Package ‘cassowaryr’

August 9, 2022

Title Compute Scagnostics on Pairs of Numeric Variables in a Data Set

Version 2.0.0

Description Computes a range of scatterplot diagnostics (scagnostics) on pairs of numerical variables in a data set. A range of scagnostics, including graph and association-based scagnostics described by Leland Wilkinson and Graham Wills (2008) <doi:10.1198/106186008X320465> and association-based scagnostics described by Katrin Grimm (2016, ISBN:978-3-8439-3092-5) can be computed. Summary and plotting functions are provided.

License GPL-3

Encoding UTF-8

LazyData true

URL https://github.com/numbats/cassowary

BugReports https://github.com/numbats/cassowary/issues

Depends R (>= 4.0.0)

Imports igraph, alphahull (>= 2.5), splancs, interp, energy, dplyr, ggplot2, magrittr, progress, tibble, stats, tidyselect

RoxygenNote 7.2.0

Suggests rmarkdown, knitr, mgcv, GGally, tidyrr, testthat (>= 3.0.0), covr

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Harriet Mason [aut, cre], Stuart Lee [aut] (<https://orcid.org/0000-0003-1179-8436>), Ursula Laa [aut] (<https://orcid.org/0000-0002-0249-6439>), Di Cook [aut] (<https://orcid.org/0000-0002-3813-7155>)

Maintainer Harriet Mason <harriet.m.mason@gmail.com>

Repository CRAN

Date/Publication 2022-08-09 12:30:02 UTC
anscombe_tidy

Data from Anscombe’s famous example in tidy format

Description

All variables and pairs of variables have same summary statistics but are very different data, as can be seen by visualisation.
calc_scags

Format

A tibble with 44 observations and 3 variables

set label of the data set, each set has 11 observations
x variable for horizontal axis
y variable for vertical axis

calc_scags Compute selected scagnostic on subsets

Description

Compute selected scagnostic on subsets

Usage

calc_scags(
 out.rm = TRUE,
 euclid = FALSE
)

Arguments

x numeric vector
y numeric vector
scags collection of strings matching names of scagnostic to calculate: outlying, stringy, striated, striated2, striped, clumpy, clumpy2, sparse, skewed, convex, skinny, monotonic, splines, dcor
out.rm logical indicator to indicate if outliers should be removed before calculating non outlying measures
euclid logical indicator to use Euclidean distance

Value

A data frame that gives the single plot’s scagnostic score.

See Also

calc_scags_wide
Examples

Calculate selected scagnostics on a single pair
calc_scags(anscombe$x1, anscombe$y1, scags=c("monotonic", "outlying"))

Compute on long form data, or subsets
defined by a categorical variable
require(dplyr)
datasaurus_dozen %>%
group_by(dataset)
summarise(calc_scags(x,y, scags=c("monotonic", "outlying", "convex")))

calc_scags_wide Compute scagnostics on all possible scatter plots for the given data

Description

Compute scagnostics on all possible scatter plots for the given data

Usage

```
calc_scags_wide(
  all_data,
  scags = c("outlying", "stringy", "striated", "striated2", "clumpy", "clumpy2",
            "sparse", "skewed", "convex", "skinny", "monotonic", "splines", "dcor"),
  out.rm = TRUE,
  euclid = FALSE
)
```

Arguments

- **all_data**: tibble of multivariate data on which to compute scagnostics
- **scags**: collection of strings matching names of scagnostics to calculate: outlying, stringy, striated, striated2, striped, clumpy, clumpy2, sparse, skewed, convex, skinny, monotonic, splines, dcor
- **out.rm**: logical indicator to indicate if outliers should be removed before calculating non-outlying measures
- **euclid**: logical indicator to use Euclidean distance

Value

A data frame that gives the data’s scagnostic scores for each possible variable combination.

See Also

calc_scags
Examples

```r
# Calculate selected scagnostics
data(pk)
calc_scags_wide(pk[,2:5], scags=c("outlying","monotonic"))
```

datasaurus_dozen datasaurus_dozen data

Description

From the datasauRus package. A modern update of Anscombe. All plots have same x and y mean, variance and correlation, but look different visually.

All variables and pairs of variables have same summary statistics but are very different data, as can be seen by visualisation.

Format

A tibble with 1,846 observations and 3 variables

- **dataset** label of data set
- **x** variable for horizontal axis
- **y** variable for vertical axis

A tibble with 142 observations and 26 variables

- **away_x, away_y** x and y variables for away data
- **bullseye_x, bullseye_y** x and y variables for bullseye data
- **circle_x, circle_y** x and y variables for circle data
- **dino_x, dino_y** x and y variables for dino data
- **dots_x, dots_y** x and y variables for dots data
- **h_lines_x, h_lines_y** x and y variables for h_lines data
- **high_lines_x, high_lines_y** x and y variables for high_lines data
- **slant_down_x, slant_down_y** x and y variables for slant_down data
- **slant_up_x, slant_up_y** x and y variables for slant_up data
- **star_x, star_y** x and y variables for star data
- **v_lines_x, v_lines_y** x and y variables for v_lines data
- **wide_lines_x, wide_lines_y** x and y variables for wide_lines data
- **star_x, star_y** x and y variables for star data
- **x_shape_x, x_shape_y** x and y variables for x_shape data
draw_alphahull Drawing the alphahull

Description
This function will draw the alphahull for a scatterplot.

Usage
draw_alphahull(x, y, alpha = 0.5, clr = "black", fill = FALSE, out.rm = TRUE)

Arguments
- x: numeric vector
- y: numeric vector
- alpha: transparency value of points
- clr: optional colour of points and lines, default black
- fill: Fill the polygon
- out.rm: option to return the outlier removed alphahull

Value
A alphahull::ahull(del, alpha = alpha) "gg" object that draws the plot’s alpha hull.

Examples
require(dplyr)
require(ggplot2)
require(alphahull)
data("features")
nl <- features %>% filter(feature == "clusters")
draw_alphahull(nlx, nly)

draw_convexhull Drawing the Convex Hull

Description
This function will draw the Convex Hull for a scatterplot.

Usage
draw_convexhull(x, y, alpha = 0.5, clr = "black", fill = FALSE, out.rm = TRUE)
draw_mst

Drawing the MST

Description

This function will draw the MST for a scatterplot.

Usage

```r
draw_mst(x, y, alpha = 0.5, out.rm = TRUE)
```

Arguments

- `x` numeric vector
- `y` numeric vector
- `alpha` The alpha value used to build the graph object. Larger values allow points further apart to be connected.
- `out.rm` option to return the outlier removed MST

Value

A "gg" object that draws the plot’s MST.
Examples

```r
require(dplyr)
require(ggplot2)
data("features")
nl <- features %>% filter(feature == "nonlinear2")
draw_mst(nl$x, nl$y)
```

features

Simulated data with special features

Description

Simulated data with common features that might be seen in 2D data. Variable are feature, x, y.

Format

A tibble with 1,013 observations and 3 variables, and 15 different patterns

- **feature** label of data set
- **x** variable for horizontal axis
- **y** variable for vertical axis

numbat

A toy data set with a numbat shape hidden among noise variables

Description

There are 7 variables (x1-x7) and 2,100 observations. Variables 4 and 7 have the numbat. The rest are noise. Group A has the numbat, and group B is all noise.

pk

Parkinsons data from UCI machine learning archive

Description

Biomedical voice measurements from 31 people, 23 with Parkinson’s disease (PD). Each column in the table is a particular voice measure, and each row corresponds one of 195 voice recording from these individuals (“name” column). The main aim of the data is to discriminate healthy people from those with PD, according to “status” column which is set to 0 for healthy and 1 for PD.
Format

A tibble with 1,013 observations and 3 variables

name ASCII subject name and recording number
MDVP:Fo(Hz) Average vocal fundamental frequency
MDVP:Fhi(Hz) Maximum vocal fundamental frequency
MDVP:Flo(Hz) Minimum vocal fundamental frequency
MDVP:Jitter, MDVP:Jitter(Abs), MDVP:RAP, MDVP:PPQ, Jitter:DDP Several measures of variation in fundamental frequency
MDVP:Shimmer, MDVP:Shimmer(dB), Shimmer:APQ3, Shimmer:APQ5, MDVP:APQ, Shimmer:DDA Several measures of variation in amplitude
NHR, HNR Two measures of ratio of noise to tonal components in the voice
status Health status of the subject (one) - Parkinson’s, (zero) - healthy
RPDE, D2 Two nonlinear dynamical complexity measures
DFA Signal fractal scaling exponent
spread1, spread2, PPE Three nonlinear measures of fundamental frequency variation

Details

The data is available at The UCI Machine Learning Repository in ASCII CSV format. The rows of the CSV file contain an instance corresponding to one voice recording. There are around six recordings per patient, the name of the patient is identified in the first column.

The data are originally analysed in: Max A. Little, Patrick E. McSharry, Eric J. Hunter, Lorraine O. Ramig (2008), ’Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease’, IEEE Transactions on Biomedical Engineering.

scree
Pre-processing to generate scagnostic measures

Description

Pre-processing to generate scagnostic measures

Usage

`scree(x, y, binner = NULL, ...)`

Arguments

- `x, y` numeric vectors
- `binner` an optional function that bins the x and y vectors prior to triangulation
- `...` other args
An object of class "scree" that consists of three elements:

- del: the Delauney-Voronoi tesselation from `alphahull::delvor()`
- weights: the lengths of each edge in the Delauney triangulation
- alpha: the radius or alpha value that will be used to generate the alphahull

Examples

```r
x <- runif(100)
y <- runif(100)
screee(x, y)
```

Description

Compute clumpy scagnostic measure using MST

Usage

```r
sc_clumpy(x, y)
```

```r
## Default S3 method:
sclumpys(x, y)
```

```r
## S3 method for class 'scree'
sclumpys(x, y = NULL)
```

```r
## S3 method for class 'igraph'
sclumpys(x, y)
```

Arguments

- `x`: numeric vector of x values
- `y`: numeric vector of y values

Value

A "numeric" object that gives the plot's clumpy score.
Examples

```r
require(ggplot2)
require(dplyr)
ggplot(features, aes(x=x, y=y)) +
  geom_point() +
  facet_wrap(~feature, ncol = 5, scales = "free")
features %>% group_by(feature) %>% summarise(clumpy = sc_clumpy(x,y))
sc_clumpy(datasaurus_dozen_wide$away_x, datasaurus_dozen_wide$away_y)
```

sc_clumpy2

`sc_clumpy2(x, y)`

Default S3 method:
`sclumpy2(x, y)`

S3 method for class 'scree'
`sclumpy2(x, y = NULL)`

S3 method for class 'igraph'
`sclumpy2(x, y)`

Description

Compute adjusted clumpy measure using MST

Usage

```r
sc_clumpy2(x, y)
```

Arguments

- **x**: numeric vector of x values
- **y**: numeric vector of y values

Value

A "numeric" object that gives the plot’s clumpy2 score.

Examples

```r
require(ggplot2)
require(dplyr)
```

```r
ggplot(features, aes(x=x, y=y)) +
  geom_point() +
  facet_wrap(~feature, ncol = 5, scales = "free")
features %>% group_by(feature) %>% summarise(clumpy = sc_clumpy2(x,y))
sc_clumpy2(datasaurus_dozen_wide$away_x, datasaurus_dozen_wide$away_y)
```
Compute robust clumpy scagnostic measure using MST

sc_clumpy_r

Description

Compute robust clumpy scagnostic measure using MST

Usage

```r
sc_clumpy_r(x, y)
```

Default S3 method:

```r
sc_clumpy_r(x, y)
```

S3 method for class 'scree'

```r
sc_clumpy_r(x, y = NULL)
```

S3 method for class 'igraph'

```r
sc_clumpy_r(x, y)
```

Arguments

- **x** numeric vector of x values
- **y** numeric vector of y values

Value

A "numeric" object that gives the plot’s robust clumpy score.

Examples

```r
require(ggplot2)
require(dplyr)
ggplot(features, aes(x=x, y=y)) + geom_point() + facet_wrap(~feature, ncol = 5, scales = "free")
features %>% group_by(feature) %>% summarise(clumpy = sc_clumpy_r(x, y))
sc_clumpy_r(datasaurus_dozen_wide$away_x, datasaurus_dozen_wide$away_y)
```
Compute convex scagnostic measure

Usage

```r
sc_convex(x, y)
```

Default S3 method:

```r
sc_convex(x, y)
```

S3 method for class 'scree'

```r
sc_convex(x, y = NULL)
```

S3 method for class 'list'

```r
sc_convex(x, y)
```

Arguments

- `x`: numeric vector of x values
- `y`: numeric vector of y values

Value

A "numeric" object that gives the plot’s convex score.

Examples

```r
require(ggplot2)
require(dplyr)
features %>% group_by(feature) %>% summarise(convex = sc_convex(x,y))
sc_convex(datasaurus_dozen_wide$away_x, datasaurus_dozen_wide$away_y)
```
sc_dcor
Distance correlation index.

Description

(Taken from tourr package) Computes the distance correlation based index on 2D projections of the data.

Usage

```r
sc_dcor(x, y)
```

Arguments

- `x` numeric vector
- `y` numeric vector

Value

A "numeric" object that gives the plot’s dcor score.

Examples

```r
require(ggplot2)
require(tidyr)
require(dplyr)
data(anscombe)
anscombe_tidy <- anscombe %>%
  pivot_longer(cols = everything(),
              names_to = c(".value", "set"),
              names_pattern = "(\w+)(\w+)"
)ggplot(anscombe_tidy, aes(x=x, y=y)) +
  geom_point() +
  facet_wrap(~set, ncol=2, scales = "free")
sc_dcor(anscombe$x1, anscombe$y1)
sc_dcor(anscombe$x2, anscombe$y2)
sc_dcor(anscombe$x3, anscombe$y3)
sc_dcor(anscombe$x4, anscombe$y4)
```
sc_monotonic

Measure of Spearman Correlation

Description

Measure of Spearman Correlation

Usage

```r
sc_monotonic(x, y)
```

Arguments

- `x`: numeric vector
- `y`: numeric vector

Value

A "numeric" object that gives the plot's monotonic score.

Examples

```r
require(ggplot2)
require(tidyr)
require(dplyr)
data(anscombe)
anscombe_tidy <- anscombe %>%
pivot_longer(cols = everything(),
names_to = c(".value", "set"),
names_pattern = "(.)(.)")
ggplot(anscombe_tidy, aes(x=x, y=y)) +
  geom_point() +
  facet_wrap(~set, ncol=2, scales = "free")
sc_monotonic(anscombe$x1, anscombe$y1)
sc_monotonic(anscombe$x2, anscombe$y2)
sc_monotonic(anscombe$x3, anscombe$y3)
sc_monotonic(anscombe$x4, anscombe$y4)
```

sc_outlying

Compute outlying scagnostic measure using MST

Description

Compute outlying scagnostic measure using MST
Usage

\[
\text{sc_outlying}(x, y)
\]

Default S3 method:
\[
\text{sc_outlying}(x, y)
\]

S3 method for class 'scree'
\[
\text{sc_outlying}(x, y = \text{NULL})
\]

S3 method for class 'igraph'
\[
\text{sc_outlying}(x, y)
\]

Arguments

- \(x\) numeric vector of x values
- \(y\) numeric vector of y values

Value

A "numeric" object that gives the plot's outlying score.

Examples

require(ggplot2)
require(tidyR)
require(dplyr)
ggplot(datasaurus_dozen, aes(x=x, y=y)) +
 geom_point() +
 facet_wrap(~dataset, ncol=3, scales = "free")
sc_outlying(datasaurus_dozen_wide$dino_x, datasaurus_dozen_wide$dino_y)
sc_outlying(datasaurus_dozen_wide$dots_x, datasaurus_dozen_wide$dots_y)
sc_outlying(datasaurus_dozen_wide$h_lines_x, datasaurus_dozen_wide$h_lines_y)

sc_skewed

Compute skewed scagnostic measure using MST

Usage

\[
\text{sc_skewed}(x, y)
\]

Default S3 method:
\[
\text{sc_skewed}(x, y)
\]

Description

Compute skewed scagnostic measure using MST

Usage

\[
\text{sc_skewed}(x, y)
\]

Default S3 method:
\[
\text{sc_skewed}(x, y)
\]
S3 method for class 'scree'
sc_skewed(x, y = NULL)

S3 method for class 'igraph'
sc_skewed(x, y)

Arguments

- **x** numeric vector of x values
- **y** numeric vector of y values

Value

A "numeric" object that gives the plot’s skewed score.

Examples

```r
require(ggplot2)
require(tidyrr)
require(dplyr)
data(anscombe_tidy)
ggplot(datasaurus_dozen, aes(x=x, y=y)) +
  geom_point() +
  facet_wrap(~dataset, ncol=3, scales = "free")
sc_skewed(datasaurus_dozen_wide$dots_x, datasaurus_dozen_wide$dots_y)
sc_skewed(datasaurus_dozen_wide$h_lines_x, datasaurus_dozen_wide$h_lines_y)
sc_skewed(datasaurus_dozen_wide$x_shape_x, datasaurus_dozen_wide$x_shape_y)
```

sc_skinny

Compute skinny scagnostic measure

Description

Compute skinny scagnostic measure

Usage

```r
sc_skinny(x, y)
```

Default S3 method:
sc_skinny(x, y)

S3 method for class 'scree'
sc_skinny(x, y = NULL)

S3 method for class 'list'
sc_skinny(x, y = NULL)
Arguments

\(x \)
numeric vector of x values

\(y \)
numeric vector of y values

Value

A "numeric" object that gives the plot’s skinny score.

Examples

```r
require(ggplot2)
require(dplyr)

ggplot(features, aes(x=x, y=y)) +
  geom_point() +
  facet_wrap(~feature, ncol = 5, scales = "free")

features %>% group_by(feature) %>% summarise(skinny = sc_skeiny(x,y))

sc_skeiny(datasaurus_dozen_wide$away_x, datasaurus_dozen_wide$away_y)
```

sc_sparse
Compute sparse scagnostic measure using MST

Description

Compute sparse scagnostic measure using MST

Usage

```r
sc_sparse(x, y)
```

Default S3 method:
```r
sc_sparse(x, y)
```

S3 method for class 'scree'
```r
sc_sparse(x, y = NULL)
```

S3 method for class 'igraph'
```r
sc_sparse(x, y)
```

Arguments

\(x \)
numeric vector of x values

\(y \)
numeric vector of y values

Value

A "numeric" object that gives the plot’s sparse score.
Examples
require(ggplot2)
require(tidyr)
require(dplyr)
ggplot(datasaurus_dozen, aes(x=x, y=y)) +
 geom_point() +
 facet_wrap(~dataset, ncol=3, scales = "free")
sc_sparse(datasaurus_dozen_wide$away_x, datasaurus_dozen_wide$away_y)
sc_sparse(datasaurus_dozen_wide$circle_x, datasaurus_dozen_wide$circle_y)
sc_sparse(datasaurus_dozen_wide$dino_x, datasaurus_dozen_wide$dino_y)

sc_sparse2
Compute adjusted sparse measure using the alpha hull

Description
Compute adjusted sparse measure using the alpha hull

Usage
sc_sparse2(x, y)
Default S3 method:
sc_sparse2(x, y)
S3 method for class 'scree'
sc_sparse2(x, y = NULL)
S3 method for class 'list'
sc_sparse2(x, y = NULL)

Arguments
x numeric vector of x values
y numeric vector of y values

Value
A "numeric" object that gives the plot’s sparse2 score.

Examples
require(ggplot2)
require(tidyr)
require(dplyr)
data(anscombe_tidy)
ggplot(anscombe_tidy, aes(x=x, y=y)) +
sc_splines

Spline based index.

Description

(Taken from tourr git repo) Compares the variance in residuals of a fitted spline model to the overall variance to find functional dependence in 2D projections of the data.

Usage

sc_splines(x, y)

Arguments

x numeric vector
y numeric vector

Value

A "numeric" object that gives the plot's spines score.

Examples

```
require(ggplot2)
require(tidyr)
require(dplyr)
data(anscombe)
anscombe_tidy <- anscombe %>%
pivot_longer(cols = everything(),
    names_to = c(".value", "set"),
    names_pattern = "(.)(.)"
ggplot(anscombe_tidy, aes(x=x, y=y)) +
geom_point() +
    facet_wrap(~set, ncol=2, scales = "free")
sc_splines(anscombe$x1, anscombe$y1)
sc_splines(anscombe$x2, anscombe$y2)
sc_splines(anscombe$x3, anscombe$y3)
```
Description

Compute striated scagnostic measure using MST

Usage

sc_striated(x, y)

Default S3 method:
sc_striated(x, y)

S3 method for class 'scree'
sc_striated(x, y = NULL)

S3 method for class 'igraph'
sc_striated(x, y)

Arguments

x numeric vector of x values
y numeric vector of y values

Value

A "numeric" object that gives the plot's striated score.

Examples

require(ggplot2)
require(dplyr)
data(anscombe_tidy)
ggplot(anscombe_tidy, aes(x=x, y=y)) +
 geom_point() +
 facet_wrap(~set, ncol=2, scales = "free")
sc_striated(anscombe$x1, anscombe$y1)
sc_striated(anscombe$x2, anscombe$y2)
sc_striated2

Compute angle adjusted striated measure using MST

Description

Compute angle adjusted striated measure using MST

Usage

sc_striated2(x, y)

Default S3 method:
sc_striated2(x, y)

S3 method for class 'scree'
sc_striated2(x, y = NULL)

S3 method for class 'igraph'
sc_striated2(x, y)

Arguments

x numeric vector of x values, or an MST object

y numeric vector of y values, or a scree object

Value

A "numeric" object that gives the plot’s striated2 score.

Examples

require(ggplot2)
require(dplyr)
ggplot(features, aes(x=x, y=y)) +
 geom_point() +
 facet_wrap(~feature, ncol = 5, scales = "free")
features %>% group_by(feature) %>% summarise(striated = sc_striated2(x,y))
sc_striated2(datasaurus_dozen_wide$away_x, datasaurus_dozen_wide$away_y)
sc_stringy

Compute stringy scagnostic measure using MST

Description

Compute stringy scagnostic measure using MST

Usage

```
sc_stringy(x, y)
```

```r
## Default S3 method:
sc_stringy(x, y)
```

```r
## S3 method for class 'scree'
sc_stringy(x, y = NULL)
```

```r
## S3 method for class 'igraph'
sc_stringy(x, y = NULL)
```

Arguments

- `x` numeric vector of x values
- `y` numeric vector of y values

Value

A "numeric" object that gives the plot’s stringy score.

Examples

```r
require(ggplot2)
require(tidyrr)
require(dplyr)
data(anscombe_tidy)
ggplot(anscombe_tidy, aes(x=x, y=y)) +
  geom_point() +
  facet_wrap(~set, ncol=2, scales = "free")
sc_stringy(anscombe$x1, anscombe$y1)
sc_stringy(anscombe$x2, anscombe$y2)
sc_stringy(anscombe$x3, anscombe$y3)
sc_stringy(anscombe$x4, anscombe$y4)
```
sc_striped

Measure of Discreteness

Description

This metric computes the 1-(ratio between the number of unique values to total data values) on number of rotations of the data, and returns the smallest value. If this value is large it means that there are only a few unique data values, and hence the distribution is discrete.

Usage

```r
sc_striped(x, y)
```

Arguments

- `x`: numeric vector
- `y`: numeric vector

Value

double

Examples

```r
data("datasaurus_dozen_wide")
sc_striped(datasaurus_dozen_wide$v_lines_x, datasaurus_dozen_wide$v_lines_y)
sc_striped(datasaurus_dozen_wide$dino_x, datasaurus_dozen_wide$dino_y)
```

top_pairs

Calculate the top scagnostic for each pair of variables

Description

Calculate the top scagnostic for each pair of variables.

Usage

```r
top_pairs(scags_data)
```

Arguments

- `scags_data`: A dataset of scagnostic values that was returned by calc_scags or calc_scags_wide.
Value

A data frame where each row is a scatter plot, its highest valued scagnostic, and its respective value.

See Also

calc_scags, calc_scags_wide, top_scags

Examples

```r
# an example using calc_scags
require(dplyr)
datasaurus_dozen %>%
group_by(dataset) %>%
summarise(calc_scags(x, y, scags=c("monotonic", "outlying", "convex"))) %>%
top_pairs()

# an example using calc_scags_wide
data(pk)
scags_data <- calc_scags_wide(pk[,2:5], scags=c("outlying", "clumpy", "monotonic"))
top_pairs(scags_data)
```

top_scags

Calculate the top pair of variables or group for each scagnostic

Description

Calculate the top pair of variables or group for each scagnostic.

Usage

top_scags(scags_data)

Arguments

- `scags_data` A dataset of scagnostic values that was returned by calc_scags or calc_scags_wide

Value

A data frame where each row is a scagnostic with its highest pair and the associated value.

See Also

calc_scags, calc_scags_wide, top_pairs
Examples

an example using calc_scags
require(dplyr)
data(saurus_dozen) %>%
group_by(dataset) %>%
 summarise(calc_scags(x, y, scags=c("monotonic", "outlying", "convex"))) %>%
top_scags()

an example using calc_scags_wide
data(pk)
sags_data <- calc_scags_wide(pk[,2:5], scags=c("outlying", "clumpy", "monotonic"))
top_scags(sags_data)
Index

alphahull::delvor(), 10
anscombe_tidy, 2

calc_scags, 3
calc_scags_wide, 4

datasaurus_dozen, 5
datasaurus_dozen_wide
 (datasaurus_dozen), 5
drawalphahull, 6
draw_convexhull, 6
draw_mst, 7

features, 8

numbat, 8

pk, 8

sc_clumpy, 10
sc_clumpy2, 11
sc_clumpy_r, 12
sc_convex, 13
sc_dcor, 14
sc_monotonic, 15
sc_outlying, 15
sc_skewed, 16
sc_skinny, 17
sc_sparse, 18
sc_sparse2, 19
sc_splines, 20
sc_striated, 21
sc_striated2, 22
sc_stringy, 23
sc_striped, 24
scree, 9

top_pairs, 24
top_scags, 25