Package ‘cate’

June 23, 2020

Type Package
Title High Dimensional Factor Analysis and Confounder Adjusted Testing and Estimation
Version 1.1.1
Date 2020-06-22
Description Provides several methods for factor analysis in high dimension (both n,p >> 1) and methods to adjust for possible confounders in multiple hypothesis testing.

biocViews sva
Imports Matrix, MASS, esaBcv, ruv, sva, corpcor, leapp
Suggests knitr, ggplot2, gridExtra
Encoding UTF-8
License GPL-2
LazyData TRUE
VignetteBuilder knitr
RoxygenNote 7.1.0
NeedsCompilation no
Author Jingshu Wang [aut], Qingyuan Zhao [aut, cre]
Maintainer Qingyuan Zhao <qz280@cam.ac.uk>
Repository CRAN
Date/Publication 2020-06-23 10:10:03 UTC

R topics documented:
cate-package .. 2
adjust.latent .. 2
cate ... 3
est.confounder.num .. 6
fa.em ... 8
fa.pc ... 9
High dimensional factor analysis and confounder adjusted testing and estimation (CATE)

Description

Provides several methods for factor analysis in high dimension (both n,p \(\gg\) 1) and methods to adjust for possible confounders in multiple hypothesis testing.

See Also

factor.analysis, cate

adjust.latent

Adjust for latent factors, after rotation

Description

Adjust for latent factors, after rotation

Usage

adjust.latent(
 corr.margin,
 n,
 X.cov,
 Gamma,
 Sigma,
 method = c("rr", "nc", "lqs"),
 psi = psi.huber,
 nc = NULL,
 nc.var.correction = TRUE
)
Arguments

corr.margin marginal correlations, p*d1 matrix
n sample size
X.cov estimated second moment of X, d*d matrix
Gamma estimated confounding effects, p*r matrix
Sigma diagonal of the estimated noise covariance, p*1 vector
method adjustment method
psi derivative of the loss function in robust regression, choices are psi.huber, psi.bisquare and psi.hampel
nc position of the negative controls
nc.var.correction correct asymptotic variance based on our formula

Details

The function essentially runs a regression of corr.margin ~ Gamma. The sample size n is needed to have the right scale.

This function should only be called if you know what you are doing. Most of the time you want to use the main function cate to adjust for confounders.

Value

a list of objects

alpha estimated alpha, r*d1 matrix
beta estimated beta, p*d1 matrix
beta.cov.row estimated row covariance of beta, a length p vector
beta.cov.col estimated column covariance of beta, a d1*d1 matrix

See Also

cate

cate The main function for confounder adjusted testing

Description

The main function for confounder adjusted testing
Usage

cate(
 formula,
 X.data = NULL,
 Y,
 r,
 fa.method = c("ml", "pc", "esa"),
 adj.method = c("rr", "nc", "lqs", "naive"),
 psi = psi.huber,
 nc = NULL,
 nc.var.correction = TRUE,
 calibrate = TRUE
)

cate.fit(
 X.primary,
 X.nuis = NULL,
 Y,
 r,
 fa.method = c("ml", "pc", "esa"),
 adj.method = c("rr", "nc", "lqs", "naive"),
 psi = psi.huber,
 nc = NULL,
 nc.var.correction = TRUE,
 calibrate = TRUE
)

Arguments

formula a formula indicating the known covariates including both primary variables and
nuisance variables, which are separated by \|. The variables before | are primary
variables and the variables after | are nuisance variables. It's OK if there is no
nuisance variables, then | is not needed and formula becomes a typical formula
with all the covariates considered primary. When there is confusion about where
the intercept should be put, cate will include it in X.nuis.

X.data the data frame used for formula

Y outcome, n*p matrix

r number of latent factors, can be estimated using the function est.confounder.num

fa.method factor analysis method

adj.method adjustment method

psi derivative of the loss function in robust regression

nc position of the negative controls, if d0 > 1, this should be a matrix with 2
columns

nc.var.correction correct asymptotic variance based on our formula
calibrate if TRUE, use the Median and the Mean Absolute Deviation (MAD) to calibrate the test statistics

X.primary primary variables, n*d0 matrix or data frame
X.nuis nuisance covarites, n*d1 matrix

Details

Ideally nc can either be a vector of numbers between 1 and p, if d0 = 1 or the negative controls are the same for every treatment variable, or a 2-column matrix specifying which positions of beta are known to be zero. But this is yet implemented.

Value

a list of objects

alpha estimated alpha, r*d1 matrix
alpha.p.value asymptotic p-value for the global chi squared test of alpha, a vector of length d1
beta estimated beta, p*d1 matrix
beta.cov.row estimated row covariance of beta, a length p vector
beta.cov.col estimated column covariance of beta, a d1*d1 matrix
beta.t asymptotic z statistics for beta
beta.p.value asymptotic p-values for beta, based on beta.t
Y.tilde the transformed outcome matrix, an n*p matrix
Gamma estimated factor loadings, p*r matrix
Z estimated latent factors
Sigma estimated noise variance matrix, a length p vector

Functions

- cate.fit: Basic computing function called by cate

References

See Also

wrapper for wrapper functions of some existing methods.
Examples

```r
## simulate a dataset with 100 observations, 1000 variables and 5 confounders
data <- gen.sim.data(n = 100, p = 1000, r = 5)
X.data <- data.frame(X1 = data$X1)

## linear regression without any adjustment
output.naive <- cate(~ X1 | 1, X.data, Y = data$Y, r = 0, adj.method = "naive")
## confounder adjusted linear regression
output <- cate(~ X1 | 1, X.data, Y = data$Y, r = 5)
## plot the histograms of unadjusted and adjusted regression statistics
par(mfrow = c(1, 2))
hist(output.naive$beta.t)
hist(output$beta.t)

## simulate a dataset with 100 observations, 1000 variables and 5 confounders
data <- gen.sim.data(n = 100, p = 1000, r = 5)
## linear regression without any adjustment
output.naive <- cate.fit(X.primary = data$X1, X.nuis = NULL, Y = data$Y, r = 0, adj.method = "naive")
## confounder adjusted linear regression
output <- cate.fit(X.primary = data$X1, X.nuis = NULL, Y = data$Y, r = 5)
## plot the histograms of unadjusted and adjusted regression statistics
par(mfrow = c(1, 2))
hist(output.naive$beta.t)
hist(output$beta.t)
```

est.confounder.num

Estimate the number of confounders

Description

Estimate the number of confounders

Usage

```r
est.confounder.num(
  formula,
  X.data = NULL,
  Y,
  method = c("bcv", "ed"),
  rmax = 20,
  nRepeat = 20,
  bcv.plot = TRUE,
  log = ""
)

est.factor.num(
```

```r
```
est.confounder.num

Y,
method = c("bcv", "ed"),
rmmax = 20,
nRepeat = 12,
bcv.plot = TRUE,
log = ""
)

Arguments

formula a formula indicating the known covariates including both primary variables and
nuisance variables, which are seperated by |. The variables before | are primary
variables and the variables after | are nuisance variables. It’s OK if there is no
nuisance variables, then | is not needed and formula becomes a typical formula
with all the covariates considered primary. When there is confusion about where
the intercept should be put, cate will include it in X.nuis.

X.data the data frame used for formula

Y outcome, n*p matrix

method method to estimate the number of factors. There are currently two choices, "ed"
is the eigenvalue difference method proposed by Onatski (2010) and "bcv" is the
bi-cross-validation method proposed by Owen and Wang (2015). "bcv" tends to
estimate more weak factors and takes longer time

rmmax the maximum number of factors to consider. If the estimated number of factors
is rmmax, then users are encouraged to increase rmmax and run again. Default is
20.

nRepeat the number of repeats of bi-cross-validation. A larger nRepeat will result in a
more accurate estimate of the bcv error, but will need longer time to run.

bcv.plot whether to plot the relative bcv error versus the number of estimated ranks. The
relative bcv error is the entrywise mean square error devided by the average of
the estimated noise variance.

log if log = "y", then the y-axis of the bcv plot is in log scale.

Value

if method is "ed", then return the estimated number of confounders/factors. If method is "bcv", then
return the a list of objects

r estimated number of confounders/factors

eerrors the relative bcv errors of length 1 + rmmax

Functions

• est.factor.num: Estimate the number of factors
References

Examples

```r
## example for est.confounder.num
data <- gen.sim.data(n = 50, p = 50, r = 5)
X.data <- data.frame(X1 = data$X1)
est.confounder.num(~ X1 | 1, X.data, data$Y, method = "ed")
est.confounder.num(~ X1 | 1, X.data, data$Y, method = "bcv")

## example for est.factor.num
n <- 50
p <- 100
r <- 5
Z <- matrix(rnorm(n * r), n, r)
Gamma <- matrix(rnorm(p * r), p, r)
Y <- Z %*% t(Gamma) + rnorm(n * p)
est.factor.num(Y, method = "ed")
est.factor.num(Y, method = "bcv")
```

fa.em

Factor analysis via EM algorithm to maximize likelihood

Description

Factor analysis via EM algorithm to maximize likelihood

Usage

```r
fa.em(Y, r, tol = 1e-06, maxiter = 1000)
```

Arguments

- **Y**: data matrix, a n*p matrix
- **r**: number of factors
- **tol**: a tolerance scale of change of log-likelihood for convergence in the EM iterations
- **maxiter**: maximum iterations
References

See Also

- *factor.analysis* for the main function.

fa.pc

Factor analysis via principal components

Description

Factor analysis via principal components

Usage

`fa.pc(Y, r)`

Arguments

- `Y` : data matrix, a n*p matrix
- `r` : number of factors

See Also

- *factor.analysis* for the main function.

factor.analysis

Factor analysis

Description

The main function for factor analysis with potentially high dimensional variables. Here we implement some recent algorithms that is optimized for the high dimensional problem where the number of samples n is less than the number of variables p.

Usage

`factor.analysis(Y, r, method = c("ml", "pc", "esa"))`

Arguments

- `Y` : data matrix, a n*p matrix
- `r` : number of factors
- `method` : algorithm to be used
Details

The three methods are quasi-maximum likelihood (ml), principal component analysis (pc), and factor analysis using an early stopping criterion (esa).

The ml is iteratively solved the Expectation-Maximization algorithm using the PCA solution as the initial value. See Bai and Li (2012) and for more details. For the esa method, see Owen and Wang (2015) for more details.

Value

a list of objects

Gamma estimated factor loadings
Z estimated latent factors
Sigma estimated noise variance matrix

References

See Also

fa.pc, fa.em, ESA

Examples

```r
## a factor model
n <- 100
p <- 1000
r <- 5
Z <- matrix(rnorm(n * r), n, r)
Gamma <- matrix(rnorm(p * r), p, r)
Y <- Z %*% t(Gamma) + rnorm(n * p)

## to check the results, verify the true factors are in the linear span of the estimated factors.
pc.results <- factor.analysis(Y, r = 5, "pc")
sapply(summary(lm(Z ~ pc.results$Z)), function(x) x$r.squared)

ml.results <- factor.analysis(Y, r = 5, "ml")
sapply(summary(lm(Z ~ ml.results$Z)), function(x) x$r.squared)

esa.results <- factor.analysis(Y, r = 5, "esa")
sapply(summary(lm(Z ~ esa.results$Z)), function(x) x$r.squared)
```
Description

gen.sim.data generates data from the following model:

\[Y = X_0 \beta_0^T + X_1 \beta_1^T + Z \gamma^T + E \sigma_1^{1/2}, \]

where \(Z | X_0, X_1 = X_0 \alpha_0^T + X_1 \alpha_1^T + D, \) and \(\text{cov}(X_0, X_1) = \Sigma_X. \)

Usage

gen.sim.data(
 n, p, r, d0 = 0, d1 = 1,
 X.dist = c("binary", "normal"),
 alpha = matrix(0.5, r, d0 + d1),
 beta = NULL,
 beta.strength = 1,
 beta.nonzero.frac = 0.05,
 Gamma = NULL,
 Gamma.strength = sqrt(p),
 Gamma.beta.cor = 0,
 Sigma = 1,
 seed = NULL
)

Arguments

- **n**: number of observations
- **p**: number of observed variables
- **r**: number of confounders
- **d0**: number of nuisance regression covariates
- **d1**: number of primary regression covariates
- **X.dist**: the distribution of \(X \), either "binary" or "normal"
- **alpha**: association of \(X \) and \(Z \), a \(r \times d \) vector (\(d = d0 + d1 \))
- **beta**: treatment effects, a \(p \times d \) vector
- **beta.strength**: strength of beta
- **beta.nonzero.frac**: if beta is not specified, fraction of nonzeros in beta
- **Gamma**: confounding effects, a \(p \times r \) matrix
- **Sigma**: covariance matrix of \(X \)
- **seed**: random seed
Gamma.strength strength of Gamma, more precisely the mean of square entries of Gamma *
alpha
Gamma.beta.cor the "correlation" (proportion of variance explained) of beta and Gamma
Sigma noise variance, a p*p matrix or p*1 vector or a single real number
seed random seed

Value

a list of objects

X0 matrix of nuisance covariates
X1 matrix of primary covariates
Y matrix Y
Z matrix of confounders
alpha regression coefficients between X and Z
beta regression coefficients between X and Y
Gamma coefficients between Z and Y
Sigma noise variance
beta.nonzero.pos the nonzero positions in beta
r number of confounders

Description

This genetics dataset is used to demonstrate the usage of cate in the vignette. It was originally extracted by Gagnon-Bartsch and Speed (2012) as an example of confounded multiple testing. The data included in this package contains only 500 genes that are sampled from the original 12600 genes, besides keeping all the spike-in controls.

References

Wrapper functions for some previous methods

Description

These functions provide an uniform interface to three existing methods: SVA, RUV, LEAPP. The wrapper functions transform the data into desired forms and call the corresponding functions in the package sva, ruv, leapp.

Usage

```r
sva.wrapper(
  formula,
  X.data = NULL,
  Y,
  r,
  sva.method = c("irw", "two-step"),
  B = 5
)
```

```r
ruv.wrapper(
  formula,
  X.data = NULL,
  Y,
  r,
  nc,
  lambda = 1,
  ruv.method = c("RUV2", "RUV4", "RUVinv")
)
```

```r
leapp.wrapper(
  formula,
  X.data = NULL,
  Y,
  r,
  search.tuning = F,
  ipod.method = c("hard", "soft")
)
```

Arguments

- `formula` a formula indicating the known covariates including both primary variables and nuisance variables, which are separated by `. The variables before `|` are primary variables and the variables after `|` are nuisance variables. It’s OK if there is no nuisance variables, then `|` is not needed and `formula` becomes a typical formula with all the covariates considered primary. When there is confusion about where the intercept should be put, `cate` will include it in `X.nuis`.

- `X.data` a matrix or data frame

- `Y` a vector or matrix

- `r` an integer

- `sva.method` a character string

- `B` an integer

- `nc` an integer

- `lambda` a real number

- `ruv.method` a character string

- `search.tuning` a logical value

- `ipod.method` a character string
X.data the data frame used for formula
Y outcome, n*p matrix
r number of latent factors, can be estimated using the function est.confounder.num
sva.method parameter for sva. whether to use an iterative reweighted algorithm (irw) or a two-step algorithm (two-step).
B parameter for sva. the number of iterations of the irwsva algorithm
nc parameter for ruv functions: position of the negative controls
lambda parameter for RUVinv
ruv.method either using RUV2, RUV4 or RUVinv functions
search.tuning logical parameter for leapp, whether using BIC to search for tuning parameter of IPOD.
ipod.method parameter for leapp. "hard": hard thresholding in the IPOD algorithm; "soft": soft thresholding in the IPOD algorithm

Details

The beta.p.values returned is a length p vector, each for the overall effects of all the primary variables.

Only 1 variable of interest is allowed for leapp.wrapper. The method can be slow.

Value

All functions return beta.p.value which are the p-values after adjustment. For the other returned objects, refer to cate for their meaning.

Examples

this is the simulation example in Wang et al. (2015).
n <- 100
p <- 1000
r <- 2
set.seed(1)
data <- gen.sim.data(n = n, p = p, r = r,
 alpha = rep(1 / sqrt(r), r),
 beta.strength = 3 * sqrt(1 + 1) / sqrt(n),
 Gamma.strength = c(seq(3, 1, length = r)) * sqrt(p),
 Sigma = 1 / rgamma(p, 3, rate = 2),
 beta.nonzero.frac = 0.05)
X.data <- data.frame(X1 = data$X1)
sva.results <- sva.wrapper(~ X1 | 1, X.data, data$Y,
 r = r, sva.method = "irw")
ruv.results <- ruv.wrapper(~ X1 | 1, X.data, data$Y, r = r,
 nc = sample(data$beta.zero.pos, 30), ruv.method = "RUV4")
leapp.results <- leapp.wrapper(~ X1 | 1, X.data, data$Y, r = r)
cate.results <- cate(~ X1 | 1, X.data, data$Y, r = r)

p-values after adjustment
par(mfrow = c(2, 2))
hist(sva.results$beta.p.value)
hist(ruv.results$beta.p.value)
hist(leapp.results$beta.p.value)
hist(cate.results$beta.p.value)

type I error
mean(sva.results$beta.p.value[data$beta.zero.pos] < 0.05)

power
mean(sva.results$beta.p.value[data$beta.nonzero.pos] < 0.05)

false discovery proportion for sva
discoveries.sva <- which(p.adjust(sva.results$beta.p.value, "BH") < 0.2)
fdp.sva <- length(setdiff(discoveries.sva, data$beta.nonzero.pos)) / max(length(discoveries.sva), 1)
fdp.sva
Index

*Topic data
 gender.sm, 12

adjust.latent, 2

cate, 2, 3, 3, 14
cate-package, 2

ESA, 10
est.confounder.num, 6
est.factor.num(est.confounder.num), 6

fa.em, 8, 10
fa.pc, 9, 10
factor.analysis, 2, 9, 9

gen.sim.data, 11
gender.sm, 12

leapp, 13, 14
leapp.wrapper (wrapper), 13

ruv, 13, 14
ruv.wrapper (wrapper), 13
RUV2, 14
RUV4, 14
RUVinv, 14

sva, 13, 14
sva.wrapper (wrapper), 13

wrapper, 5, 13