cerebellum-L
11. Cerebellum-R
12. Diencephalon-L
13. Diencephalon-R
14. Hippocampus-L
15. Hippocampus-R
16. Pallidum-L
17. Pallidum-R
18. Putamen-L
19. Putamen-R
20. Thalamus-L
21. Thalamus-R

These correspond to the same structures as given by ft_read_cifti in the cifti-matlab MATLAB toolbox.

---

Description

labels

Label Levels

xifti$meta$subcort$labels is a factor with the following levels:

1. Cortex-L
2. Cortex-R
3. Accumbens-L
4. Accumbens-R
5. Amygdala-L
6. Amygdala-R
7. Brain Stem
8. Caudate-L
9. Caudate-R
10. Cerebellum-L
11. Cerebellum-R
12. Diencephalon-L
13. Diencephalon-R
14. Hippocampus-L
15. Hippocampus-R
16. Pallidum-L
17. Pallidum-R
18. Putamen-L
19. Putamen-R
20. Thalamus-L
21. Thalamus-R

These correspond to the same structures as given by `ft_read_cifti` in the cifti-matlab MATLAB toolbox.

---

**make_color_pal**

*Make a color palette.*

**Description**

Control the mapping of values to colors with `colors`, `color_mode`, and `zlim`.

**Usage**

```r
make_color_pal(
 colors = NULL,
 color_mode = c("sequential", "qualitative", "diverging"),
 zlim = NULL,
 DATA_MIN = 0,
 DATA_MAX = 1
)
```

**Arguments**

- **colors** *(Optional) "ROY_BIG_BL", the name of a ColorBrewer palette (see RColorBrewer::brewer.pal.info and colorbrewer2.org), or a character vector of colors. NULL (default) will use "ROY_BIG_BL" if `color_mode` is "sequential" or "diverging", and "Set2" if `color_mode` is "qualitative". See the description for more details.*
- **color_mode** *(Optional) "sequential", "qualitative", or "diverging". Default: "sequential". See the description for more details.*
- **zlim** *(Optional) Controls the mapping of values to each color in `colors`. If the length is longer than one, using `-Inf` will set the value to `DATA_MIN`, and `Inf` will set the value to `DATA_MAX`. See the description for more details.*
- **DATA_MIN** *(Optional) The minimum value of the data to make the palette for. Overridden by certain `zlim`.*
- **DATA_MAX** *(Optional) The maximum value of the data to make the palette for. Overridden by certain `zlim`.*
Details

There are three argument types for `colors`: "ROY_BIG_BL", the name of an RColorBrewer palette, or a character vector of color names.

If `colors`="ROY_BIG_BL", the "ROY_BIG_BL" palette will be used. It is the same palette as the default used in the Connectome Workbench application (see github.com/Washington-University/workbench/blob/master/src/Files/PaletteFile.cxx). The midpoint will be colored black. From the midpoint toward the upper bound, colors will proceed from black to red to yellow. From the midpoint toward the lower bound, colors will proceed from black to blue to purple to green to aqua. Note that these colors are not equally-spaced, and the bottom 0.5% of the color range has the same color. Here is how each color mode behaves if `colors`="ROY_BIG_BL":

- **color_mode="sequential"** Only the second half of the palette will be used (black -> red -> yellow). If `identical(zlim,NULL)`, the colors will be mapped between `DATA_MIN` (black) to `DATA_MAX` (yellow). If `length(zlim)==2`, `zlim[1]` will be the lower bound (black) and `zlim[2]` will be the upper bound (yellow). If `zlim[1] > zlim[2]`, the first value will be used as the maximum and the second will be used as the minimum, and the color scale will be reversed with the highest value colored black and the lowest value colored yellow.

- **color_mode="qualitative"** The "ROY_BIG_BL" palette is not recommended for qualitative data, so a warning will be issued. Colors will be based on the landmark colors in the "ROY_BIG_BL" palette. If `identical(zlim,NULL)`, the colors will be mapped onto each integer between `DATA_MIN` and `DATA_MAX`, inclusive. Color interpolation will be used if the number of colors in the palette (17) is less than this range. If `length(zlim)==length(colors)`, each color will be mapped to each corresponding value.

- **color_mode="diverging"** If `identical(zlim,NULL)`, the colors will be mapped from `DATA_MIN` (aqua) to `DATA_MAX` (yellow). If `length(zlim)==1`, this value will be used as the midpoint (black) instead of the data midpoint. If `length(zlim)==2`, `zlim[1]` will be the lower bound (aqua) and `zlim[2]` will be the upper bound (yellow). If `length(zlim)==3`, these values will correspond to the lowest bound (aqua), midpoint (black), and upper bound (yellow) respectively. If the `zlim` are in descending order, the first value will be used as the maximum and the last will be used as the minimum, and the color scale will be reversed with the highest values colored aqua and the lowest values colored yellow.

If `colors` is the name of an RColorBrewer palette (see RColorBrewer::brewer.pal.info), the colors in that palette will be used, and the following behavior applies. If `colors` is a character vector of color names (hex codes or standard R color names), the below behavior applies directly:

- **color_mode="sequential"** If `identical(zlim,NULL)`, the colors will be mapped with equal spacing from `DATA_MIN` to `DATA_MAX`. If `length(zlim)==2`, these values will be used as the upper and lower bounds instead. If `zlim[1] > zlim[2]`, the first value will be used as the maximum and the second will be used as the minimum, and the color scale will be reversed. If `length(zlim)==length(colors)`, each color will be mapped to each corresponding value.

- **color_mode="qualitative"** If `identical(zlim,NULL)`, the colors will be mapped onto each integer between `DATA_MIN` and `DATA_MAX`, inclusive. Color interpolation will be used if the number of colors in the palette is less than this range. If `length(zlim)==length(colors)`, each color will be mapped to each corresponding value.

- **color_mode="diverging"** If `identical(zlim,NULL)`, the colors will be mapped with equal spacing from `DATA_MIN` to `DATA_MAX`. Thus, the middle color will correspond to the midpoint
of the data. If \( \text{length}(zlim)==1 \), the middle color will correspond to this value instead. The preceding colors will be equally-spaced between \( \text{DATA}_\text{MIN} \) and this value; the following colors will be equally-spaced between this value and \( \text{DATA}_\text{MAX} \). If \( \text{length}(zlim)==2 \), \( zlim[1] \) will be the lower bound (first color) and \( zlim[2] \) will be the upper bound (last color). If \( \text{length}(zlim)==3 \), these values will correspond to the lowest bound, midpoint, and upper bound respectively. There must be an odd number of colors, since the diverging color mode requires a midpoint. If the \( zlim \) are in descending order, the first value will be used as the maximum and the last will be used as the minimum, and the color scale will be reversed.

Finally, if \( \text{length}(zlim)==\text{length}(\text{colors}) \), each color will be mapped to each corresponding value. Thus, the middle color will correspond to the middle color value. The length of colors must be odd and \( \geq 3 \).

**Value**

A data.frame with two columns: "color" (character: color hex codes) and "value" (numeric)

---

**Description**

Coerce a file path to a surface GIFTI, a "gifti" object, a list with entries "pointset" and "triangle", or a "surf" object to a "surf" object.

**Usage**

```r
make_surf(surf, expected_hemisphere = NULL)
gifti_to_surf(surf, expected_hemisphere = NULL)
```

**Arguments**

- `surf` Either a file path to a surface GIFTI; a "gifti" object read by `readgii`; a list with entries "pointset" and "triangle"; or, a "surf" object.
- `expected_hemisphere` The expected hemisphere ("left" or "right") of `surf`. If the hemisphere indicated in the GIFTI metadata is the opposite, an error is raised. If NULL (default), use the GIFTI hemisphere.

**Value**

The "surf" object: a list with components "vertices" (3D spatial locations), "faces" (defined by three vertices), and "hemisphere" ("left", "right", or NULL if unknown).
original_fnames: for resampling

**Arguments**

original_fnames

The files to resample. This is a named list where each element’s name is a file type label, and each element’s value is a file name. Labels must be one of the following: "cortexL", "cortexR", "ROIcortexL", "ROIcortexR", "surfL", or "surfR". If `read_dir` is not `NULL`, then all these file names should be relative to `read_dir`.

parc_borders  

**Parcellation borders**

**Description**

Identify vertices which lie on the border of different parcels.

**Usage**

parc_borders(parc, surf = NULL, hemisphere = c("left", "right"))

**Arguments**

parc

Integer vector the same length as the number of vertices. Each entry indicates the parcel that vertex belongs to.

surf

The surface which the vertices belong to, or just the "faces" component ($F \times 3$ matrix where each row indicates the vertices which comprise a face). If not provided, the (resampled) default hemisphere surface included with ciftiTools will be used.

hemisphere

Only used to choose which default surface to use if `is.null(surf)`. Should be "left" (default) or "right".

**Value**

Logical vector the same length as `parc` indicating if the vertex lies on a border.
plot.surf  

### S3 method: plot surface

#### Description
Visualize a single surface

#### Usage

```r
S3 method for class 'surf'
plot(x, ...)
```

#### Arguments

- **x**  
  A "surf" object

- **...**  
  Additional arguments to `view_xifti_surface`. But, the hemisphere argument behaves differently: it can be either left or right to indicate which hemisphere `x` represents. It is only used if the "hemisphere" metadata entry in `x` is NULL. If both the argument and the metadata entry are NULL, the surface will be treated as the left hemisphere.

plot.xifti  

### S3 method: use `view_xifti` to plot a "xifti" object

#### Description
S3 method: use `view_xifti` to plot a "xifti" object

#### Usage

```r
S3 method for class 'xifti'
plot(x, ...)
```

#### Arguments

- **x**  
  Object of class "xifti". See `is.xifti` and `make.xifti`.

- **...**  
  Additional arguments to `view_xifti`, except `what`, which will be set to NULL.
read_cifti

read_cifti

Description

Read a CIFTI file as a "xifti" object (see is.xifti).

Usage

read_cifti(
  cifti_fname = NULL,
  flat = FALSE,
  surfL_fname = NULL,
  surfR_fname = NULL,
  brainstructures = c("left", "right"),
  resamp_res = NULL,
  mwall_values = c(NA, NaN),
  wb_path = NULL,
  verbose = FALSE,
  ...
)

readCIfTI(
  cifti_fname,
  flat = FALSE,
  surfL_fname = NULL,
  surfR_fname = NULL,
  brainstructures = c("left", "right"),
  resamp_res = NULL,
  mwall_values = c(NA, NaN),
  wb_path = NULL,
  verbose = FALSE,
  ...
)

readcii(
  cifti_fname,
  flat = FALSE,
  surfL_fname = NULL,
  surfR_fname = NULL,
  brainstructures = c("left", "right"),
  resamp_res = NULL,
  mwall_values = c(NA, NaN),
  wb_path = NULL,
  verbose = FALSE,
  ...
)
read_cifti(
  cifti_fname,
  flat = FALSE,
  surfL_fname = NULL,
  surfR_fname = NULL,
  brainstructures = c("left", "right"),
  resamp_res = NULL,
  mwall_values = c(NA, NaN),
  wb_path = NULL,
  verbose = FALSE,
  ...
)

Arguments

cifti_fname File path of CIFTI-format data (ending in ".d*.nii").
flat Should the result be flattened into a single matrix?
  If FALSE (default), the result will be a "xifti" object.
  If TRUE, the result will be a $T \times G$ matrix ($T$ measurements, $G$ greyordinates not
  including the medial wall if it's excluded from the ROI). All below arguments
  will be ignored because the brain structures cannot be identified. Surfaces will
  not be appended. Resampling is also not possible. flat==TRUE is the fastest
  way to read in just the CIFTI data.
  If TRUE, the greyordinates will be ordered by left cortex, right cortex, and then
  subcortex. Subcortical voxels will be ordered by alphabetical label. However,
  where each brainstructure (and subcortical structure) begins and ends cannot be
  determined. The medial wall locations and subcortical brain mask are also not
  included. The data matrix will be identical to that created by `-cifti-convert
  -to-gifti-ext`.

surfL_fname (Optional) File path of GIFTI surface geometry file representing the left cortex.
surfR_fname (Optional) File path of GIFTI surface geometry file representing the right cortex.
brainstructures Character vector indicating which brain structure(s) to obtain: "left" (left cortical surface), "right" (right cortical surface) and/or "subcortical" (subcortical and cerebellar gray matter). Can also be "all" (obtain all three brain structures). Default: c("left", "right") (cortical surface only).
  If a brain structure is indicated but does not exist, a warning will be raised and
  that brain structure will be skipped.
resamp_res Resolution to resample the cortical data and surface to. Default: NULL (do not resample). If not NULL, the data will have to be read in with `-cifti-separate`
  which is slower than `-cifti-convert -to-gifti-ext`.
mwall_values If the medial wall locations are not indicated in the CIFTI, use these values to infer the medial wall mask. Default: c(NA, NaN). If NULL, do not attempt to infer the medial wall.
wb_path (Optional) Path to Connectome Workbench folder or executable. If not pro-
  vided, should be set with ciftiTools.setOption("wb_path","path/to/workbench").
**read_cifti**

```
verbose Should occasional updates be printed? Default: FALSE.
...
```

**Details**

First, metadata is obtained with `info_cifti`. Then, if no resampling is requested, the `-cifti-convert -to-gifti-ext` Workbench Command is used to "flatten" the data and save it as a metric GIFTI file, which is read in and separated by brainstructure according to the metadata (read_cifti_convert). Otherwise, if sampling is requested, then the CIFTI is separated into its GIFTI and NIFTI components, resampled, and then re-assembled (read_cifti_separate). The former is much faster for large CIFTI files, so the latter is only used when necessary for resampling.

If cifti_fname is not provided, then only the surfaces are read in.

**Value**

If !flat, a "xifti" object. Otherwise, a \( T \times G \) matrix (\( T \) measurements, \( G \) greyordinates).

**Connectome Workbench Requirement**

This function uses a system wrapper for the `wb_command` executable. The user must first download and install the Connectome Workbench, available from [https://www.humanconnectome.org/software/get-connectome-workbench](https://www.humanconnectome.org/software/get-connectome-workbench). The `wb_path` argument is the full file path to the Connectome Workbench folder. (The full file path to the `wb_cmd` executable also works.)

**Label Levels**

`xifti$meta$subcort$labels` is a factor with the following levels:

1. Cortex-L
2. Cortex-R
3. Accumbens-L
4. Accumbens-R
5. Amygdala-L
6. Amygdala-R
7. Brain Stem
8. Caudate-L
9. Caudate-R
10. Cerebellum-L
11. Cerebellum-R
12. Diencephalon-L
13. Diencephalon-R
14. Hippocampus-L
15. Hippocampus-R
16. Pallidum-L
17. Pallidum-R
18. Putamen-L
19. Putamen-R
20. Thalamus-L
21. Thalamus-R

These correspond to the same structures as given by ft_read_cifti in the cifti-matlab MATLAB toolbox.

---

**read_dir_ParamSeparated**

*read_dir: separated files*

**Description**

read_dir: separated files

**Arguments**

- **read_dir**: Directory to append to the path of every file being read, e.g. `cortexL_original_fname`. If NULL (default), do not append any directory to the path. `read_dir` must already exist, or an error will be raised.

---

**resample_cifti**

*Resample CIFTI Data*

**Description**

Performs spatial resampling of CIFTI data on the cortical surface by separating it into GIFTI and NIFTI files, resampling the GIFTIs, and then putting them together. (The subcortex is not resampled.)

**Usage**

```r
resample_cifti(
 cifti_original_fname,
cifti_target_fname,
surfL_original_fname = NULL,
surfR_original_fname = NULL,
surfL_target_fname = NULL,
surfR_target_fname = NULL,
resamp_res,
sep_keep = FALSE,
sep_fnames = NULL,
```

resample_cifti

    resamp_keep = FALSE,
    resamp_fnames = NULL,
    write_dir = NULL,
    mwall_values = c(NA, NaN),
    verbose = TRUE,
    wb_path = NULL
    )

resampleCIfTI(
    cifti_original_fname,
    cifti_target_fname,
    surfL_original_fname = NULL,
    surfR_original_fname = NULL,
    surfL_target_fname = NULL,
    surfR_target_fname = NULL,
    resamp_res,
    sep_keep = FALSE,
    sep_fnames = NULL,
    resamp_keep = FALSE,
    resamp_fnames = NULL,
    write_dir = NULL,
    mwall_values = c(NA, NaN),
    verbose = TRUE,
    wb_path = NULL
    )

resamplecii(
    cifti_original_fname,
    cifti_target_fname,
    surfL_original_fname = NULL,
    surfR_original_fname = NULL,
    surfL_target_fname = NULL,
    surfR_target_fname = NULL,
    resamp_res,
    sep_keep = FALSE,
    sep_fnames = NULL,
    resamp_keep = FALSE,
    resamp_fnames = NULL,
    write_dir = NULL,
    mwall_values = c(NA, NaN),
    verbose = TRUE,
    wb_path = NULL
    )

resample_xifti(
    cifti_original_fname,
    cifti_target_fname,
    surfL_original_fname = NULL,
resample_cifti

```r
surfR_original_fname = NULL,
surfL_target_fname = NULL,
surfR_target_fname = NULL,
resamp_res,
sep_keep = FALSE,
sep_fnames = NULL,
resamp_keep = FALSE,
resamp_fnames = NULL,
write_dir = NULL,
mwall_values = c(NA, NaN),
verbose = TRUE,
wb_path = NULL
)
```

Arguments

- **cifti_original_fname**
  A CIFTI file to resample.

- **cifti_target_fname**
  The file name to save the resampled CIFTI.

- **surfL_original_fname**, **surfR_original_fname** *(Optional)*
  File path of existing GIFTI surface geometry file representing the left/right cortex. One or both can be provided. These will be resampled too, and are convenient for visualizing the resampled data.

- **surfL_target_fname**, **surfR_target_fname** *(Optional)*
  File path for the resampled GIFTI surface geometry file representing the left/right cortex. If NULL (default), will use default names: see `resample_cifti_default_fname`.

- **resamp_res**
  Target resolution for resampling (number of cortical surface vertices per hemisphere).

- **sep_keep**
  If separated files are created, should they be kept or deleted at the end of this function call? Default: FALSE (delete). Keeping the separated files may help speed up certain tasks, for example when repeatedly iterating over subjects—the CIFTI will only be separated once instead of at each iteration.

- **sep_fnames** *(Optional)*
  Where to write the separated files (override their default file names). This is a named list where each entry’s name is a file type label, and each entry’s value is a file name indicating where to write the corresponding separated file. The recognized file type labels are: "cortexL", "cortexR", "ROIcortexL", "ROIcortexR", "subcortVol", and "subcortLabs".
  Entry values can be NULL, in which case a default file name will be used: see `cifti_component_suffix`. Default file names will also be used for files that need to be separated/written but without a corresponding entry in sep_fnames.
  Entries in sep_fnames will be ignored if they are not needed based on [ROI_]brainstructures. For example, if brainstructures="left", then sep_fnames$cortexR will be ignored if specified.
  The write_dir argument can be used to place each separated file in the same directory.
resamp_keep  If resampled files are created, will they be kept or deleted at the end of this function call? Default: FALSE (delete). Keeping the resampled files may help speed up certain tasks, for example when repeatedly iterating over CIFTI files—resampling will only be done once instead of every new iteration.

resamp_fnames  Where to write the resampled files. This is a named list where each entry’s name is a file type label, and each entry’s value is a file name indicating where to write the corresponding resampled file. The recognized file type labels are: "cortexL", "cortexR", "ROIcortexL", "ROIcortexR", "validROIcortexL", and "validROIcortexR".

Entry values can be NULL, in which case a default file name will be used: see resample_cifti_default_fname. Default file names will also be used for files that need to be resampled/written but without a corresponding entry in resamp_fnames.

Entries in resamp_fnames will be ignored if they are not needed based on [ROI_]brainstructures. For example, if brainstructures="left", then resamp_fnames$cortexR will be ignored if specified.

The write_dir argument can be used to place each resampled file in the same directory.

write_dir  Where should any output files be written? NULL (default) will write them to the current working directory.

Files flagged for deletion will be written to a temporary directory, and thus are not affected by this argument. So if sep_keep is TRUE, the separated files will be written to write_dir, but if sep_keep is FALSE, they will be written to tempfile() and later deleted. resamp_keep works similarly.

For read_cifti_separate, the surface files (surfL or surfR) are deleted if resamp_keep is FALSE, so in this case they will be written to tempfile(). But for resample_cifti, the surface files are kept even if resamp_keep is FALSE, so they will always be written to write_dir.

Different subfolders for the separated, resampled, and final output files cannot be specified by write_dir. Instead, modify the individual file names in sep_fnames and resamp_fnames.

write_dir must already exist, or an error will occur.

mwall_values  If the medial wall locations are not indicated in the CIFTI, use these values to infer the medial wall mask. Default: c(NA,NaN). If NULL, do not attempt to infer the medial wall.

Correctly indicating the medial wall locations is important for resampling, because the medial wall mask is taken into account during resampling calculations.

verbose  Should occasional updates be printed? Default: TRUE.

wb_path  (Optional) Path to Connectome Workbench folder or executable. If not provided, should be set with ciftiTools.setOption("wb_path","path/to/workbench").

Value

A named character vector of written files: "cifti" and potentially "surfL" (if surfL_original_fname was provided) and/or "surfR" (if surfR_original_fname was provided).
Connectome Workbench Requirement

This function uses a system wrapper for the 'wb_command' executable. The user must first download and install the Connectome Workbench, available from https://www.humanconnectome.org/software/get-connectome-workbench. The wb_path argument is the full file path to the Connectome Workbench folder. (The full file path to the 'wb_cmd' executable also works.)

---

resample_cifti_from_template

*Resample a CIFTI from a template*

Description

Resample a CIFTI from a template CIFTI using the `-cifti-resample` Connectome Workbench command.

Usage

```r
resample_cifti_from_template(
 original_fname,
 template_fname,
 target_fname,
 wb_path = NULL
)
```

Arguments

- `original_fname` A CIFTI file to resample.
- `template_fname` A CIFTI file to use as the template.
- `target_fname` The file name to save the resampled CIFTI.
- `wb_path` (Optional) Path to Connectome Workbench folder or executable. If not provided, should be set with `ciftiTools.setOption("wb_path","path/to/workbench")`.

Value

The `target_fname`, invisibly

Connectome Workbench Requirement

This function uses a system wrapper for the 'wb_command' executable. The user must first download and install the Connectome Workbench, available from https://www.humanconnectome.org/software/get-connectome-workbench. The wb_path argument is the full file path to the Connectome Workbench folder. (The full file path to the 'wb_cmd' executable also works.)
**resample_gifti**  

*Resample a GIFTI file (with its ROI)*

**Description**

Performs spatial resampling of GIFTI data on the cortical surface.

**Usage**

```r
resample_gifti(
 original_fname,
 target_fname,
 hemisphere = c("left", "right"),
 file_type = NULL,
 original_res = NULL,
 resamp_res,
 ROIcortex_original_fname = NULL,
 ROIcortex_target_fname = NULL,
 read_dir = NULL,
 write_dir = NULL,
 wb_path = NULL
)
```

```r
resampleGIfTI(
 original_fname,
 target_fname,
 hemisphere,
 file_type = NULL,
 original_res = NULL,
 resamp_res,
 ROIcortex_original_fname = NULL,
 ROIcortex_target_fname = NULL,
 read_dir = NULL,
 write_dir = NULL,
 wb_path = NULL
)
```

```r
resamplegii(
 original_fname,
 target_fname,
 hemisphere,
 file_type = NULL,
 original_res = NULL,
 resamp_res,
 ROIcortex_original_fname = NULL,
 ROIcortex_target_fname = NULL,
 read_dir = NULL,
```
write_dir = NULL,
wb_path = NULL
)

Arguments

original_fname The GIFTI file to resample.
target_fname Where to save the resampled file.
hemisphere "left" (default) or "right". An error will occur if the hemisphere indicated in the GIFTI metadata does not match.
file_type "metric", "label", "surf", or NULL (default) to infer from original_fname.
original_res The resolution of the original file. If NULL (default), infer from the file.
resamp_res Target resolution for resampling (number of cortical surface vertices per hemisphere).
ROIcortex_original_fname The name of the ROI file corresponding to original_fname. Leave as NULL (default) if this doesn’t exist or shouldn’t be resampled.
ROIcortex_target_fname The name of the resampled ROI file. Only applicable if ROIcortex_original_fname is provided.
read_dir Directory to append to the path of every file name in original_fname and ROIcortex_original_fname. If NULL (default), do not append any directory to the path.
write_dir Directory to append to the path of every file name in target_fname and ROIcortex_target_fname. If NULL (default), do not append any directory to the path.
wbn_path (Optional) Path to Connectome Workbench folder or executable. If not provided, should be set with ciftiTools.setOption("wb_path","path/to/workbench").

Value

The resampled GIFTI file name, invisibly

---

resample_surf | Resample a "surf" object

Description

Resample a "surf" object by writing it to a GIFTI, using the Connectome Workbench to resample it, and then reading the new file.
resamp_fnames_Param

Usage

resample_surf(
  surf,
  resamp_res,
  hemisphere = c("left", "right"),
  wb_path = NULL
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>surf</td>
<td>A &quot;surf&quot; object</td>
</tr>
<tr>
<td>resamp_res</td>
<td>The desired resolution</td>
</tr>
<tr>
<td>hemisphere</td>
<td>&quot;left&quot; or &quot;right&quot;. Only used if not indicated by surf$hemisphere. An error will be raised if it does not match the hemisphere indicated in the intermediate written GIFTI.</td>
</tr>
<tr>
<td>wb_path</td>
<td>(Optional) Path to Connectome Workbench folder or executable. If not provided, should be set with ciftiTools.setOption(&quot;wb_path&quot;,&quot;path/to/workbench&quot;).</td>
</tr>
</tbody>
</table>

Value

The new surface

Description

resamp_fnames

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>resamp_fnames</td>
<td>Where to write the resampled files. This is a named list where each entry's name is a file type label, and each entry's value is a file name indicating where to write the corresponding resampled file. The recognized file type labels are: &quot;cortexL&quot;, &quot;cortexR&quot;, &quot;ROIcortexL&quot;, &quot;ROIcortexR&quot;, &quot;validROIcortexL&quot;, and &quot;validROIcortexR&quot;. Entry values can be NULL, in which case a default file name will be used: see resample_cifti_default_fname. Default file names will also be used for files that need to be resampled/written but without a corresponding entry in resamp_fnames. Entries in resamp_fnames will be ignored if they are not needed based on [ROI_]brainstructures. For example, if brainstructures=&quot;left&quot;, then resamp_fnames$cortexR will be ignored if specified. The write_dir argument can be used to place each resampled file in the same directory.</td>
</tr>
</tbody>
</table>
**resamp_keep_Param**  
**resamp_keep**

**Description**

resamp_keep

**Arguments**

resamp_keep  
If resampled files are created, will they be kept or deleted at the end of this function call? Default: FALSE (delete). Keeping the resampled files may help speed up certain tasks, for example when repeatedly iterating over CIFTI files--resampling will only be done once instead of every new iteration.

**resamp_res_Param**  
**resamp_res: optional**

**Description**

resamp_res: optional

**Arguments**

resamp_res  
(Optional) Target resolution for resampling (number of cortical surface vertices per hemisphere). If NULL (default) or FALSE, do not perform resampling.

**resamp_res_Param**  
**resamp_res: required**

**Description**

resamp_res: required

**Arguments**

resamp_res  
Target resolution for resampling (number of cortical surface vertices per hemisphere).
Navigating and Embedding the Interactive Plots

This function opens an interactive Open GL window rendered by rgl. If save==TRUE and close_after_save==TRUE, the window will be closed after the function call. Otherwise, it is kept open and the following information applies:

To navigate the plot, left click and drag the cursor to rotate. Use the scroll wheel or right click and drag to zoom. Press the scroll wheel and drag to change the field-of-view. Execute `snapshot` to save the current window as a .png file. Execute `rgl.close` to close the window. `rgl.viewpoint` can be used for programmatic navigation.

The Open GL window can be embedded as an htmlwidget in an R Markdown document using one of two methods. The first is executing `rglwidget` in the chunk where the plot is made. This first method should work within both the RStudio IDE and a knitted .html file. The second method is executing `setupKnitr` at the start of the document and then using the chunk option `webgl=TRUE` in the chunk where the plot is made. The second method is specifically for knitted .html files. Although the first method is the newest approach and is recommended by others, we used the second method in the `ciftiTools` vignette because the first is not compatible with htmlpreview. For both methods, the window still needs to be open to render the widget. Also for both methods, you will probably need to tweak the image dimensions e.g. `fig.width=8,fig.height=5` in the chunk options, because it uses the defaults from RMarkdown/Knitr instead of what makes sense based on the dimensions of the Open GL window.

For `view_xifti_surface`, if `length(idx) > 1`, this function will automatically return an htmlwidget using the first method, but with a `playwidget` wrapper to add a slider to control which column index is being displayed. All the meshes will be rendered on top of one another in the Open GL window, so only the widget will be useful for viewing the data interactively. Since it uses the first method, it will not be visible with htmlpreview. No additional call to `rglwidget` is necessary, but `rgl.close` must be called in a following chunk to close the Open GL window.

Embedding the Static Plots

Embedding the Static Plots
Embedding the Static Plots

If `save==TRUE`, the plot(s) is written to a .png file. (For `view_xifti_surface`, if `length(idx) > 1`, each `idx` will be written to a separate image file.) You can use `include_graphics` to embed an image file in an R Markdown document. If `close_after_save==TRUE`, the return value of this function call is the name(s) of the image file(s) that were written, so it can be used directly to display the image.

There's an additional way to embed an image of this plot without writing a .png file: use `save==FALSE` and set the chunk options `rgl=TRUE, format="png"`. You will probably need to tweak the image dimensions e.g. `fig.width=8, fig.height=5` in the chunk options, because it uses the defaults from RMarkdown/Knitr instead of what makes sense based on the dimensions of the Open GL window.

---

**ROI_brainstructures_Param_LR**

**ROI_brainstructures**

**Description**

ROI_brainstructures

**Arguments**

ROI_brainstructures

Character vector indicating which ROIs should be obtained. NULL (default) to not get any ROIs. Otherwise, this should be a subset of the `brainstructures` argument.

ROIs are typically the medial wall mask for the cortex and subcortical mask for the subcortex.

---

**ROY_BIG_BL**

"ROY_BIG_BL" color palette

**Description**

"ROY_BIG_BL", the default palette from the Connectome Workbench.

**Usage**

ROY_BIG_BL(min = 0, max = 1, mid = NULL, pos_half = FALSE)
**run_wb_cmd**

**Arguments**

- **min**
  The minimum value for the color mapping. As in the original palette, the last color (aqua) is actually placed at the bottom .5% between the minimum and maximum. Default: 0

- **max**
  The maximum value for the color mapping. If this value is lower than the minimum, the color mapping will be reversed. If this is equal to the minimum, a palette with only the color black will be returned. Default: 1.

- **mid**
  (Optional) The midpoint value for the color mapping. If NULL (default), the true midpoint is used.

- **pos_half**
  Use the positive half (black -> red -> yellow) only? Default: FALSE.

**Details**

Yields the landmark color hex codes and values for the "ROY_BIG_BL" palette. This is the same color palette as the default Connectome Workbench palette. Source: github.com/Washington-University/workbench/blob/master/src/Files/PaletteFile.cxx

**Value**

A data.frame with two columns: "color" (character: color hex codes) and "value" (numeric)

---

**Description**

Runs a Connectome Workbench command that has already been formatted.

**Usage**

```
run_wb_cmd(cmd, wb_path, intern = FALSE)
```

**Arguments**

- **cmd**
  The full command, beginning after the workbench path.

- **wb_path**
  (Optional) Path to Connectome Workbench folder or executable. If not provided, should be set with ciftiTools.setOption("wb_path", "path/to/workbench").

- **intern**
  Return printed output? If FALSE (default), return logical indicating success instead.

**Value**

If intern==FALSE, a logical indicating if the command finished successfully. If intern==TRUE, the printed output of the command.
Separate a CIFTI file into GIFTI files for the cortical data and NIFTI files for the subcortical data and labels. ROIs can also be written to indicate the medial wall mask (cortex) and volume mask (subcortex). This uses the Connectome Workbench command -cifti-separate.

**Usage**

```r
separate_cifti(
 cifti_fname,
 brainstructures = c("left", "right"),
 cortexL_fname = NULL,
 cortexR_fname = NULL,
 subcortVol_fname = NULL,
 subcortLabs_fname = NULL,
 ROI_brainstructures = "all",
 ROIcortexL_fname = NULL,
 ROIcortexR_fname = NULL,
 ROIsubcortVol_fname = NULL,
 write_dir = NULL,
 wb_path = NULL
)
```

```r
separateCIfTI(
 cifti_fname,
 brainstructures = c("left", "right"),
 cortexL_fname = NULL,
 cortexR_fname = NULL,
 subcortVol_fname = NULL,
 subcortLabs_fname = NULL,
 ROI_brainstructures = "all",
 ROIcortexL_fname = NULL,
 ROIcortexR_fname = NULL,
 ROIsubcortVol_fname = NULL,
 write_dir = NULL,
 wb_path = NULL
)
```

```r
separatecii(
 cifti_fname,
 brainstructures = c("left", "right"),
 cortexL_fname = NULL,
 cortexR_fname = NULL,
 subcortVol_fname = NULL,
 subcortLabs_fname = NULL,
 ROI_brainstructures = "all",
 ROIcortexL_fname = NULL,
 ROIcortexR_fname = NULL,
 ROIsubcortVol_fname = NULL,
 write_dir = NULL,
 wb_path = NULL
)
```
separate_cifti

subcortLabs_fname = NULL,
ROI_brainstructures = "all",
ROIcortexL_fname = NULL,
ROIcortexR_fname = NULL,
ROIsubcortVol_fname = NULL,
write_dir = NULL,
wgr_path = NULL
)

Arguments

cifti_fname  File path of CIFTI-format data (ending in ".d*.nii").

brainstructures  Character vector indicating which brain structure(s) to obtain: "left" (left cortical surface), "right" (right cortical surface) and/or "subcortical" (subcortical and cerebellar gray matter). Can also be "all" (obtain all three brain structures). Default: c("left","right") (cortical surface only).

If a brain structure is indicated but does not exist, a warning will be raised and that brain structure will be skipped.

cortexL_fname, cortexR fname  (Optional) GIFTI file names (*.func/label.gii) to save the [left/right] cortex data to. If not provided, defaults to "*[L/R].func/label.gii", where * is the file name component of cifti_fname. Will be written in write_dir. dtseries and dscalar files should use "func", whereas dlabel files should use "label".

subcortVol_fname, subcortLabs_fname  (Optional) NIFTI file names to save the subcortical [volume/labels] to. If not provided, defaults to "*[./labels].nii", where * is the file name component of cifti_fname. Will be written in write_dir.

ROI_brainstructures  Which ROIs should be obtained? "all" (default) to obtain ROIs for each of the brainstructures. NULL to not obtain any ROIs. This should be a subset of brainstructures.

ROIcortexL_fname, ROIcortexR fname  (Optional) GIFTI file names (*.func/label.gii) to save the [left/right] cortex ROI to. If not provided, defaults to "*[ROI.[L/R].func/label].gii", where * is the file name component of cifti_fname. The cortical ROIs typically represent the medial wall mask, with values of 1 for in-ROI (non-medial wall) vertices and 0 for out-of-ROI (medial wall) vertices. Will be written in write_dir. dtseries and dscalar files should use "func", whereas dlabel files should use "label".

ROIsubcortVol fname  (Optional) NIFTI file names to save the subcortical ROI to. If not provided, defaults to "*[ROI.].nii", where * is the file name component of cifti_fname. The subcortical ROI typically represents the volumetric mask for the entire subcortical structure, with values of 1 for in-ROI (in subcortex) voxels and 0 for out-of-ROI (not in subcortex) voxels. Will be written in write_dir.
sep_fnames_Param

write_dir  Where should the separated files be placed? NULL (default) will write them to the current working directory. write_dir must already exist, or an error will occur.

wb_path  (Optional) Path to Connectome Workbench folder or executable. If not provided, should be set with ciftiTools.setOption("wb_path","path/to/workbench").

Details

Time unit, start, and step (dtseries files) will not be written to the GIFTI/NIFTIs. Column names (dscalar files) will not be written to the GIFTIs, as well as label names and colors (dlabel files). (Haven’t checked the NIFTIs yet.)

ROI/medial wall behavior: If there are 32k vertices in the left cortex with 3k representing the medial wall, then both cortexL_fname and ROIcortexL_fname will have 32k entries, 3k of which having a value of 0 indicating the medial wall. The non-medial wall entries will have the data values in cortexL_fname and a value of 1 in ROIcortexL_fname. Thus, exporting ROIcortexL_fname is vital if the data values include 0, because 0-valued non-medial wall vertices and medial wall vertices cannot be distinguished from one another within cortexL_fname alone.

Value

A named character vector with the file paths to the written NIFTI and GIFTI files

Connectome Workbench Requirement

This function uses a system wrapper for the ‘wb_command’ executable. The user must first download and install the Connectome Workbench, available from https://www.humanconnectome.org/software/get-connectome-workbench. The wb_path argument is the full file path to the Connectome Workbench folder. (The full file path to the ‘wb_cmd’ executable also works.)

sep_fnames_Param  sep_fnames

Description

sep_fnames

Arguments

sep_fnames  (Optional) Where to write the separated files (override their default file names). This is a named list where each entry’s name is a file type label, and each entry’s value is a file name indicating where to write the corresponding separated file. The recognized file type labels are: "cortexL", "cortexR", "ROIcortexL", "ROIcortexR", "subcortVol", and "subcortLabs". Entry values can be NULL, in which case a default file name will be used: see cifti_component_suffix. Default file names will also be used for files that need to be separated/written but without a corresponding entry in sep_fnames.
Entries in `sep_fnames` will be ignored if they are not needed based on `ROI_brainstructures`. For example, if `brainstructures="left"`, then `sep_fnames$cortexR` will be ignored if specified.

The `write_dir` argument can be used to place each separated file in the same directory.

---

**Description**

`sep.keep`  

**Arguments**

`sep.keep` If separated files are created, should they be kept or deleted at the end of this function call? Default: `FALSE` (delete). Keeping the separated files may help speed up certain tasks, for example when repeatedly iterating over subjects—the CIFTI will only be separated once instead of at each iteration.

---

**smooth_cifti**  

**Description**

Smooth CIFTI data. This uses the `-cifti-smoothing` command from Connectome Workbench.

**Usage**

```r
smooth_cifti(
 x,
 cifti_target_fname = NULL,
 surface_sigma,
 volume_sigma,
 surfL_fname = NULL,
 surfR_fname = NULL,
 cerebellum_fname = NULL,
 subcortical_zeroes_as_NA = FALSE,
 cortical_zeroes_as_NA = FALSE,
 subcortical_merged = FALSE,
 wb_path = NULL
)

smoothCIfTI(
 x,
```
cifti_target_fname,
surface_sigma,
volume_sigma,
surfL_fname = NULL,
surfR_fname = NULL,
cerebellum_fname = NULL,
subcortical_zeroes_as_NA = FALSE,
cortical_zeroes_as_NA = FALSE,
subcortical_merged = FALSE,
wb_path = NULL
)

smoothcii(
  x,
  cifti_target_fname,
surface_sigma,
volume_sigma,
surfL_fname = NULL,
surfR_fname = NULL,
cerebellum_fname = NULL,
subcortical_zeroes_as_NA = FALSE,
cortical_zeroes_as_NA = FALSE,
subcortical_merged = FALSE,
wb_path = NULL
)

Arguments

x The "xifti" object or CIFTI file to smooth.
cifti_target_fname The file name to save the smoothed CIFTI. If NULL, will be set to a file in a temporary directory.
surface_sigma The sigma for the gaussian surface smoothing kernel, in mm
volume_sigma The sigma for the gaussian volume smoothing kernel, in mm
surfL_fname, surfR_fname (Required if the corresponding cortex is present) Surface GIFTI files for the left and right cortical surface
cerebellum_fname (Optional) Surface GIFTI file for the cerebellar surface
subcortical_zeroes_as_NA, cortical_zeroes_as_NA Should zero-values in the subcortical volume or cortex be treated as NA? Default: FALSE.
subcortical_merged Smooth across subcortical structure boundaries? Default: FALSE.
wb_path (Optional) Path to Connectome Workbench folder or executable. If not provided, should be set with ciftiTools.setOption("wb_path","path/to/workbench").
Details

If the CIFTI is a ".dlabel" file (intent 3007), then it will be converted to a ".dscalar" file because the values will no longer be integer indices. Unless the label values were ordinal, this is probably not desired so a warning will be printed.

The input can also be a "xifti" object.

Surfaces are required for each hemisphere in the CIFTI. If they are not provided, the inflated surfaces included in "ciftiTools" will be used.

Value

The cifti_target_fname, invisibly

Connectome Workbench Requirement

This function uses a system wrapper for the 'wb_command' executable. The user must first download and install the Connectome Workbench, available from https://www.humanconnectome.org/software/get-connectome-workbench . The wb_path argument is the full file path to the Connectome Workbench folder. (The full file path to the 'wb_cmd' executable also works.)
summary.surf  

**Summarise cifti objects**

### Description

Summary method for class "surf"

### Usage

```r
S3 method for class 'surf'
summary(object, ...)

S3 method for class 'summary.surf'
print(x, ...)

S3 method for class 'surf'
print(x, ...)
```

### Arguments

- `object` Object of class "surf". See `is.surf` and `make_surf`.
- `...` further arguments passed to or from other methods.
- `x` Object of class "surf".

summary.xifti  

**Summarise cifti objects**

### Description

Summary method for class "xifti"

### Usage

```r
S3 method for class 'xifti'
summary(object, ...)

S3 method for class 'summary.xifti'
print(x, ...)

S3 method for class 'xifti'
print(x, ...)
```
supported_intents

Arguments

<table>
<thead>
<tr>
<th>object</th>
<th>Object of class &quot;xifti&quot;. See is.xifti and make_xifti.</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>further arguments passed to or from other methods.</td>
</tr>
<tr>
<td>x</td>
<td>Object of class &quot;xifti&quot;. See is.xifti and make_xifti.</td>
</tr>
</tbody>
</table>

The NIFTI intents supported by ciftiTools

Description

Table of CIFTI file types (NIFTI intents) supported by ciftiTools.

Usage

supported_intents()

Details


Value

A data.frame with each supported file type along the rows, and column names "extension", "intent_code", "value", and "intent_name"

surface_plot_Params

surface plot

Description

surface plot

Arguments

<table>
<thead>
<tr>
<th>view</th>
<th>Which view to display: &quot;lateral&quot;, &quot;medial&quot;, or &quot;both&quot;. If NULL (default), both views will be shown. Each view will be plotted in a separate panel row.</th>
</tr>
</thead>
<tbody>
<tr>
<td>width, height</td>
<td>The dimensions of the RGL window, in pixels. If both are NULL (default), the dimensions will be set to 1000 (width) x 700 (height) for 1x1 and 2x2 subplots, 1500 x 525 for 2x1 subplots, and 500 x 700 for 1x2 subplots. These defaults are chosen to fit comfortably within a 1600 x 900 screen. Specifying only one will set the other to maintain the same aspect ratio. Both can be specified to set the dimensions exactly.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>zoom</td>
<td>Adjustment to size of brain meshes. Default: $3/5 \times (100% + 3/5 \times 100% = 160%$ the original size).</td>
</tr>
<tr>
<td>bg</td>
<td>Background color. NULL will not color the background (white).</td>
</tr>
<tr>
<td>title</td>
<td>Optional title(s) for the plot(s). It will be printed at the top in a separate subplot with $1/4$ the height of the brain cortex subplots. Default: NULL will use the time index (&quot;.dtseries&quot;) or name (.dscalar or .dlabel) of the data column being plotted. To use a custom title(s), use a length 1 character vector (same title for each plot) or length $\text{length}(\text{idx})$ character vector (different title for each plot). Set to an empty string &quot;&quot; to omit the title. If the title is non-empty but does not appear, cex.title may need to be lowered.</td>
</tr>
<tr>
<td>cex.title</td>
<td>Font size multiplier for the title. NULL (default) will use 2 for titles less than 20 characters long, and smaller sizes for increasingly longer titles.</td>
</tr>
<tr>
<td>text_color</td>
<td>Color for text in title and colorbar legend. Default: &quot;black&quot;.</td>
</tr>
<tr>
<td>save</td>
<td>Save the plot to a .png file named by fname? Default: FALSE.</td>
</tr>
<tr>
<td>close_after_save</td>
<td>If save=TRUE, close the interactive Open GL window at the end of this function call? Default: TRUE.</td>
</tr>
<tr>
<td>fname</td>
<td>An identifier to use for naming the saved images (&quot;[fname].png&quot;) or video frames (&quot;[fname]_1.png&quot;, &quot;[fname]_2.png&quot;, ...). Default: &quot;xifti&quot; for xifti_view_surface and &quot;surf&quot; for view_surf.</td>
</tr>
<tr>
<td>alpha</td>
<td>Transparency value for mesh coloring, between 0 and 1. Default: 1.0 (no transparency).</td>
</tr>
<tr>
<td>edge_color</td>
<td>Outline each edge in this color. Default: NULL (do not outline the edges).</td>
</tr>
<tr>
<td>vertex_size</td>
<td>Draw each vertex with this size. Default: 0 (do not draw the vertices).</td>
</tr>
<tr>
<td>vertex_color</td>
<td>Draw each vertex in this color. Default: &quot;black&quot;. Vertices are only drawn if vertex_size $&gt; 0$.</td>
</tr>
<tr>
<td>mode</td>
<td>Deprecated: has no effect and will be removed. See save and close_after_save.</td>
</tr>
</tbody>
</table>

---

### Description

**surfL_fname**

### Arguments

| surfL_fname | (Optional) File path of GIFTI surface geometry file representing the left cortex. |
**surfL_original_fname_Param**

*surfL_original_fname*

**Description**

*surfL_original_fname*

**Arguments**

*surfL_original_fname*

(Optional) File path of GIFTI surface geometry file representing the left cortex.

---

**surfL_ParamOptional**

*surfL*

**Description**

*surfL*

**Arguments**

*surfL*

(Optional) Left brain surface model. Can be a file path to a GIFTI surface geometry file (ends in "*.surf.gii"), a "gifti" object representing surface geometry, or a "surf" object.

---

**surfL_target_fname_Param**

*surfL_target_fname*

**Description**

*surfL_target_fname*

**Arguments**

*surfL_target_fname*

(Optional) File path to save the resampled GIFTI surface geometry file representing the left cortex at.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Arguments</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>surfR_fname_Param</code></td>
<td><code>surfR_fname</code></td>
<td>(Optional) File path of GIFTI surface geometry file representing the right cortex.</td>
<td></td>
</tr>
<tr>
<td><code>surfR_original_fname_Param</code></td>
<td><code>surfR_original_fname</code></td>
<td>(Optional) File path of GIFTI surface geometry file representing the right cortex.</td>
<td></td>
</tr>
<tr>
<td><code>surfR_Param_optional</code></td>
<td><code>surfR</code></td>
<td>(Optional) Right brain surface model. Can be a file path to a GIFTI surface geometry file (ends in &quot;*.surf.gii&quot;), a &quot;gifti&quot; object representing surface geometry, or a &quot;surf&quot; object.</td>
<td></td>
</tr>
</tbody>
</table>
surfR_target_fname_Param

**surfR_target_fname**

Description

surfR_target_fname

Arguments

surfR_target_fname

(Optional) File path to save the resampled GIFTI surface geometry file representing the right cortex at.

sys_path

*Format a path for system.*

Description

Right now, it escapes spaces and parentheses with "\".

Usage

sys_path(R_path)

Arguments

R_path

The name of the file. It should be properly formatted: if it exists, `file.exists(R_path)` should be TRUE.

Value

The name of the file
unmask_cortex

Unmask cortex

Description

Get cortex data with medial wall vertices

Usage

unmask_cortex(cortex, mwall, mwall_fill = NA)

Arguments

cortex V vertices x T measurements matrix
mwall Logical vector with T TRUE values.
mwall_fill The fill value to use for medial wall vertices.

Value

The unmasked cortex data

unmask_vol

Undo a volumetric mask

Description

Un-applies a mask to vectorized data to yield its volumetric representation. The mask and data should have compatible dimensions: the number of rows in dat should equal the number of locations within the mask.

Usage

unmask_vol(dat, mask, fill = NA)

Arguments

dat Data matrix with locations along the rows and measurements along the columns. If only one set of measurements were made, this may be a vector.
mask Volumetric binary mask. TRUE indicates voxels inside the mask.
fill The value for locations outside the mask. Default: NA.

Value

The 3D or 4D unflattened volume array
use_color_pal

Use a color palette

Description

Applies a palette to a data vector to yield a vector of colors.

Usage

use_color_pal(data_values, pal, color_NA = "white", indices = FALSE)

Arguments

data_values   The values to map to colors
pal            The palette to use to map values to colors
color_NA      The color to use for NA values. Default: "white".
indices       Return the numeric indices of colors in pal$value rather than the colors themselves. A value of 0 will be used for missing data. Default: FALSE.

Value

A character vector of color names (or integers if indices).

verbose_Param_FALSE  verbose: FALSE

Description

verbose: FALSE

Arguments

verbose        Should occasional updates be printed? Default: FALSE.

verbose_Param_TRUE  verbose: TRUE

Description

verbose: TRUE

Arguments

verbose        Should occasional updates be printed? Default: TRUE.
view_surf

View "surf" object(s)

Description

Visualize one or two "surf" objects(s), or the "surf" component(s) in a "xifti" using an interactive Open GL window made with rgl. The rgl package is required.

Usage

view_surf(
  ..., 
  view = c("both", "lateral", "medial"), 
  width = NULL, 
  height = NULL, 
  zoom = NULL, 
  bg = NULL, 
  title = NULL, 
  cex.title = NULL, 
  text_color = "black", 
  save = FALSE, 
  close_after_save = TRUE, 
  fname = "surf", 
  alpha = 1, 
  edge_color = NULL, 
  vertex_color = NULL, 
  vertex_size = 0, 
  mode = NULL
)

Arguments

... One of: A "surf" object; two "surf" objects; or, a "xifti" object. If a "surf" object has an empty "hemisphere" metadata entry, it will be set to the opposite side of the other's if known; otherwise, it will be set to the left side. If both are unknown, the first will be taken as the left and the second as the right.

view Which view to display: "lateral", "medial", or "both". If NULL (default), both views will be shown. Each view will be plotted in a separate panel row.

width The dimensions of the RGL window, in pixels. If both are NULL (default), the dimensions will be set to 1000 (width) x 700 (height) for 1x1 and 2x2 subplots, 1500 x 525 for 2x1 subplots, and 500 x 700 for 1x2 subplots. These defaults are chosen to fit comfortably within a 1600 x 900 screen. Specifying only one will set the other to maintain the same aspect ratio. Both can be specified to set the dimensions exactly.

height The dimensions of the RGL window, in pixels. If both are NULL (default), the dimensions will be set to 1000 (width) x 700 (height) for 1x1 and 2x2 subplots,
1500 x 525 for 2x1 subplots, and 500 x 700 for 1x2 subplots. These defaults are chosen to fit comfortably within a 1600 x 900 screen. Specifying only one will set the other to maintain the same aspect ratio. Both can be specified to set the dimensions exactly.

**zoom**
Adjustment to size of brain meshes. Default: 3/5 (100% + 3/5*100% = 160% the original size).

**bg**
Background color. NULL will not color the background (white).

**title**
Optional title(s) for the plot(s). It will be printed at the top in a separate subplot with 1/4 the height of the brain cortex subplots.
Default: NULL will use the time index (".dtseries") or name (.dscalar or .dlabel) of the data column being plotted.
To use a custom title(s), use a length 1 character vector (same title for each plot) or length length(idx) character vector (different title for each plot). Set to an empty string "" to omit the title.
If the title is non-empty but does not appear, cex.title may need to be lowered.

**cex.title**
Font size multiplier for the title. NULL (default) will use 2 for titles less than 20 characters long, and smaller sizes for increasingly longer titles.

**text_color**
Color for text in title and colorbar legend. Default: "black".

**save**
Save the plot to a .png file named by fname? Default: FALSE.

**close_after_save**
If save==TRUE, close the interactive Open GL window at the end of this function call? Default: TRUE.

**fname**
An identifier to use for naming the saved images ("[fname].png") or video frames ("[fname]_1.png", "[fname]_2.png", ...). Default: "xifti" for xifti_view_surface and "surf" for view_surf.

**alpha**
Transparency value for mesh coloring, between 0 and 1. Default: 1.0 (no transparency).

**edge_color**
Outline each edge in this color. Default: NULL (do not outline the edges).

**vertex_color**
Draw each vertex in this color. Default: "black". Vertices are only drawn if vertex_size > 0

**vertex_size**
Draw each vertex with this size. Default: 0 (do not draw the vertices).

**mode**
Deprecated: has no effect and will be removed. See save and close_after_save.

**Details**
This function works as a wrapper to view_xifti_surface, but some arguments are not applicable (e.g. color scheme and legend). Also, instead of using the hemisphere argument, name the surface arguments surfL or surfR (see description for parameter ...). Finally, the default value for param is "surf", not "xifti".

**Navigating and Embedding the Interactive Plots**
This function opens an interactive Open GL window rendered by rgl. If save==TRUE and close_after_save==TRUE, the window will be closed after the function call. Otherwise, it is kept open and the following information applies:
To navigate the plot, left click and drag the cursor to rotate. Use the scroll wheel or right click and drag to zoom. Press the scroll wheel and drag to change the field-of-view. Execute `snapshot` to save the current window as a .png file. Execute `rgl.close` to close the window. `rgl.viewpoint` can be used for programmatic navigation.

The Open GL window can be embedded as an htmlwidget in an R Markdown document using one of two methods. The first is executing `rglwidget` in the chunk where the plot is made. This first method should work within both the RStudio IDE and a knitted .html file. The second method is executing `setupKnitr` at the start of the document and then using the chunk option `webgl=TRUE` in the chunk where the plot is made. The second method is specifically for knitted .html files. Although the first method is the newest approach and is recommended by others, we used the second method in the `ciftiTools` vignette because the first is not compatible with htmlpreview. For both methods, the window still needs to be open to render the widget. Also for both methods, you will probably need to tweak the image dimensions e.g. `fig.width=8,fig.height=5` in the chunk options, because it uses the defaults from RMarkdown/Knitr instead of what makes sense based on the dimensions of the Open GL window.

For `view_xifti_surface`, if `length(idx) > 1`, this function will automatically return an htmlwidget using the first method, but with a `playwidget` wrapper to add a slider to control which column index is being displayed. All the meshes will be rendered on top of one another in the Open GL window, so only the widget will be useful for viewing the data interactively. Since it uses the first method, it will not be visible with htmlpreview. No additional call to `rglwidget` is necessary, but `rgl.close` must be called in a following chunk to close the Open GL window.

### Embedding the Static Plots

If `save==TRUE`, the plot(s) is written to a .png file. (For `view_xifti_surface`, if `length(idx) > 1`, each `idx` will be written to a separate image file.) You can use `include_graphics` to embed an image file in an R Markdown document. If `close_after_save==TRUE`, the return value of this function call is the name(s) of the image file(s) that were written, so it can be used directly to display the image.

There’s an additional way to embed an image of this plot without writing a .png file: use `save==FALSE` and set the chunk options `rgl=TRUE,format="png"`. You will probably need to tweak the image dimensions e.g. `fig.width=8,fig.height=5` in the chunk options, because it uses the defaults from RMarkdown/Knitr instead of what makes sense based on the dimensions of the Open GL window.

---

**view_xifti**

View a "xifti" object

**Description**

Switch for `view_xifti_surface` or `view_xifti_volume`

**Usage**

```r
view_xifti(xifti, what = NULL, ...)
```

```r
view_cifti(xifti, what = NULL, ...)
```
view_xifti_surface

viewCIfTI(xifti, what = NULL, ...)

viewcii(xifti, what = NULL, ...)

Arguments

xifti  Object of class "xifti". See is.xifti and make.xifti.
what   Either "surf" or "volume". If NULL (default), view the surface if cortex data is
        present in the "xifti" object, and the subcortical volume otherwise.
...   Additional arguments to pass to either view function.

Value

The return value of view_xifti_surface or view_xifti_volume.

Description

Visualize "xifti" cortical data using an interactive Open GL window made with rgl. The rgl and
fields packages are required.

Usage

view_xifti_surface(
  xifti,
  idx = NULL,
  hemisphere = NULL,
  view = c("both", "lateral", "medial"),
  width = NULL,
  height = NULL,
  zoom = NULL,
  bg = NULL,
  title = NULL,
  cex.title = NULL,
  text_color = "black",
  save = FALSE,
  close_after_save = TRUE,
  fname = "xifti",
  colors = NULL,
  color_mode = NULL,
  zlim = NULL,
  surfL = NULL,
  surfR = NULL,
  qualitative_colorlegend = TRUE,


```r
view_xifti_surface

colorlegend_ncol = NULL,
colorbar_embedded = TRUE,
colorbar_digits = NULL,
alpha = 1,
edge_color = NULL,
vertex_color = NULL,
vertex_size = 0,
border_color = NULL,
widget_idx_warn = NULL,
render_rgl = TRUE,
mode = NULL

)

view_cifti_surface(
 xifti,
 idx = NULL,
 hemisphere = NULL,
 view = c("both", "lateral", "medial"),
 width = NULL,
 height = NULL,
 zoom = NULL,
 bg = NULL,
 title = NULL,
 cex.title = NULL,
 text_color = "black",
 save = FALSE,
 close_after_save = TRUE,
 fname = "xifti",
 colors = NULL,
 color_mode = NULL,
 zlim = NULL,
 surfL = NULL,
 surfR = NULL,
 colorbar_embedded = TRUE,
colorbar_digits = NULL,
alpha = 1,
edge_color = NULL,
vertex_color = NULL,
vertex_size = 0,
widget_idx_warn = NULL,
render_rgl = TRUE,
mode = NULL

)

viewCIfTI_surface(
 xifti,
 idx = NULL,
 hemisphere = NULL,
```
view_xifti_surface

view = c("both", "lateral", "medial"),
width = NULL,
height = NULL,
zoom = NULL,
bg = NULL,
title = NULL,
cex.title = NULL,
text_color = "black",
save = FALSE,
close_after_save = TRUE,
fname = "xifti",
colors = NULL,
color_mode = NULL,
zlim = NULL,
surfL = NULL,
surfR = NULL,
colorbar_embedded = TRUE,
colorbar_digits = NULL,
alpha = 1,
edge_color = NULL,
vertex_color = NULL,
vertex_size = 0,
widget_idx_warn = NULL,
render_rgl = TRUE,
mode = NULL
)

viewcii_surface(
  xifti,
  idx = NULL,
hemisphere = NULL,
  view = c("both", "lateral", "medial"),
  width = NULL,
  height = NULL,
  zoom = NULL,
  bg = NULL,
  title = NULL,
cex.title = NULL,
text_color = "black",
save = FALSE,
close_after_save = TRUE,
fname = "xifti",
colors = NULL,
color_mode = NULL,
zlim = NULL,
surfL = NULL,
surfR = NULL,
colorbar_embedded = TRUE,
colorbar_digits = NULL, 
alpha = 1, 
edge_color = NULL, 
vertex_color = NULL, 
vertex_size = 0, 
widget_idx_warn = NULL, 
render_rgl = TRUE, 
mode = NULL
)

Arguments

xifti Object of class "xifti". See is.xifti and make_xifti.
idx The time/column index of the data to display. If its length is greater than one and save==FALSE, use the widget instead of the OpenGL window to view the plot interactively, because the widget's slider will control what time/column is being displayed in the widget whereas all meshes will be rendered on top of one another in the OpenGL window.
hemisphere Which brain cortex to display: "both", "left", or "right". Each will be plotted in a separate panel column.
If a brain cortex is requested but no surface is available, a default inflated surface will be used.
This argument can also be NULL (default). In this case, the default inflated surface included with ciftiTools will be used for each cortex with data (i.e. if xifti$data$cortex_left and/or xifti$data$cortex_right exist).
Surfaces without data will be colored white.
view Which view to display: "lateral", "medial", or "both". If NULL (default), both views will be shown. Each view will be plotted in a separate panel row.
width The dimensions of the RGL window, in pixels. If both are NULL (default), the dimensions will be set to 1000 (width) x 700 (height) for 1x1 and 2x2 subplots, 1500 x 525 for 2x1 subplots, and 500 x 700 for 1x2 subplots. These defaults are chosen to fit comfortably within a 1600 x 900 screen. Specifying only one will set the other to maintain the same aspect ratio. Both can be specified to set the dimensions exactly.
height The dimensions of the RGL window, in pixels. If both are NULL (default), the dimensions will be set to 1000 (width) x 700 (height) for 1x1 and 2x2 subplots, 1500 x 525 for 2x1 subplots, and 500 x 700 for 1x2 subplots. These defaults are chosen to fit comfortably within a 1600 x 900 screen. Specifying only one will set the other to maintain the same aspect ratio. Both can be specified to set the dimensions exactly.
zoom Adjustment to size of brain meshes. Default: 3/5 (100% + 3/5*100% = 160% the original size).
bg Background color. NULL will not color the background (white).
title Optional title(s) for the plot(s). It will be printed at the top in a separate subplot with 1/4 the height of the brain cortex subplots.
Default: NULL will use the time index (".dtseries") or name (.dscalar or .dlabel) of the data column being plotted.

To use a custom title(s), use a length 1 character vector (same title for each plot) or length length(idx) character vector (different title for each plot). Set to an empty string "" to omit the title.

If the title is non-empty but does not appear, cex.title may need to be lowered.

cex.title Font size multiplier for the title. NULL (default) will use 2 for titles less than 20 characters long, and smaller sizes for increasingly longer titles.

text_color Color for text in title and colorbar legend. Default: "black".

save Save the plot to a .png file named by fname? Default: FALSE.

close_after_save If save=TRUE, close the interactive Open GL window at the end of this function call? Default: TRUE.

fname An identifier to use for naming the saved images ("[fname].png") or video frames ("[fname]_1.png", "[fname]_2.png", ...). Default: "xifti" for xifti_view_surface and "surf" for view_surf.

colors (Optional) "ROY_BIG_BL", vector of colors to use, OR the name of a Color-Brewer palette (see RColorBrewer::brewer.pal.info and colorbrewer2.org). Defaults are "ROY_BIG_BL" (sequential), "Set2" (qualitative), and "ROY_BIG_BL" (diverging). An exception to these defaults is if the "xifti" object represents a .dlabel CIFTI (intent 3007), then the qualitative colors in the label table will be used. See the ciftiTools::make_color_pal() description for more details.

color_mode (Optional) "sequential", "qualitative", or "diverging". NULL will use the qualitative color mode if the "xifti" object represents a .dlabel CIFTI (intent 3007), and the sequential color mode otherwise. See the ciftiTools::make_color_pal() description for more details.

zlim (Optional) Controls the mapping of values to each color in colors. If the length is longer than one, using -Inf will set the value to DATA_MIN, and Inf will set the value to DATA_MAX. See the ciftiTools::make_color_pal() description for more details.

surfL, surfR (Optional if xifti$surf$cortex_left and xifti$surf$cortex_right are not empty) The brain surface model to use. Each can be a file path for a GIFTI, a file read by gifti::readgii, or a list with components "vertices" and "faces". If provided, they will override xifti$surf$cortex_left and xifti$surf$cortex_right if they exist. Otherwise, leave these arguments as NULL (default) to use xifti$surf$cortex_left and xifti$surf$cortex_right.

qualitative_colorlegend If color_mode=="qualitative", should the colorbar be replaced with a color legend? It will be printed separately from the RGL window. Default: TRUE.

colorlegend_ncol Number of columns in color legend. If NULL (default), use 10 entries per row. Only applies if the color legend is drawn (qualitative_colorlegend is TRUE and the qualitative color mode is used).

colorbar_embedded Should the colorbar be embedded in the plot? It will be positioned in the bottom-left corner, in a separate subplot with 1/4 the height of the brain cortex subplots. Default: TRUE. If FALSE, print it separately instead.
colorbar_digits
The number of digits for the colorbar legend ticks. If NULL (default), let format decide.

alpha
Transparency value for mesh coloring, between 0 and 1. Default: 1.0 (no transparency).

draw_color
Outline each edge in this color. Default: NULL (do not outline the edges).

draw_vertex
Draw each vertex in this color. Default: "black". Vertices are only drawn if vertex_size > 0

vertex_size
Draw each vertex with this size. Default: 0 (do not draw the vertices).

border_color
Only applicable if color_mode is "qualitative". Border vertices will be identified (those that share a faces with at least one vertex of a different value) and drawn in this color instead, overriding the color indicated by their value. If NULL, do not draw borders.

widget_idx_warn
If save==FALSE or close_after_save==FALSE, each mesh must be rendered in the same window. This is problematic if idx and the mesh size are large. So, this option can be used to print a warning when length(idx) exceeds widget_idx_warn and the meshes are being drawn in the same window. Use Inf to never print a warning. The default, NULL, will print a warning if idx times the number of vertices exceeds 200k (approximately three 32k meshes for both the left and right hemisphere.)

render_ogl
Default: TRUE. If FALSE, do not render the Open GL window, widget, or image(s). Instead, return the rgl mesh objects and coloring information. This should be used by developers only.

mode
Deprecated: has no effect and will be removed. See save and close_after_save.

Value
If save and close_after_save, the name(s) of the image file(s) that were written.
Otherwise, if the length of idx is equal to one, a list of the rgl object IDs which can be used to further manipulate the Open GL window; if the length of idx is greater than one, the htmlwidget with slider to interactively control which timepoint is being displayed.

Navigating and Embedding the Interactive Plots
This function opens an interactive Open GL window rendered by rgl. If save==TRUE and close_after_save==TRUE, the window will be closed after the function call. Otherwise, it is kept open and the following information applies:

To navigate the plot, left click and drag the cursor to rotate. Use the scroll wheel or right click and drag to zoom. Press the scroll wheel and drag to change the field-of-view. Execute snapshot to save the current window as a .png file. Execute rgl.close to close the window. rgl.viewpoint can be used for programmatic navigation.

The Open GL window can be embedded as an htmlwidget in an R Markdown document using one of two methods. The first is executing rglwidget in the chunk where the plot is made. This first method should work within both the RStudio IDE and a knitted .html file. The second method is executing setupKnitr at the start of the document and then using the chunk option webgl=TRUE.
in the chunk where the plot is made. The second method is specifically for knitted .html files. Although the first method is the newest approach and is recommended by others, we used the second method in the ciftiT tools vignette because the first is not compatible with htmlpreview. For both methods, the window still needs to be open to render the widget. Also for both methods, you will probably need to tweak the image dimensions e.g. fig.width=8,fig.height=5 in the chunk options, because it uses the defaults from RMarkdown/Knitr instead of what makes sense based on the dimensions of the Open GL window.

For view_xifti_surface, if length(idx) > 1, this function will automatically return an htmlwidget using the first method, but with a playwidget wrapper to add a slider to control which column index is being displayed. All the meshes will be rendered on top of one another in the Open GL window, so only the widget will be useful for viewing the data interactively. Since it uses the first method, it will not be visible with htmlpreview. No additional call to rglwidget is necessary, but rgl.close must be called in a following chunk to close the Open GL window.

Embedding the Static Plots

If save==TRUE, the plot(s) is written to a .png file. (For view_xifti_surface, if length(idx) > 1, each idx will be written to a separate image file.) You can use include_graphics to embed an image file in an R Markdown document. If close_after_save==TRUE, the return value of this function call is the name(s) of the image file(s) that were written, so it can be used directly to display the image.

There’s an additional way to embed an image of this plot without writing a .png file: use save==FALSE and set the chunk options rgl=TRUE, format="png". You will probably need to tweak the image dimensions e.g. fig.width=8,fig.height=5 in the chunk options, because it uses the defaults from RMarkdown/Knitr instead of what makes sense based on the dimensions of the Open GL window.

---

view_xifti_volume | View subcortex

### Description

Visualize subcortex of a "xifti" object

### Usage

```r
view_xifti_volume(
 xifti,
 structural_img = "MNI",
 idx = 1,
 plane = c("axial", "sagittal", "coronal"),
 num.slices = 9,
 use_papaya = FALSE,
 z_min = NULL,
 z_max = NULL,
 verbose = TRUE,
 ...
)
```
view_cifti_volume(  
  xifti,  
  structural_img = "MNI",  
  idx = 1,  
  plane = c("axial", "sagittal", "coronal"),  
  num.slices = 9,  
  use_papaya = FALSE,  
  z_min = NULL,  
  z_max = NULL,  
  verbose = TRUE,  
  ...
)

viewCIfTI_volume(  
  xifti,  
  structural_img = "MNI",  
  idx = 1,  
  plane = c("axial", "sagittal", "coronal"),  
  num.slices = 9,  
  use_papaya = FALSE,  
  z_min = NULL,  
  z_max = NULL,  
  verbose = TRUE,  
  ...
)

viewcii_volume(  
  xifti,  
  structural_img = "MNI",  
  idx = 1,  
  plane = c("axial", "sagittal", "coronal"),  
  num.slices = 9,  
  use_papaya = FALSE,  
  z_min = NULL,  
  z_max = NULL,  
  verbose = TRUE,  
  ...
)

Arguments

xifti Object of class "xifti". See is.xifti and make_xifti.

structural_img The structural MRI image on which to overlay the subcortical values. Can be a file name, "MNI" (default) to use the MNI T1-weighted template, or NULL to use a blank image.

idx The time/column index of the "xifti" data to plot.
plane  If use_papaya=FALSE, the plane to display. Default: "axial". Other options are "sagittal" and "coronal".
num.slices  If use_papaya=FALSE, the number of slices to display. Default: 9.
use_papaya  use_papaya=TRUE will use papayar to allows for interactive visualization.
z_min  Floor value.
z_max  Ceiling value.
verbose  Should occasional updates be printed? Default: TRUE.
...  Additional arguments to pass to papayar::papaya or oro.nifti::overlay

write_cifti  **Write a CIFTI file from a "xifti" object.**

**Description**

Write out a "xifti" object as a CIFTI file and (optionally) GIFTI surface files.

**Usage**

```r
write_cifti(
 xifti,
 cifti_fname,
 surfL_fname = NULL,
 surfR_fname = NULL,
 verbose = TRUE,
 wb_path = NULL
)
```

```r
writeCIfTI(
 xifti,
 cifti_fname,
 surfL_fname = NULL,
 surfR_fname = NULL,
)```
write_cifti(
 verbose = TRUE,
 wb_path = NULL
)

writecii(
 xifti,
 cifti_fname,
 surfL_fname = NULL,
 surfR_fname = NULL,
 verbose = TRUE,
 wb_path = NULL
)

write_xifti(
 xifti,
 cifti_fname,
 surfL_fname = NULL,
 surfR_fname = NULL,
 verbose = TRUE,
 wb_path = NULL
)

Arguments

xifti Object of class "xifti". See is.xifti and make_xifti.
cifti_fname File path of CIFTI-format data (ending in ".d*_nii\").
surfL_fname, surfR_fname
 If the [left/right] surface is present, it will be a written to a GIFTI file at this file path. If NULL (default), do not write out the surface.
verbose Should occasional updates be printed? Default: TRUE.
wb_path (Optional) Path to Connectome Workbench folder or executable. If not provided, should be set with ciftiTools.setOption("wb_path","path/to/workbench").

Value

Named character vector of the written files

Connectome Workbench Requirement

This function uses a system wrapper for the 'wb_command' executable. The user must first download and install the Connectome Workbench, available from https://www.humanconnectome.org/software/get-connectome-workbench . The wb_path argument is the full file path to the Connectome Workbench folder. (The full file path to the 'wb_cmd' executable also works.)
write_dir_Param_generic

write_dir: generic

Description

write_dir: generic

Arguments

write_dir Where should the separated files be placed? NULL (default) will write them to the current working directory.

write_dir must already exist, or an error will occur.

write_dir_Param_intermediate

write_dir: intermediate separated/resampled files

Description

write_dir: intermediate separated/resampled files

Arguments

write_dir Where should any output files be written? NULL (default) will write them to the current working directory.

Files flagged for deletion will be written to a temporary directory, and thus are not affected by this argument. So if sep_keep is TRUE, the separated files will be written to write_dir, but if sep_keep is FALSE, they will be written to tempdir() and later deleted. resamp_keep works similarly.

For read_cifti_separate, the surface files (surfL or surfR) are deleted if resamp_keep is FALSE, so in this case they will be written to tempdir(). But for resample_cifti, the surface files are kept even if resamp_keep is FALSE, so they will always be written to write_dir.

Different subfolders for the separated, resampled, and final output files cannot be specified by write_dir. Instead, modify the individual file names in sep_fnames and resamp_fnames.

write_dir must already exist, or an error will occur.
write_metric_gifti Write CIFTI cortex data to GIFTI

Description
Write the data for the left or right cortex to a metric GIFTI file.

Usage
write_metric_gifti(
 x,
 gifti_fname,
 hemisphere = c("left", "right"),
 intent = NULL,
 data_type = NULL,
 encoding = NULL,
 endian = c("LittleEndian", "BigEndian"),
 col_names = NULL,
 label_table = NULL
)

Arguments

x A \(V \times T \) data matrix (\(V \) vertices, \(T \) measurements). This can also be an object from gifti::readgii, or a length \(T \) list of length \(V \) vectors.
gifti_fname Where to write the GIFTI file.
hemisphere "left" (default) or "right". Ignored if data is already a "gifti" object.
intent "NIFTI_INTENT_*". NULL (default) will use metadata if data is a "gifti" object, or "NONE" if it cannot be inferred. If not NULL and data is a "gifti" object, it will overwrite the existing intent. See https://nifti.nimh.nih.gov/nifti-1/documentation/nifti1fields/nifti1fields_pages/group__NIFTI__INTENT__CODES.html/document_view.
data_type the type of data: "NIFTI_TYPE_*" where * is "INT32" or "FLOAT32". If NULL (default), the data type will be inferred. If not NULL and data is a "gifti" object, it will overwrite the existing data type.
encoding One of "ASCII", "Base64Binary", or "GZipBase64Binary". If NULL (default), will use the metadata if data is a GIFTI object, or "ASCII" if the data_type is "NIFTI_TYPE_INT32" and "GZipBase64Binary" if the data_type is "NIFTI_TYPE_FLOAT32". If not NULL and data is a "gifti" object, it will overwrite the existing data type.
endian "LittleEndian" (default) or "BigEndian". If data is a "gifti" object, it will overwrite the existing endian.
col_names The names of each data column in gii (or entries in gii$data).
label_table

A data frame with labels along rows. The row names should be the label names. The column names should be among: "Key", "Red", "Green", "Blue", and "Alpha". The "Key" column is required whereas the others are optional (but very often included). Values in the "Key" column should be non-negative integers, typically beginning with 0. The other columns should be floating-point numbers between 0 and 1.

Although CIFTI files support a different label table for each data column, GIFTI files only support a single label table. So this label table should be applicable to each data column.

Value

Whether the GIFTI was successfully written

write_subcort_nifti

Write subcortical data to NIFTI files

Description

Write subcortical data to NIFTI files representing the data values, subcortical structure labels, and volumetric mask. The input formats of `subcortVol`, `subcortLabs`, and `subcortMask` correspond to the data structures of `xifti$data$subcort`, `xifti$meta$subcort$labels`, and `xifti$meta$subcort$mask` respectively. `subcortVol` and `subcortLabs` should be vectorized, so if they are volumes consider using `RNifti::writeNIfTI`.

Usage

```r
write_subcort_nifti(
  subcortVol,
  subcortLabs,
  subcortMask,
  trans_mat = NULL,
  subcortVol_fname,
  subcortLabs_fname,
  ROIsubcortVol_fname = NULL,
  fill = 0,
  wb_path = NULL
)
```

Arguments

- **subcortVol**: A vectorized data matrix: V voxels by T measurements
- **subcortLabs**: Numeric (0 and 3-21) or factor vector corresponding to subcortical structure labels. See `substructure_table`.
- **subcortMask**: Logical volumetric mask. Values of 0 represent out-of-mask voxels (not subcortical), and values of 1 represent in-mask voxels (subcortical),
trans_mat: The TransformationMatrixIJKtoXYZ, or equivalently the desired sform matrix (srow_x, srow_y and srow_z) to write. If NULL, do not write it (all zeroes).

subcortVol_fname, subcortLabs_fname, ROIsubcortVol_fname: File path to a NIFTI to save the corresponding data. ROIsubcortVol_fname is optional but the rest is required.

fill: Values to use for out-of-mask voxels. Default: 0.

wb_path: (Optional) Path to Connectome Workbench folder or executable. If not provided, should be set with ciftiTools.setOption("wb_path", "path/to/workbench").

Details:
All file path arguments are required except ROIsubcortVol_fname. If not provided, the volumetric mask will not be written. (It's redundant with the 0 values in subcortLabs_fname because valid labels have positive indexes.)

Value:
Named character vector with the "subcortVol", "subcortLabs", and "ROIsubcortVol" file names (if written)

write_surf_gifti

Write CIFTI surface data to GIFTI

Description:
Write the data for the left or right surface to a surface GIFTI file.

Usage:
```
write_surf_gifti(
  x,  
gifti_fname,  
hemisphere = c("left", "right"),  
encoding = NULL,  
endian = c("LittleEndian", "BigEndian")
)
```

Arguments:
- `x`: A "surf" object, an object from gifti::readgii, or a list with elements "pointset" and "triangle".
- `gifti_fname`: Where to write the GIFTI file.
- `hemisphere`: "left" (default) or "right". Ignored if data is already a "gifti" object, or if it is a "surf" object with the hemisphere metadata already specified.
encoding A length-2 vector with elements chosen among "ASCII", "Base64Binary", and "GZipBase64Binary". If NULL (default), will use the metadata if data is a "gifti" object, or "GZipBase64Binary" for the "pointset" and "ASCII" for the "train-gles" if data is not already a GIFTI.

Value

Whether the GIFTI was successfully written

xifti_Param

xifti

Description

xifti

Arguments

- **xifti** Object of class "xifti". See **is.xifti** and **make_xifti**.

x_Param_xifti

x: xifti

Description

x: xifti

Arguments

- **x** Object of class "xifti". See **is.xifti** and **make_xifti**.
Index

<table>
<thead>
<tr>
<th>Function/Argument</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>add_surf</td>
<td>3</td>
</tr>
<tr>
<td>as.cifti (as.xifti)</td>
<td>4</td>
</tr>
<tr>
<td>as.xifti</td>
<td>4</td>
</tr>
<tr>
<td>as_cifti (as.xifti)</td>
<td>4</td>
</tr>
<tr>
<td>as_xifti</td>
<td>4</td>
</tr>
<tr>
<td>brainstructures_Param_all</td>
<td>7</td>
</tr>
<tr>
<td>brainstructures_Param_LR</td>
<td>8</td>
</tr>
<tr>
<td>cifti_component_suffix</td>
<td>28, 40</td>
</tr>
<tr>
<td>cifti_fname_Param</td>
<td>9</td>
</tr>
<tr>
<td>ciftiTools.getOption</td>
<td>8</td>
</tr>
<tr>
<td>ciftiTools.listOptions</td>
<td>8, 9, 9</td>
</tr>
<tr>
<td>ciftiTools.setOption</td>
<td>9</td>
</tr>
<tr>
<td>Connectome_Workbench_Description</td>
<td>10</td>
</tr>
<tr>
<td>demo_files</td>
<td>10</td>
</tr>
<tr>
<td>expand_color_pal</td>
<td>11</td>
</tr>
<tr>
<td>format</td>
<td>60</td>
</tr>
<tr>
<td>get_wb_cmd_path</td>
<td>11</td>
</tr>
<tr>
<td>gifti_to_surf (make_surf)</td>
<td>20</td>
</tr>
<tr>
<td>include_graphics</td>
<td>36, 54, 61</td>
</tr>
<tr>
<td>info_cifti</td>
<td>12, 25</td>
</tr>
<tr>
<td>infoCIfTI (info_cifti)</td>
<td>12</td>
</tr>
<tr>
<td>infocii (info_cifti)</td>
<td>12</td>
</tr>
<tr>
<td>is.cifti</td>
<td>14</td>
</tr>
<tr>
<td>is.surf</td>
<td>15, 44</td>
</tr>
<tr>
<td>is.xifti</td>
<td>4, 14, 15, 16, 22, 23, 45, 55, 58, 62, 64, 69</td>
</tr>
<tr>
<td>is_cifti (is.cifti)</td>
<td>14</td>
</tr>
<tr>
<td>is_xifti (is.xifti)</td>
<td>16</td>
</tr>
<tr>
<td>isCIfTI (is.cifti)</td>
<td>14</td>
</tr>
<tr>
<td>labels_Description</td>
<td>17</td>
</tr>
<tr>
<td>make_color_pal</td>
<td>18</td>
</tr>
<tr>
<td>make_surf</td>
<td>6, 20, 44</td>
</tr>
<tr>
<td>make_xifti</td>
<td>4, 22, 45, 55, 58, 62, 64, 69</td>
</tr>
<tr>
<td>original_fnames_Param_resampled</td>
<td>21</td>
</tr>
<tr>
<td>parc_borders</td>
<td>21</td>
</tr>
<tr>
<td>playwidget</td>
<td>35, 54, 61</td>
</tr>
<tr>
<td>plot.surf</td>
<td>22</td>
</tr>
<tr>
<td>plot.xifti</td>
<td>22</td>
</tr>
<tr>
<td>print.summary.surf (summary.surf)</td>
<td>44</td>
</tr>
<tr>
<td>print.summary.xifti (summary.xifti)</td>
<td>44</td>
</tr>
<tr>
<td>print.surf (summary.surf)</td>
<td>44</td>
</tr>
<tr>
<td>print.xifti (summary.xifti)</td>
<td>44</td>
</tr>
<tr>
<td>read_cifti</td>
<td>23</td>
</tr>
<tr>
<td>read_cifti_convert</td>
<td>25</td>
</tr>
<tr>
<td>read_cifti_convert_from_template</td>
<td>30</td>
</tr>
<tr>
<td>read_cifti_from_template</td>
<td>29, 33</td>
</tr>
<tr>
<td>read_cifti_from_template</td>
<td>30</td>
</tr>
<tr>
<td>read_xifti</td>
<td>23</td>
</tr>
<tr>
<td>readCIfTI (read_cifti)</td>
<td>23</td>
</tr>
<tr>
<td>readcii (read_cifti)</td>
<td>23</td>
</tr>
<tr>
<td>readgii</td>
<td>20</td>
</tr>
<tr>
<td>resamp_fnames_Param</td>
<td>33</td>
</tr>
<tr>
<td>resamp_keep_Param</td>
<td>34</td>
</tr>
<tr>
<td>resamp_res_Param_optional</td>
<td>34</td>
</tr>
<tr>
<td>resamp_res_Param_required</td>
<td>34</td>
</tr>
<tr>
<td>resample_cifti</td>
<td>26</td>
</tr>
<tr>
<td>resample_cifti_default_fname</td>
<td>29, 33</td>
</tr>
<tr>
<td>resample_cifti_from_template</td>
<td>30</td>
</tr>
<tr>
<td>resample_gifti</td>
<td>31</td>
</tr>
<tr>
<td>resample_surf</td>
<td>32</td>
</tr>
<tr>
<td>resample_xifti (resample_cifti)</td>
<td>26</td>
</tr>
<tr>
<td>resampleCIfTI (resample_cifti)</td>
<td>26</td>
</tr>
<tr>
<td>resamplecii (resample_cifti)</td>
<td>26</td>
</tr>
<tr>
<td>resampleGIfTI (resample_gifti)</td>
<td>31</td>
</tr>
<tr>
<td>resamplegii (resample_gifti)</td>
<td>31</td>
</tr>
<tr>
<td>rgl.close</td>
<td>35, 54, 60, 61</td>
</tr>
<tr>
<td>rgl.viewpoint</td>
<td>35, 54, 60</td>
</tr>
<tr>
<td>rgl_interactive_plots_Description</td>
<td>35</td>
</tr>
<tr>
<td>rgl_static_plots_Description</td>
<td>35</td>
</tr>
<tr>
<td>rglwidget</td>
<td>35, 54, 60, 61</td>
</tr>
</tbody>
</table>
INDEX

ROI_brainstructures_Param_LR, 36
ROY_BIG_BL, 36
run_wb_cmd, 37

sep_fnames_Param, 40
sep_keep_Param, 41
separate_cifti, 4, 38
separateCIFTI (separate_cifti), 38
separatecii (separate_cifti), 38
setupKnitr, 35, 54, 60
smooth_cifti, 41
smoothCIFTI (smooth_cifti), 41
smoothcii (smooth_cifti), 41
snapshot, 35, 54, 60
substructure_table, 6, 43, 67
summary.surf, 44
summary.xifti, 44
supported_intents, 45
surface_plot_Params, 45
surfL_fname_Param, 46
surfL_original_fname_Param, 47
surfL_Param_optional, 47
surfL_target_fname_Param, 47
surfR_fname_Param, 48
surfR_original_fname_Param, 48
surfR_Param_optional, 48
surfR_target_fname_Param, 49
sys_path, 49
system, 49

template_xifti, 7, 12, 14, 16
unmask_cortex, 50
unmask_vol, 50
use_color_pal, 51

verbose_Param_FALSE, 51
verbose_Param_TRUE, 51
view_cifti (view_xifti), 54
view_cifti_surface
 (view_xifti_surface), 55
view_cifti_volume (view_xifti_volume),
 61
view_surf, 52
view_xifti, 22, 54
view_xifti_surface, 22, 53, 54, 55
view_xifti_volume, 54, 61
viewCIFTI (view_xifti), 54
viewCIFTI_surface (view_xifti_surface),
 55
viewCIFTI_volume (view_xifti_volume), 61
viewcii (view_xifti), 54
viewcii_surface (view_xifti_surface), 55
viewcii_volume (view_xifti_volume), 61
wb_path_Param, 63
write_cifti, 63
write_dir_Param_generic, 65
write_dir_Param_intermediate, 65
write_metric_gifti, 66
write_subcort_nifti, 67
write_surf_gifti, 68
write_xifti (write_cifti), 63
writeCIFTI (write_cifti), 63
writecii (write_cifti), 63

x_Param_xifti, 69
xifti_Param, 69