Provides efficient implementation of the Cross-Covariance Isolate Detect (CCID) methodology for the estimation of the number and location of multiple change-points in the second-order (cross-covariance or network) structure of multivariate, possibly high-dimensional time series. The method is motivated by the detection of change points in functional connectivity networks for functional magnetic resonance imaging (fMRI), electroencephalography (EEG), magentoencephalography (MEG) and electrocorticography (ECoG) data. The main routines in the package have been extensively tested on fMRI data. For details on the CCID methodology, please see Anastasiou et al (2020) <doi:10.1101/2020.12.20.423696>.
Version: | 1.0.0 |
Depends: | R (≥ 3.6.0) |
Imports: | IDetect, hdbinseg, GeneNet, gdata |
Suggests: | testthat |
Published: | 2021-01-07 |
Author: | Andreas Anastasiou [aut, cre], Ivor Cribben [aut], Piotr Fryzlewicz [aut] |
Maintainer: | Andreas Anastasiou <anastasiou.andreas at ucy.ac.cy> |
BugReports: | https://github.com/Anastasiou-Andreas/ccid/issues |
License: | GPL-3 |
URL: | https://github.com/Anastasiou-Andreas/ccid |
NeedsCompilation: | no |
Citation: | ccid citation info |
Materials: | README |
CRAN checks: | ccid results |
Reference manual: | ccid.pdf |
Package source: | ccid_1.0.0.tar.gz |
Windows binaries: | r-devel: ccid_1.0.0.zip, r-release: ccid_1.0.0.zip, r-oldrel: ccid_1.0.0.zip |
macOS binaries: | r-release: ccid_1.0.0.tgz, r-oldrel: ccid_1.0.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=ccid to link to this page.