causact: Accelerated Bayesian Analytics with DAGs

Accelerate Bayesian analytics workflows in 'R' through interactive modelling, visualization, and inference. Define probabilistic graphical models using directed acyclic graphs (DAGs) as a unifying language for business stakeholders, statisticians, and programmers. This package relies on the sleek and elegant 'greta' package for Bayesian inference. 'greta', in turn, is an interface into 'TensorFlow' from 'R'. See <http://github.com/flyaflya/causact> or <http://causact.com> for more documentation.

Version: 0.3.1
Depends: R (≥ 3.2.0)
Imports: DiagrammeR (≥ 1.0.6), dplyr (≥ 0.8.5), magrittr (≥ 1.5), ggplot2 (≥ 3.3.0), rlang (≥ 0.4.6), greta (≥ 0.3.1), purrr (≥ 0.3.4), tidyr (≥ 1.0.3), igraph (≥ 1.2.5), stringr (≥ 1.4.0), cowplot (≥ 1.0.0), coda (≥ 0.19.3), forcats (≥ 0.5.0), htmlwidgets (≥ 1.5.1), rstudioapi (≥ 0.11)
Published: 2020-06-24
Author: Adam Fleischhacker [aut, cre, cph], Daniela Dapena [ctb], Rose Nguyen [ctb], Jared Sharpe [ctb]
Maintainer: Adam Fleischhacker <ajf at udel.edu>
BugReports: https://github.com/flyaflya/causact/issues
License: MIT + file LICENSE
URL: https://causact.com
NeedsCompilation: no
SystemRequirements: Python and TensorFlow are needed for Bayesian inference computations; Python (>= 2.7.0) with header files and shared library; TensorFlow (v1.14; https://www.tensorflow.org/); TensorFlow Probability (v0.7.0; https://www.tensorflow.org/probability/)Encoding: UTF-8
Materials: README NEWS
CRAN checks: causact results

Downloads:

Reference manual: causact.pdf
Package source: causact_0.3.1.tar.gz
Windows binaries: r-devel: causact_0.3.1.zip, r-release: causact_0.3.1.zip, r-oldrel: causact_0.3.1.zip
macOS binaries: r-release: causact_0.3.1.tgz, r-oldrel: causact_0.3.1.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=causact to link to this page.