Package ‘bssm’

November 12, 2020

Type Package

Title Bayesian Inference of Non-Gaussian State Space Models

Version 1.0.1-1

Date 2020-11-11

Description Efficient methods for Bayesian inference of state space models via particle Markov chain Monte Carlo (MCMC) and MCMC based on parallel importance sampling type weighted estimators (Vihola, Helske, and Franks, 2020, <doi:10.1111/sjos.12492>). Gaussian, Poisson, binomial, negative binomial, and Gamma observation densities and basic stochastic volatility models with Gaussian state dynamics, as well as general non-linear Gaussian models and discretised diffusion models are supported.

License GPL (>= 2)

Depends R (>= 3.5.0)

Suggests dplyr, ggplot2 (>= 2.0.0), Hmisc, KFAS (>= 1.2.1), knitr (>= 1.11), MASS, ramcmc, rmarkdown (>= 0.8.1), sde, sitmo, testthat

Imports coda (>= 0.18-1), diagis, Rcpp (>= 0.12.3)

LinkingTo Rcpp, RcppArmadillo, ramcmc, sitmo

SystemRequirements C++11

RoxygenNote 7.1.1

VignetteBuilder knitr

BugReports https://github.com/helske/bssm/issues

ByteCompile true

Encoding UTF-8

NeedsCompilation yes

Author Jouni Helske [aut, cre] (<https://orcid.org/0000-0001-7130-793X>), Matti Vihola [aut] (<https://orcid.org/0000-0002-8041-7222>)

Maintainer Jouni Helske <jouni.helske@iki.fi>

Repository CRAN

Date/Publication 2020-11-12 21:40:08 UTC
R topics documented:

ar1_lg .. 3
ar1_ng .. 3
as.data.frame.mcmc_output 4
as_bssm 5
bootstrap_filter 6
bsm_lg 7
bsm_ng 9
bssm 10
drownings 11
ekf ... 11
ekf_smoother 12
ekpf_filter 12
exchange 13
expand_sample 14
fast_smoother 14
gaussian_approx 15
importance_sample 16
kfilter 16
logLik.gaussian 17
logLik.ssm_nlg 18
logLik.ssm_sde 19
particle_smoother 20
poisson_series 22
predict.mcmc_output 22
print.mcmc_output 25
run_mcmc 25
run_mcmc.gaussian 26
run_mcmc.nongaussian 27
run_mcmc.ssm_nlg 30
run_mcmc.ssm_sde 32
sim_smoother 33
ssm_mlg 35
ssm_mng 36
ssm_nlg 38
ssm_sde 39
ssm_ulg 40
ssm_ung 44
summary.mcmc_output 46
svm ... 47
ukf ... 48
uniform 48

Index 50
ar1_lg
Univariate Gaussian model with AR(1) latent process

Description
Constructs a simple Gaussian model where the state dynamics follow an AR(1) process.

Usage
ar1_lg(y, rho, sigma, mu, sd_y, beta, xreg = NULL)

Arguments
- **y**: Vector or a `ts` object of observations.
- **rho**: Prior for autoregressive coefficient.
- **sigma**: Prior for the standard deviation of noise of the AR-process.
- **mu**: A fixed value or a prior for the stationary mean of the latent AR(1) process. Parameter is omitted if this is set to 0.
- **sd_y**: Prior for the standard deviation of observation equation.
- **beta**: Prior for the regression coefficients.
- **xreg**: Matrix containing covariates.

Value
Object of class `ar1_lg`.

ar1_ng
Non-Gaussian model with AR(1) latent process

Description
Constructs a simple non-Gaussian model where the state dynamics follow an AR(1) process.

Usage
ar1_ng(y, rho, sigma, mu, distribution, phi, u = 1, beta, xreg = NULL)
Arguments

- `y`: Vector or a `ts` object of observations.
- `rho`: Prior for autoregressive coefficient.
- `sigma`: Prior for the standard deviation of noise of the AR-process.
- `mu`: A fixed value or a prior for the stationary mean of the latent AR(1) process. Parameter is omitted if this is set to 0.
- `distribution`: Distribution of the observation. Possible choices are "poisson", "binomial" and "negative binomial".
- `phi`: Additional parameter relating to the non-Gaussian distribution. For Negative binomial distribution this is the dispersion term, and for other distributions this is ignored.
- `u`: Constant parameter for non-Gaussian models. For Poisson and negative binomial distribution, this corresponds to the offset term. For binomial, this is the number of trials.
- `beta`: Prior for the regression coefficients.
- `xreg`: Matrix containing covariates.

Value

Object of class `ar1_ng`.

as.data.frame.mcmc_output

Convert MCMC chain to data.frame

Description

Converts the MCMC chain output of `run_mcmc` to data.frame.

Usage

```r
## S3 method for class 'mcmc_output'
as.data.frame(
  x,
  row.names,
  optional,
  variable = c("theta", "states"),
  times,
  states,
  expand = !(x$mcmc_type %in% paste0("is", 1:3)),
  ...
)
```
Arguments

x Output from \texttt{run_mcmc}.
row.names Ignored.
optional Ignored.
variable Return samples of "theta" (default) or "states"?
times Vector of indices. In case of states, what time points to return? Default is all.
states Vector of indices. In case of states, what states to return? Default is all.
expand Should the jump-chain be expanded? Defaults to \texttt{TRUE} for non-IS-MCMC, and \texttt{FALSE} for IS-MCMC. For \texttt{expand = FALSE} and always for IS-MCMC, the resulting data.frame contains variable weight (= counts times IS-weights).
... Ignored.

\texttt{as_bssm} \hspace{3cm} Convert KFAS Model to bssm Model

Description

Converts \texttt{SSModel} object of KFAS package to general \texttt{bssm} model of type \texttt{ssm-ulg}, \texttt{ssm-mlg}, \texttt{ssm-ung} or \texttt{ssm-mng}.

Usage

\texttt{as_bssm(model, kappa = 100, ...)}

Arguments

model Object of class \texttt{SSModel}.
kappa For \texttt{SSModel} object, a prior variance for initial state used to replace exact diffuse elements of the original model.
... Additional arguments to model building functions of \texttt{bssm} (such as prior and updating functions).

Value

Object of class \texttt{ssm-ulg}, \texttt{ssm-mlg}, \texttt{ssm-ung} or \texttt{ssm-mng}.
Description

Function `bootstrap_filter` performs a bootstrap filtering with stratification resampling.

Usage

```r
bootstrap_filter(model, nsim, ...)
```

```r
## S3 method for class 'gaussian'
bootstrap_filter(
  model,
  nsim,
  seed = sample(.Machine$integer.max, size = 1),
  ...
)
```

```r
## S3 method for class 'nongaussian'
bootstrap_filter(
  model,
  nsim,
  seed = sample(.Machine$integer.max, size = 1),
  ...
)
```

```r
## S3 method for class 'ssm_nlg'
bootstrap_filter(
  model,
  nsim,
  seed = sample(.Machine$integer.max, size = 1),
  ...
)
```

```r
## S3 method for class 'ssm_sde'
bootstrap_filter(
  model,
  nsim,
  L,
  seed = sample(.Machine$integer.max, size = 1),
  ...
)
```

Arguments

- `model` of class `bsm_lg`, `bsm_ng` or `svm`.
 bsmlg

bsm_lg

 n.sim Number of samples.
 ... Ignored.
 seed Seed for RNG.
 L Integer defining the discretization level for SDE models.

Value

A list containing samples, weights from the last time point, and an estimate of log-likelihood.

References

Examples

set.seed(1)
x <- cumsum(rnorm(50))
y <- rnorm(50, x, 0.5)
model <- bsm_lg(y, sd_y = 0.5, sd_level = 1, P1 = 1)

out <- bootstrap_filter(model, nsim = 1000)
ls.plot(cbind(y, x, out$att), col = 1:3)
ls.plot(cbind(kfilter(model)att, outatt), col = 1:3)
data("poisson_series")
model <- bsm_ng(poisson_series, sd_level = 0.1, sd_slope = 0.01,
 P1 = diag(1, 2), distribution = "poisson")

out <- bootstrap_filter(model, nsim = 100)
ls.plot(cbind(poisson_series, exp(out$att[, 1])), col = 1:2)
sd_seasonal,
beta,
xreg = NULL,
period = frequency(y),
a1,
P1,
D,
C
)

Arguments

y Vector or a ts object of observations.
sd_y A fixed value or prior for the standard error of observation equation. See priors for details.
sd_level A fixed value or a prior for the standard error of the noise in level equation. See priors for details.
sd_slope A fixed value or a prior for the standard error of the noise in slope equation. See priors for details. If missing, the slope term is omitted from the model.
sd_seasonal A fixed value or a prior for the standard error of the noise in seasonal equation. See priors for details. If missing, the seasonal component is omitted from the model.
beta Prior for the regression coefficients.
xreg Matrix containing covariates.
period Length of the seasonal component i.e. the number of
a1 Prior means for the initial states (level, slope, seasonals). Defaults to vector of zeros.
P1 Prior covariance for the initial states (level, slope, seasonals). Default is diagonal matrix with 1000 on the diagonal.
D, C Intercept terms for observation and state equations, given as a length n vector and m times n matrix respectively.

Value

Object of class bsm_lg.

Examples

prior <- uniform(0.1 * sd(log10(UKgas)), 0, 1)
model <- bsm_lg(log10(UKgas), sd_y = prior, sd_level = prior,
 sd_slope = prior, sd_seasonal = prior)

mcmc_out <- run_mcmc(model, iter = 5000)
summary(expand_sample(mcmc_out, "theta"))$stat
mcmc_out$theta[which.max(mcmc_out$posterior),]
sqrt((fit <- StructTS(log10(UKgas), type = "BSM"))$coef)[c(4, 1:3)]
Description

Constructs a non-Gaussian basic structural model with local level or local trend component, a seasonal component, and regression component (or subset of these components).

Usage

```r
bsm_ng(
  y,
  sd_level,
  sd_slope,
  sd_seasonal,
  sd_noise,
  distribution,
  phi,
  u = 1,
  beta,
  xreg = NULL,
  period = frequency(y),
  a1,
  P1,
  C
)
```

Arguments

- **y**: Vector or a `ts` object of observations.
- **sd_level**: A fixed value or a prior for the standard error of the noise in level equation. See `priors` for details.
- **sd_slope**: A fixed value or a prior for the standard error of the noise in slope equation. See `priors` for details. If missing, the slope term is omitted from the model.
- **sd_seasonal**: A fixed value or a prior for the standard error of the noise in seasonal equation. See `priors` for details. If missing, the seasonal component is omitted from the model.
- **sd_noise**: Prior for the standard error of the additional noise term. See `priors` for details. If missing, no additional noise term is used.
- **distribution**: Distribution of the observation. Possible choices are "poisson", "binomial", "negative binomial".
- **phi**: Additional parameter relating to the non-Gaussian distribution. For Negative binomial distribution this is the dispersion term, and for other distributions this is ignored.
u Constant parameter for non-Gaussian models. For Poisson and negative binomial distribution, this corresponds to the offset term. For binomial, this is the number of trials.

beta Prior for the regression coefficients.

xreg Matrix containing covariates.

period Length of the seasonal component i.e. the number of observations per season. Default is frequency(y).

a1 Prior means for the initial states (level, slope, seasonals). Defaults to vector of zeros.

P1 Prior covariance for the initial states (level, slope, seasonals). Default is diagonal matrix with 1e5 on the diagonal.

C Intercept terms for state equation, given as a m times n matrix.

Value

Object of class bsm_ng.

Examples

model <- bsm_ng(Seatbelts[, "VanKilled"], distribution = "poisson",
 sd_level = halfnormal(0.01, 1),
 sd_seasonal = halfnormal(0.01, 1),
 beta = normal(0, 0, 10),
 xreg = Seatbelts[, "law"])

Not run:
set.seed(123)
mcmc_out <- run_mcmc(model, iter = 5000, nsim = 10)
mcmc_out$acceptance_rate
theta <- expand_sample(mcmc_out, "theta")
plot(theta)
summary(theta)

library("ggplot2")
ggplot(as.data.frame(theta[,1:2]), aes(x = sd_level, y = sd_seasonal)) +
 geom_point() + stat_density2d(aes(fill = ..level.., alpha = ..level..),
 geom = "polygon") + scale_fill_continuous(low = "green", high = "blue") +
 guides(alpha = "none")

End(Not run)
drownings

Description

This package contains functions for Bayesian inference of basic stochastic volatility model and exponential family state space models, where the state equation is linear and Gaussian, and the conditional observation density is either Gaussian, Poisson, binomial, negative binomial or Gamma density. General non-linear Gaussian models and models with continuous SDE dynamics are also supported. For formal definition of the currently supported models and methods, as well as some theory behind the IS-MCMC and \(\psi \)-APF, see the package vignettes and Vihola, Helske, Franks (2020)

References

drownings

Deaths by drowning in Finland in 1969-2014

Description

Dataset containing number of deaths by drowning in Finland in 1969-2014, yearly average summer temperatures (June to August) and corresponding population sizes (in hundreds of thousands).

Format

A time series object containing 46 observations.

Source

ekf

(Iterated) Extended Kalman Filtering

Description

Function \texttt{ekf} runs the (iterated) extended Kalman filter for the given non-linear Gaussian model of class \texttt{ssm_nlg}, and returns the filtered estimates and one-step-ahead predictions of the states \(\alpha_t \) given the data up to time \(t \).

Usage

\texttt{ekf(model, iekf_iter = 0)}
Arguments

- **model**
 Model model

- **iekf_iter**
 If `iekf_iter > 0`, iterated extended Kalman filter is used with `iekf_iter` iterations.

Value

List containing the log-likelihood, one-step-ahead predictions at and filtered estimates at of states, and the corresponding variances \hat{P}_t and P_{tt}.

ekf_smoother

Extended Kalman Smoothing

Description

Function `ekf_smoother` runs the (iterated) extended Kalman smoother for the given non-linear Gaussian model of class `ssm_nlg`, and returns the smoothed estimates of the states and the corresponding variances.

Usage

`ekf_smoother(model, iekf_iter = 0)`

Arguments

- **model**
 Model model

- **iekf_iter**
 If `iekf_iter > 0`, iterated extended Kalman filter is used with `iekf_iter` iterations.

Value

List containing the log-likelihood, smoothed state estimates $\hat{\alpha}_t$, and the corresponding variances V_t and P_{tt}.

ekpf_filter

Extended Kalman Particle Filtering

Description

Usage

ekpf_filter(object, nsim, ...)

S3 method for class 'ssm_nlg'
ekpf_filter(object, nsim, seed = sample(.Machine$integer.max, size = 1), ...)

Arguments

- **object**: of class `ssm_nlg`.
- **nsim**: Number of samples.
- **...**: Ignored.
- **seed**: Seed for RNG.

Value

A list containing samples, filtered estimates and the corresponding covariances, weights from the last time point, and an estimate of log-likelihood.

References

exchange

Pound/Dollar daily exchange rates

Description

Dataset containing daily log-returns from 1/10/81-28/6/85 as in [1]

Format

A vector of length 945.

Source

References

Description

The MCMC algorithms of bssm use a jump chain representation where we store the accepted values and the number of times we stayed in the current value. Although this saves bit memory and is especially convenient for IS-corrected MCMC, sometimes we want to have the usual sample paths. Function expand_sample returns the expanded sample based on the counts. Note that for IS-corrected output the expanded sample corresponds to the approximate posterior.

Usage

expand_sample(x, variable = "theta", times, states, by_states = TRUE)

Arguments

x
Output from run_mcmc.

variable
Expand parameters "theta" or states "states".

times
Vector of indices. In case of states, what time points to expand? Default is all.

states
Vector of indices. In case of states, what states to expand? Default is all.

by_states
If TRUE (default), return list by states. Otherwise by time.

fast_smoother
Kalman Smoothing

Description

Methods for Kalman smoothing of the states. Function fast_smoother computes only smoothed estimates of the states, and function smoother computes also smoothed variances.

Usage

fast_smoother(model, ...)

smoother(model, ...)

Arguments

model
Model model.

...
Ignored.

Details

For non-Gaussian models, the smoothing is based on the approximate Gaussian model.
gauussian_approx

Value

Matrix containing the smoothed estimates of states, or a list with the smoothed states and the variances.

gaussian_approx
Gaussian Approximation of Non-Gaussian/Non-linear State Space Model

Description

Returns the approximating Gaussian model. This function is rarely needed itself, and is mainly available for testing and debugging purposes.

Usage

```r
gaussian_approx(model, max_iter, conv_tol, ...)
```

```r
## S3 method for class 'nongaussian'
gaussian_approx(model, max_iter = 100, conv_tol = 1e-08, ...)
```

```r
## S3 method for class 'ssm_nlg'
gaussian_approx(model, max_iter = 100, conv_tol = 1e-08, iekf_iter = 0, ...)
```

Arguments

- **model**: Model to be approximated.
- **max_iter**: Maximum number of iterations.
- **conv_tol**: Tolerance parameter.
- **...**: Ignored.
- **iekf_iter**: For non-linear models, number of iterations in iterated EKF (defaults to 0).

Examples

```r
data("poisson_series")
model <- bsm_ng(y = poisson_series, sd_slope = 0.01, sd_level = 0.1,
                distribution = "poisson")
out <- gaussian_approx(model)
```
importance_sample Importance Sampling from non-Gaussian State Space Model

Description

Returns nsim samples from the approximating Gaussian model with corresponding (scaled) importance weights.

Usage

importance_sample(model, nsim, use_antithetic, max_iter, conv_tol, seed, ...)

S3 method for class 'nongaussian'
importance_sample(
 model, nsim,
 use_antithetic = TRUE,
 max_iter = 100,
 conv_tol = 1e-08,
 seed = sample(.Machine$integer.max, size = 1),
 ...
)

Arguments

- **model**: of class bsm_ng, ar1_ng_svm, ssm_ung, or ssm_mng.
- **nsim**: Number of samples.
- **use_antithetic**: Logical. If TRUE (default), use antithetic variable for location in simulation smoothing. Ignored for ssm_mng models.
- **max_iter**: Maximum number of iterations used for the approximation.
- **conv_tol**: Convergence threshold for the approximation. Approximation is claimed to be converged when the mean squared difference of the modes is less than conv_tol.
- **seed**: Seed for the random number generator.
- **...**: Ignored.

kfilter Kalman Filtering

Description

Function kfilter runs the Kalman filter for the given model, and returns the filtered estimates and one-step-ahead predictions of the states α_t given the data up to time t.
Usage

kfilter(model, ...)

Arguments

model Model Model object.
...
Ignored.

Details

For non-Gaussian models, the filtering is based on the approximate Gaussian model.

Value

List containing the log-likelihood (approximate in non-Gaussian case), one-step-ahead predictions at and filtered estimates at of states, and the corresponding variances Pt and Ptt.

See Also

bootstrap_filter

logLik.gaussian Log-likelihood of a Gaussian State Space Model

Description

Computes the log-likelihood of the state space model of bssm package.

Usage

S3 method for class 'gaussian'
logLik(object, ...)

S3 method for class 'nongaussian'
logLik(
 object,
 nsim,
 method = "psi",
 max_iter = 100,
 conv_tol = 1e-08,
 seed = sample(.Machine$integer.max, size = 1),
 ...
)
Arguments

object Model model.
... Ignored.
nsim Number of samples for particle filter or importance sampling. If 0, approximate log-likelihood based on the gaussian approximation is returned.
method Sampling method, default is psi-auxiliary filter ("psi"), other choices are "bsf" bootstrap particle filter, and "spdk", which uses the importance sampling approach by Shephard and Pitt (1997) and Durbin and Koopman (1997).
max_iter Maximum number of iterations for gaussian approximation algorithm.
conv_tol Tolerance parameter for the approximation algorithm.
seed Seed for the random number generator.

Examples

```r
model <- ssm_ulg(y = c(1,4,3), Z = 1, H = 1, T = 1, R = 1)
logLik(model)
model <- ssm_ung(y = c(1,4,3), Z = 1, T = 1, R = 0.5, P1 = 2, distribution = "poisson")
model2 <- bsm_ng(y = c(1,4,3), sd_level = 0.5, P1 = 2, distribution = "poisson")
logLik(model, nsim = 0)
logLik(model2, nsim = 0)
logLik(model, nsim = 10)
logLik(model2, nsim = 10)
```

Description

Computes the log-likelihood of the state space model of bssm package.

Usage

```r
## S3 method for class 'ssm_nlg'
logLik(
  object,  
nsim,  
method = "bsf",  
max_iter = 100,  
conv_tol = 1e-08,  
iekf_iter = 0,  
seed = sample(.Machine$integer.max, size = 1),  
...)
```
Arguments

object Model model.
nsim Number of samples for particle filter. If 0, approximate log-likelihood is returned either based on the gaussian approximation or EKF, depending on the method argument.
method Sampling method. Default is the bootstrap particle filter ("bsf"). Other choices are "psi" which uses psi-auxiliary filter (or approximating gaussian model in the case of nsim = 0), and "ekf" which uses EKF-based particle filter (or just EKF approximation in the case of nsim = 0).
max_iter Maximum number of iterations for gaussian approximation algorithm.
conv_tol Tolerance parameter for the approximation algorithm.
iekf_iter If iekf_iter > 0, iterated extended Kalman filter is used with iekf_iter iterations in place of standard EKF. Defaults to zero.
seed Seed for the random number generator.
... Ignored.

logLik.ssm_sde Log-likelihood of a State Space Model with SDE dynamics

Description

Computes the log-likelihood of the state space model of bssm package.

Usage

```r
## S3 method for class 'ssm_sde'
logLik(object, nsim, L, seed = sample(.Machine$integer.max, size = 1), ...)
```

Arguments

object Model model.
nsim Number of samples for particle filter. If 0, approximate log-likelihood is returned either based on the gaussian approximation or EKF, depending on the method argument.
L Integer defining the discretization level defined as \(2^L\).
seed Seed for the random number generator.
... Ignored.
Description

Function `particle_smoother` performs particle smoothing based on either bootstrap particle filter [1], \(\psi \)-auxiliary particle filter (\(\psi \)-APF) [2], or extended Kalman particle filter [3] (or its iterated version [4]). The smoothing phase is based on the filter-smoother algorithm by [5].

Usage

```r
particle_smoother(model, nsim, ...)

## S3 method for class 'gaussian'
particle_smoother(
  model,
  nsim,
  method = "psi",
  seed = sample(.Machine$integer.max, size = 1),
  ...
)

## S3 method for class 'nongaussian'
particle_smoother(
  model,
  nsim,
  method = "psi",
  seed = sample(.Machine$integer.max, size = 1),
  max_iter = 100,
  conv_tol = 1e-08,
  ...
)

## S3 method for class 'ssm_nlg'
particle_smoother(
  model,
  nsim,
  method = "bsf",
  seed = sample(.Machine$integer.max, size = 1),
  max_iter = 100,
  conv_tol = 1e-08,
  iekf_iter = 0,
  ...
)

## S3 method for class 'ssm_sde'
particle_smoother(
```
particle_smoother

model,
nsim,
L,
seed = sample(.Machine$integer.max, size = 1),
...
)

Arguments

model Model.
nsim Number of samples.
... Ignored.
method Choice of particle filter algorithm. For Gaussian and non-Gaussian models with
linear dynamics, options are "bsf" (bootstrap particle filter, default for non-
linear models) and "psi" (ψ-APF, the default for other models), and for non-
linear models options "ekf" (extended Kalman particle filter) is also available.
seed Seed for RNG.
max_iter Maximum number of iterations used in Gaussian approximation. Used ψ-APF.
conv_tol Tolerance parameter used in Gaussian approximation. Used ψ-APF.
iekf_iter If zero (default), first approximation for non-linear Gaussian models is obtained
from extended Kalman filter. If iekf_iter > 0, iterated extended Kalman filter
is used with iekf_iter iterations.
L Integer defining the discretization level.

Value

List with samples from the smoothing distribution as well as smoothed means and covariances of
the states.

References

J, Franks, J. Importance sampling type estimators based on approximate marginal Markov chain
for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics,
5, 1–25.

Examples

set.seed(1)
x <- cumsum(rnorm(100))
y <- rnorm(100, x)
model <- ssm_ulg(y, Z = 1, T = 1, R = 1, H = 1, P1 = 1)
system.time(out <- particle_smoother(model, nsim = 1000))
same with simulation smoother:
system.time(out2 <- sim_smoother(model, nsim = 1000, use_antithetic = TRUE))
ts.plot(out$alphahat, rowMeans(out2), col = 1:2)

poisson_series

Simulated Poisson time series data

Description

See example for code for reproducing the data.

Format

A vector of length 100

Examples

The data is generated as follows:
set.seed(321)
slope <- cumsum(c(0, rnorm(99, sd = 0.01)))
y <- rpois(100, exp(cumsum(slope + c(0, rnorm(99, sd = 0.1)))))

predict.mcmc_output

Predictions for State Space Models

Description

Draw samples from the posterior predictive distribution for future time points given the posterior
draws of hyperparameters θ and α_{n+1}. Function can also be used to draw samples from the
posterior predictive distribution $p(\tilde{y}_1, \ldots, \tilde{y}_n | y_1, \ldots, y_n)$.

Usage

```r
## S3 method for class 'mcmc_output'
predict(
  object,
  model,
  type = "response",
  nsim,
  future = TRUE,
  seed = sample(.Machine$integer.max, size = 1),
  ...
)
```
Arguments

- **object**: mcmc_output object obtained from `run_mcmc`
- **model**: Model for future observations. Should have same structure as the original model which was used in MCMC, in order to plug the posterior samples of the model parameters to the right places. It is also possible to input the original model, which can be useful for example for posterior predictive checks. In this case, set argument future to FALSE.
- **type**: Return predictions on "mean" "response", or "state" level.
- **nsim**: Number of samples to draw.
- **future**: Default is TRUE, in which case predictions are future. Otherwise it is assumed that model corresponds to the original model.
- **seed**: Seed for RNG.
- **...**: Ignored.

Value

Data frame of predicted samples.

Examples

```r
require("graphics")
y <- log10(JohnsonJohnson)
prior <- uniform(0.01, 0, 1)
model <- bsm_lg(window(y, end = c(1974, 4)), sd_y = prior,
  sd_level = prior, sd_slope = prior, sd_seasonal = prior)

mcmc_results <- run_mcmc(model, iter = 5000)
future_model <- model
future_model$y <- ts(rep(NA, 25),
  start = tsp(model$y)[2] + 2 * deltat(model$y),
  frequency = frequency(model$y))
# use "state" for illustrative purposes, we could use type = "mean" directly
pred <- predict(mcmc_results, future_model, type = "state",
  nsim = 1000)

require("dplyr")
sumr_fit <- as.data.frame(mcmc_results, variable = "states") %>%
  group_by(time, iter) %>%
  mutate(signal =
    value[variable == "level"] +
    value[variable == "seasonal_1"])
sumr_pred <- pred %>%
  group_by(time, sample) %>%
  mutate(signal =
    value[variable == "level"] +
    value[variable == "seasonal_1"])
```
value[variable == "level"] +
value[variable == "seasonal_1"]) %>

group_by(time) %>
summarise(mean = mean(signal),
 lwr = quantile(signal, 0.025),
 upr = quantile(signal, 0.975))

If we used type = "mean", we could do
sumr_pred <- pred %>
group_by(time) %>
summarise(mean = mean(value),
lwr = quantile(value, 0.025),
upr = quantile(value, 0.975))

require("ggplot2")
rbind(sumr_fit, sumr_pred) %>
 ggplot(aes(x = time, y = mean)) +
 geom_ribbon(aes(ymin = lwr, ymax = upr),
 fill = "#92f0a8", alpha = 0.25) +
 geom_line(colour = "#92f0a8") +
 theme_bw() +
 geom_point(data = data.frame(
 mean = log10(JohnsonJohnson),
 time = time(JohnsonJohnson)))

Posterior predictions for past observations:
yrep <- predict(mcmc_results, model, type = "response",
 future = FALSE, nsim = 1000)
meanrep <- predict(mcmc_results, model, type = "mean",
 future = FALSE, nsim = 1000)

sumr_yrep <- yrep %>
 group_by(time) %>
 summarise(earnings = mean(value),
 lwr = quantile(value, 0.025),
 upr = quantile(value, 0.975)) %>
 mutate(interval = "Observations")

sumr_meanrep <- meanrep %>
 group_by(time) %>
 summarise(earnings = mean(value),
 lwr = quantile(value, 0.025),
 upr = quantile(value, 0.975)) %>
 mutate(interval = "Mean")

rbind(sumr_meanrep, sumr_yrep) %>
 mutate(interval = factor(interval, levels = c("Observations", "Mean"))) %>
 ggplot(aes(x = time, y = earnings)) +
 geom_ribbon(aes(ymin = lwr, ymax = upr, fill = interval),
 alpha = 0.75) +
 theme_bw() +
 geom_point(data = data.frame(earnings = model$y,
print.mcmc_output

 time = time(model$y)))

print.mcmc_output

Description

Prints some basic summaries from the MCMC run by `run_mcmc`.

Usage

```r
## S3 method for class 'mcmc_output'
print(x, ...)
```

Arguments

- `x`: Output from `run_mcmc`.
- `...`: Ignored.

Details

In case of IS-corrected MCMC, the SE-IS is based only on importance sampling estimates, with weights corresponding to the block sizes of the jump chain multiplied by the importance correction weights (if IS-corrected method was used). These estimates ignore the possible autocorrelations but provide a lower-bound for the asymptotic standard error.

run_mcmc

Description

Usage

```r
run_mcmc(model, iter, ...)
```

Arguments

- `model`: State space model model of `bssm` package.
- `iter`: Number of MCMC iterations.
- `...`: Parameters to specific methods. See `run_mcmc.gaussian`, `run_mcmc.nongaussian`, `run_mcmc.ssm_nlg`, and `run_mcmc.ssm_sde` for details.
References

Bayesian Inference of Linear-Gaussian State Space Models

Description

Bayesian Inference of Linear-Gaussian State Space Models

Usage

```r
## S3 method for class 'gaussian'
run_mcmc(
  model,
  iter,
  output_type = "full",
  burnin = floor(iter/2),
  thin = 1,
  gamma = 2/3,
  target_acceptance = 0.234,
  S,
  end_adaptive_phase = TRUE,
  threads = 1,
  seed = sample(.Machine$integer.max, size = 1),
  ...
)
```

Arguments

- **model**: Model model.
- **iter**: Number of MCMC iterations.
- **output_type**: Type of output. Default is "full", which returns samples from the posterior $p(\alpha, \theta)$. Option "summary" does not simulate states directly but computes the posterior means and variances of states using fast Kalman smoothing. This is slightly faster, more memory efficient and more accurate than calculations based on simulation smoother. Using option "theta" will only return samples from the marginal posterior of the hyperparameters θ.
- **burnin**: Length of the burn-in period which is disregarded from the results. Defaults to iter / 2. Note that all MCMC algorithms of bssm used adaptive MCMC during the burn-in period in order to find good proposal.
- **thin**: Thinning rate. All MCMC algorithms in bssm use the jump chain representation, and the thinning is applied to these blocks. Defaults to 1.
run_mcmc.nongaussian

gamma
Tuning parameter for the adaptation of RAM algorithm. Must be between 0 and 1 (not checked).

target_acceptance
Target acceptance ratio for RAM.Defaults to 0.234.

S
Initial value for the lower triangular matrix of RAM algorithm, so that the covariance matrix of the Gaussian proposal distribution is SS'. Note that for some parameters (currently the standard deviation and dispersion parameters of bsm_lg models) the sampling is done for transformed parameters with internal_theta = log(theta).

end_adaptive_phase
If TRUE (default), S is held fixed after the burnin period.

threads
Number of threads for state simulation.

seed
Seed for the random number generator.

...
Ignored.

References

Description

Methods for posterior inference of states and parameters.

Usage

```r
## S3 method for class 'nongaussian'
run_mcmc(
  model, iter, nsim,
  output_type = "full",
  mcmc_type = "da",
  sampling_method = "psi",
  burnin = floor(iter/2),
  thin = 1,
  gamma = 2/3,
  target_acceptance = 0.234,
  S,
  end_adaptive_phase = TRUE,
  local_approx = TRUE,
  threads = 1,
  seed = sample(.Machine$integer.max, size = 1),
)```
max_iter = 100,
conv_tol = 1e-08,
...
)

Arguments

model: Model model.
iter: Number of MCMC iterations.
nsim: Number of state samples per MCMC iteration. Ignored if mcmc_type is "approx".
output_type: Either "full" (default, returns posterior samples of states alpha and hyperparameters theta), "theta" (for marginal posterior of theta), or "summary" (return the mean and variance estimates of the states and posterior samples of theta).
mcmc_type: What MCMC algorithm to use? Possible choices are "pm" for pseudo-marginal MCMC, "da" for delayed acceptance version of PMCMC (default), "approx" for approximate inference based on the Gaussian approximation of the model, or one of the three importance sampling type weighting schemes: "is3" for simple importance sampling (weight is computed for each MCMC iteration independently), "is2" for jump chain importance sampling type weighting, or "is1" for importance sampling type weighting where the number of particles used for weight computations is proportional to the length of the jump chain block.
sampling_method: If "psi", ψ-APF is used for state sampling (default). If "spdk", non-sequential importance sampling based on Gaussian approximation is used. If "bsf", bootstrap filter is used.
burnin: Length of the burn-in period which is disregarded from the results. Defaults to iter / 2.
thin: Thinning rate. Defaults to 1. Increase for large models in order to save memory. For IS-corrected methods, larger value can also be statistically more effective. Note: With output_type = "summary", the thinning does not affect the computations of the summary statistics in case of pseudo-marginal methods.
gamma: Tuning parameter for the adaptation of RAM algorithm. Must be between 0 and 1 (not checked).
target_acceptance: Target acceptance ratio for RAM. Defaults to 0.234.
S: Initial value for the lower triangular matrix of RAM algorithm, so that the covariance matrix of the Gaussian proposal distribution is \(SS'\). Note that for some parameters (currently the standard deviation and dispersion parameters of bsm_ng models) the sampling is done for transformed parameters with internal_theta = log(theta).
end_adaptive_phase: If TRUE (default), S is held fixed after the burnin period.
local_approx: If TRUE (default), Gaussian approximation needed for importance sampling is performed at each iteration. If false, approximation is updated only once at the start of the MCMC.
run_mcmc.nongaussian

- **threads**: Number of threads for state simulation.
- **seed**: Seed for the random number generator.
- **max_iter**: Maximum number of iterations used in Gaussian approximation.
- **conv_tol**: Tolerance parameter used in Gaussian approximation.

 Examples

```r
set.seed(1)
n <- 50
slope <- cumsum(c(0, rnorm(n - 1, sd = 0.001)))
level <- cumsum(slope + c(0, rnorm(n - 1, sd = 0.2)))
y <- rpois(n, exp(level))
poisson_model <- bsm_ng(y,
 sd_level = halfnormal(0.01, 1),
 sd_slope = halfnormal(0.01, 0.1),
 P1 = diag(c(10, 0.1)), distribution = "poisson")
mcmc_is <- run_mcmc(poisson_model, iter = 1000, nsim = 10,
 mcmc_type = "da")
summary(mcmc_is, what = "theta", return_se = TRUE)

set.seed(123)
n <- 50
sd_level <- 0.1
drift <- 0.01
beta <- -0.9
phi <- 5
level <- cumsum(c(5, drift + rnorm(n - 1, sd = sd_level)))
x <- 3 + (1:n) * drift + sin(1:n + runif(n, -1, 1))
y <- rnbinom(n, size = phi, mu = exp(beta * x + level))
model <- bsm_ng(y, xreg = x,
 beta = normal(0, 0, 10),
 phi = halfnormal(1, 10),
 sd_level = halfnormal(0.1, 1),
 sd_slope = halfnormal(0.01, 0.1),
 a1 = c(0, 0), P1 = diag(c(10, 0.1)^2),
 distribution = "negative binomial")
run IS-MCMC
fit <- run_mcmc(model, iter = 10000,
 nsim = 10, mcmc_type = "is2", seed = 1)
extract states
d_states <- as.data.frame(fit, variable = "states", time = 1:n)
library("dplyr")
library("ggplot2")
compute summary statistics
```

level_sumr <- d_states %>%
  filter(variable == "level") %>%
  group_by(time) %>%
  summarise(mean = Hmisc::wtd.mean(value, weight, normwt = TRUE),
            lwr = Hmisc::wtd.quantile(value, weight, 0.025, normwt = TRUE),
            upr = Hmisc::wtd.quantile(value, weight, 0.975, normwt = TRUE))

# visualize
level_sumr %>% ggplot(aes(x = time, y = mean)) +
  geom_line() +
  geom_line(aes(y = lwr), linetype = "dashed", na.rm = TRUE) +
  geom_line(aes(y = upr), linetype = "dashed", na.rm = TRUE) +
  theme_bw() +
  theme(legend.title = element_blank()) +
  xlab("Time") + ylab("Level")

run_mcmc.ssm_nlg

Bayesian Inference of non-linear state space models

Description

Methods for posterior inference of states and parameters.

Usage

## S3 method for class 'ssm_nlg'
run_mcmc(
  model,
  iter,
  nsim,
  output_type = "full",
  mcmc_type = "da",
  sampling_method = "bsf",
  burnin = floor(iter/2),
  thin = 1,
  gamma = 2/3,
  target_acceptance = 0.234,
  S,
  end_adaptive_phase = TRUE,
  threads = 1,
  seed = sample(.Machine$integer.max, size = 1),
  max_iter = 100,
  conv_tol = 1e-08,
  iekf_iter = 0,
  ...
)
Arguments

model  Model model.
iter  Number of MCMC iterations.
nsim  Number of state samples per MCMC iteration. Ignored if mcmc_type is "approx" or "ekf".
output_type  Either "full" (default, returns posterior samples of states alpha and hyperparameters theta), "theta" (for marginal posterior of theta), or "summary" (returns the mean and variance estimates of the states and posterior samples of theta).
mcmc_type  What MCMC algorithm to use? Possible choices are "pm" for pseudo-marginal MCMC, "da" for delayed acceptance version of PMCMC (default), "approx" for approximate inference based on the Gaussian approximation of the model, "ekf" for approximate inference using extended Kalman filter, or one of the three importance sampling type weighting schemes: "is3" for simple importance sampling (weight is computed for each MCMC iteration independently), "is2" for jump chain importance sampling type weighting, or "is1" for importance sampling type weighting where the number of particles used for weight computations is proportional to the length of the jump chain block.
sampling_method  If "bsf" (default), bootstrap filter is used for state sampling. If "ekf", particle filter based on EKF-proposals are used. If "psi", ψ-APF is used.
burnin  Length of the burn-in period which is disregarded from the results. Defaults to iter / 2.
thin  Thinning rate. Defaults to 1. Increase for large models in order to save memory. For IS-corrected methods, larger value can also be statistically more effective. Note: With output_type = "summary", the thinning does not affect the computations of the summary statistics in case of pseudo-marginal methods.
gamma  Tuning parameter for the adaptation of RAM algorithm. Must be between 0 and 1 (not checked).
target_acceptance  Target acceptance ratio for RAM. Defaults to 0.234.
S  Initial value for the lower triangular matrix of RAM algorithm, so that the covariance matrix of the Gaussian proposal distribution is SS'. Note that for some parameters (currently the standard deviation and dispersion parameters of bsm_ng models) the sampling is done for transformed parameters with internal_theta = log(theta).
end_adaptive_phase  If TRUE (default), S is held fixed after the burnin period.
threads  Number of threads for state simulation.
seed  Seed for the random number generator.
max_iter  Maximum number of iterations used in Gaussian approximation.
conv_tol  Tolerance parameter used in Gaussian approximation.
iekf_iter  If iekf_iter > 0, iterated extended Kalman filter is used with iekf_iter iterations in place of standard EKF. Defaults to zero.
...  Ignored.
References


Description

Methods for posterior inference of states and parameters.

Usage

```r
S3 method for class 'ssm_sde'
run_mcmc(
 model,
 iter,
 nsim,
 output_type = "full",
 mcmc_type = "da",
 L_c,
 L_f,
 burnin = floor(iter/2),
 thin = 1,
 gamma = 2/3,
 target_acceptance = 0.234,
 S,
 end_adaptive_phase = TRUE,
 threads = 1,
 seed = sample(.Machine$integer.max, size = 1),
 ...
)
```

Arguments

- `model` (Model model)
- `iter` (Number of MCMC iterations)
- `nsim` (Number of state samples per MCMC iteration)
- `output_type` (Either "full" (default, returns posterior samples of states alpha and hyperparameters theta), "theta" (for marginal posterior of theta), or "summary" (return the mean and variance estimates of the states and posterior samples of theta). If `nsim = 0`, this is argument ignored and set to "theta".
- `mcmc_type` (What MCMC algorithm to use? Possible choices are "pm" for pseudo-marginal MCMC, "da" for delayed acceptance version of PMCMC (default), or one of the three importance sampling type weighting schemes: "is3" for simple importance sampling (weight is computed for each MCMC iteration independently),
Function `sim_smoother` performs simulation smoothing i.e. simulates the states from the conditional distribution $p(\alpha|y, \theta)$. 

**References**

Usage

```
sim_smoother(model, nsim, seed, use_antithetic = FALSE, ...)

S3 method for class 'gaussian'
sim_smoother(
 model,
 nsim = 1,
 seed = sample(.Machine$integer.max, size = 1),
 use_antithetic = FALSE,
 ...
)

S3 method for class 'nongaussian'
sim_smoother(
 model,
 nsim = 1,
 seed = sample(.Machine$integer.max, size = 1),
 use_antithetic = FALSE,
 ...
)
```

Arguments

- **model**: Model object.
- **nsim**: Number of independent samples.
- **seed**: Seed for the random number generator.
- **use_antithetic**: Use an antithetic variable for location. Default is FALSE. Ignored for multivariate models.
- **...**: Ignored.

Details

For non-Gaussian/non-linear models, the simulation is based on the approximating Gaussian model.

Value

An array containing the generated samples.

Examples

```
model <- bsm_lg(rep(NA, 50), sd_level = uniform(1,0,5), sd_y = uniform(1,0,5))
sim <- sim_smoother(model, 12)
ts.plot(sim[, 1, 1])
```
ssm_mlg

General multivariate linear Gaussian state space models

Description

Construct an object of class ssm_mlg by directly defining the corresponding terms of the model.

Usage

```r
ssm_mlg(
 y,
 Z,
 H,
 T,
 R,
 a1,
 P1,
 init_theta = numeric(0),
 D,
 C,
 state_names,
 update_fn = default_update_fn,
 prior_fn = default_prior_fn
)
```

Arguments

- **y**: Observations as multivariate time series or matrix with dimensions n x p.
- **Z**: System matrix Z of the observation equation as p x m matrix or p x m x n array.
- **H**: Lower triangular matrix H of the observation. Either a scalar or a vector of length n.
- **T**: System matrix T of the state equation. Either a m x m matrix or a m x m x n array.
- **R**: Lower triangular matrix R the state equation. Either a m x k matrix or a m x k x n array.
- **a1**: Prior mean for the initial state as a vector of length m.
- **P1**: Prior covariance matrix for the initial state as m x m matrix.
- **init_theta**: Initial values for the unknown hyperparameters theta.
- **D**: Intercept terms for observation equation, given as a p x n matrix.
- **C**: Intercept terms for state equation, given as m x n matrix.
- **state_names**: Names for the states.
update_fn  Function which returns list of updated model components given input vector theta. This function should take only one vector argument which is used to create list with elements named as Z, H T, R, a1, P1, D, and C, where each element matches the dimensions of the original model. If any of these components is missing, it is assumed to be constant wrt. theta.

prior_fn  Function which returns log of prior density given input vector theta.

Details

The general multivariate linear-Gaussian model is defined using the following observational and state equations:

\[ y_t = D_t + Z_t \alpha_t + H_t \epsilon_t, \text{(observation equation)} \]

\[ \alpha_{t+1} = C_t + T_t \alpha_t + R_t \eta_t, \text{(transition equation)} \]

where \( \epsilon_t \sim N(0, I_p) \), \( \eta_t \sim N(0, I_k) \) and \( \alpha_1 \sim N(\alpha_1, P_1) \) independently of each other. Here p is the number of time series and k is the number of disturbance terms (which can be less than m, the number of states).

The update_fn function should take only one vector argument which is used to create list with elements named as Z, H T, R, a1, P1, D, and C, where each element matches the dimensions of the original model. If any of these components is missing, it is assumed to be constant wrt. theta. Note that while you can input say R as m x k matrix for ssm_mlg, update_fn should return R as m x k x 1 in this case. It might be useful to first construct the model without updating function.

Value

Object of class ssm_mlg.
### Arguments

- **y** Observations as multivariate time series or matrix with dimensions n x p.
- **Z** System matrix Z of the observation equation as p x m matrix or p x m x n array.
- **T** System matrix T of the state equation. Either a m x m matrix or a m x m x n array.
- **R** Lower triangular matrix R the state equation. Either a m x k matrix or a m x k x n array.
- **a1** Prior mean for the initial state as a vector of length m.
- **P1** Prior covariance matrix for the initial state as m x m matrix.
- **distribution** vector of distributions of the observed series. Possible choices are "poisson", "binomial", "negative binomial", "gamma", and "gaussian".
- **phi** Additional parameters relating to the non-Gaussian distributions. For negative binomial distribution this is the dispersion term, for gamma distribution this is the shape parameter, for Gaussian this is standard deviation, and for other distributions this is ignored.
- **u** Constant parameter for non-Gaussian models. For Poisson, gamma, and negative binomial distribution, this corresponds to the offset term. For binomial, this is the number of trials.
- **init_theta** Initial values for the unknown hyperparameters theta.
- **D** Intercept terms for observation equation, given as p x n matrix.
- **C** Intercept terms for state equation, given as m x n matrix.
- **state_names** Names for the states.
- **update_fn** Function which returns list of updated model components given input vector theta. This function should take only one vector argument which is used to create list with elements named as Z, T, R, a1, P1, D, C, and phi, where each element matches the dimensions of the original model. If any of these components is missing, it is assumed to be constant wrt. theta.
- **prior_fn** Function which returns log of prior density given input vector theta.

### Details

The general multivariate non-Gaussian model is defined using the following observational and state equations:

\[
p^i(y_t^i|D_t + Z_t\alpha_t), \text{ (observation equation)}
\]
\[ \alpha_{t+1} = C_t + T_t \alpha_t + R_t \eta_t, \text{ (transition equation)} \]

where \( \eta_t \sim N(0, I_k) \) and \( \alpha_1 \sim N(\alpha_1, P_1) \) independently of each other, and \( p(y_t|.) \) is either Poisson, binomial, gamma, Gaussian, or negative binomial distribution for each observation series \( i = 1, ..., p \). Here \( k \) is the number of disturbance terms (which can be less than \( m \), the number of states).

Value

Object of class `ssm_mng`.

**Description**

Constructs an object of class `ssm_nlg` by defining the corresponding terms of the observation and state equation.

**Usage**

```r
ssm_nlg(
 y,
 Z, H, T, R,
 Z_gn, T_gn,
 a1, P1,
 theta,
 known_params = NA,
 known_tv_params = matrix(NA),
 n_states,
 n_etas,
 log_prior_pdf,
 time_varying = rep(TRUE, 4),
 state_names = paste0("state", 1:n_states)
)
```

**Arguments**

- **y**: Observations as multivariate time series (or matrix) of length \( n \).
- **Z, H, T, R**: An external pointers for the C++ functions which define the corresponding model functions.
Z_gn, T_gn
An external pointers for the C++ functions which define the gradients of the corresponding model functions.

a1
Prior mean for the initial state as a vector of length m.

P1
Prior covariance matrix for the initial state as m x m matrix.

theta
Parameter vector passed to all model functions.

known_params
Vector of known parameters passed to all model functions.

known_tv_params
Matrix of known parameters passed to all model functions.

n_states
Number of states in the model.

n_etas
Dimension of the noise term of the transition equation.

log_prior_pdf
An external pointer for the C++ function which computes the log-prior density given theta.

time_varying
Optional logical vector of length 4, denoting whether the values of Z, H, T, and R vary with respect to time variable (given identical states). If used, this can speed up some computations.

state_names
Names for the states.

Details
The nonlinear Gaussian model is defined as

\[ y_t = Z(t, \alpha_t, \theta) + H(t, \theta) \epsilon_t, \text{ (observation equation)} \]

\[ \alpha_{t+1} = T(t, \alpha_t, \theta) + R(t, \theta) \eta_t, \text{ (transition equation)} \]

where \( \epsilon_t \sim N(0, I_p) \), \( \eta_t \sim N(0, I_m) \) and \( \alpha_1 \sim N(a_1, P_1) \) independently of each other, and functions \( Z, H, T, R \) can depend on \( \alpha_t \) and parameter vector \( \theta \).

Compared to other models, these general models need a bit more effort from the user, as you must provide the several small C++ snippets which define the model structure. See examples in the vignette.

Value
Object of class ssm_nlg.
Usage

```r
ssm_sde(
 y,
 drift, diffusion, ddiffusion,
 obs_pdf, prior_pdf, theta,
 x0,
 positive
)
```

Arguments

- `y` Observations as univariate time series (or vector) of length \( n \).
- `drift`, `diffusion`, `ddiffusion` An external pointers for the C++ functions which define the drift, diffusion and derivative of diffusion functions of SDE.
- `obs_pdf` An external pointer for the C++ function which computes the observational log-density given the the states and parameter vector \( \theta \).
- `prior_pdf` An external pointer for the C++ function which computes the prior log-density given the parameter vector \( \theta \).
- `theta` Parameter vector passed to all model functions.
- `x0` Fixed initial value for SDE at time 0.
- `positive` If TRUE, positivity constraint is forced by abs in Millstein scheme.

Details

As in case of `ssm_nlg` models, these general models need a bit more effort from the user, as you must provide the several small C++ snippets which define the model structure. See SDE vignette for an example.

Value

Object of class `ssm_sde`.

---

**ssm_u1g**  
*General univariate linear-Gaussian state space models*

Description

Construct an object of class `ssm_u1g` by directly defining the corresponding terms of the model.
Usage

```r
ssm_ulg(
 y,
 Z,
 H,
 T,
 R,
 a1,
 P1,
 init_theta = numeric(0),
 D,
 C,
 state_names,
 update_fn = default_update_fn,
 prior_fn = default_prior_fn
)
```

Arguments

- `y`: Observations as time series (or vector) of length \( n \).
- `Z`: System matrix \( Z \) of the observation equation as \( m \times 1 \) or \( m \times n \) matrix.
- `H`: Vector of standard deviations. Either a scalar or a vector of length \( n \).
- `T`: System matrix \( T \) of the state equation. Either a \( m \times m \) matrix or a \( m \times m \times n \) array.
- `R`: Lower triangular matrix \( R \) the state equation. Either a \( m \times k \) matrix or a \( m \times k \times n \) array.
- `a1`: Prior mean for the initial state as a vector of length \( m \).
- `P1`: Prior covariance matrix for the initial state as \( m \times m \) matrix.
- `init_theta`: Initial values for the unknown hyperparameters \( \theta \).
- `D`: Intercept terms for observation equation, given as a length \( n \) vector.
- `C`: Intercept terms for state equation, given as \( m \times n \) matrix.
- `state_names`: Names for the states.
- `update_fn`: Function which returns list of updated model components given input vector \( \theta \). See details.
- `prior_fn`: Function which returns log of prior density given input vector \( \theta \).

Details

The general univariate linear-Gaussian model is defined using the following observational and state equations:

\[
y_t = D_t + Z_t \alpha_t + H_t \epsilon_t, \text{ (observation equation)}
\]

\[
\alpha_{t+1} = C_t + T_t \alpha_t + R_t \eta_t, \text{ (transition equation)}
\]
where \( \epsilon_t \sim N(0, 1) \), \( \eta_t \sim N(0, I_k) \) and \( \alpha_1 \sim N(a_1, P_1) \) independently of each other. Here \( k \) is the number of disturbance terms which can be less than \( m \), the number of states.

The `update_fn` function should take only one vector argument which is used to create list with elements named as \( Z, H, T, R, a_1, P_1, D, \) and \( C \), where each element matches the dimensions of the original model. If any of these components is missing, it is assumed to be constant wrt. \( \theta \). Note that while you can input say \( R \) as \( m \times k \) matrix for \( \text{ssm}_\text{ulg} \), `update_fn` should return \( R \) as \( m \times k \times 1 \) in this case. It might be useful to first construct the model without updating function and then check the expected structure of the model components from the output.

**Value**

Object of class `ssm_ulg`.

**Examples**

```r
Regression model with time-varying coefficients
set.seed(1)
n <- 100
x1 <- rnorm(n)
x2 <- rnorm(n)
b1 <- 1 + cumsum(rnorm(n, sd = 0.5))
b2 <- 2 + cumsum(rnorm(n, sd = 0.1))
y <- 1 + b1 * x1 + b2 * x2 + rnorm(n, sd = 0.1)

Z <- rbind(1, x1, x2)
H <- 0.1
T <- diag(3)
R <- diag(c(0, 1, 0.1))
a1 <- rep(0, 3)
P1 <- diag(10, 3)

updates the model given the current values of the parameters
update_fn <- function(theta) {
 R <- diag(c(0, theta[1], theta[2]))
 dim(R) <- c(3, 3, 1)
 list(R = R, H = theta[3])
}

prior for standard deviations as half-normal(1)
prior_fn <- function(theta) {
 if(any(theta < 0)) {
 log_p <- -Inf
 } else {
 log_p <- sum(dnorm(theta, 0, 1, log = TRUE))
 }
 log_p
}

model <- ssm_ulg(y, Z, H, T, R, a1, P1,
 init_theta = c(1, 0.1, 0.1),
 update_fn = update_fn, prior_fn = prior_fn)
```

out <- run_mcmc(model, iter = 10000)

out

sumr <- summary(out, variable = "state")
ts.plot(sumr$Mean, col = 1:3)
lines(b1, col= 2, lty = 2)
lines(b2, col= 3, lty = 2)

# Perhaps easiest way to construct a general SSM for bssm is to use the
# model building functionality of KFAS:
library("KFAS")

model_kfas <- SSModel(log(drivers) ~ SSMtrend(1, Q = 5e-4)+
                      SSMseasonal(period = 12, sea.type = "trigonometric", Q = 0) +
                      log(PetrolPrice) + law, data = Seatbelts, H = 0.005)

# use as_bssm function for conversion, kappa defines the
# prior variance for diffuse states
model_bssm <- as_bssm(model_kfas, kappa = 100)

# define updating function for parameter estimation
# we can use SSModel and as_bssm functions here as well
# (for large model it is more efficient to do this
# "manually" by constructing only necessary matrices,
# i.e., in this case a list with H and Q)

updatefn <- function(theta){
  model_kfas <- SSModel(log(drivers) ~ SSMtrend(1, Q = theta[1]^2)+
                      SSMseasonal(period = 12,
                      sea.type = "trigonometric", Q = theta[2]^2) +
                      log(PetrolPrice) + law, data = Seatbelts, H = theta[3]^2)
  as_bssm(model_kfas, kappa = 100)
}

prior <- function(theta) {
  if(any(theta < 0)) -Inf else sum(dnorm(theta, 0, 0.1, log = TRUE))
}

init_theta <- rep(1e-2, 3)
c("sd_level", "sd_seasonal", "sd_y")
model_bssm <- as_bssm(model_kfas, kappa = 100,
  init_theta = init_theta,
  prior_fn = prior, update_fn = updatefn)

## Not run:
out <- run_mcmc(model_bssm, iter = 10000, burnin = 5000)
out

# Above the regression coefficients are modelled as time-invariant latent states.
# Here is an alternative way where we use variable D so that the
# coefficients are part of parameter vector theta:

updatefn2 <- function(theta) {
model_kfas2 <- SSModel(log(drivers) ~ SSMtrend(1, Q = theta[1]^2) +
SSMseasonal(period = 12, sea.type = "trigonometric", Q = theta[2]^2),
data = Seatbelts, H = theta[3]^2)
X <- model.matrix(~ -1 + law + log(PetrolPrice), data = Seatbelts)
D <- t(X %*% theta[4:5])
as_bssm(model_kfas2, D = D, kappa = 100)
}
prior2 <- function(theta) {
  if(any(theta[1:3] < 0)) {
    -Inf
  } else {
    sum(dnorm(theta[1:3], 0, 0.1, log = TRUE)) +
    sum(dnorm(theta[4:5], 0, 10, log = TRUE))
  }
}
init_theta <- c(rep(1e-2, 3), 0, 0)
names(init_theta) <- c("sd_level", "sd_seasonal", "sd_y", "law", "Petrol")
model_bssm2 <- updatefn2(init_theta)
model_bssm2$theta <- init_theta
model_bssm2$prior_fn <- prior2
model_bssm2$update_fn <- updatefn2
out2 <- run_mcmc(model_bssm2, iter = 10000, burnin = 5000)
out2

### End(Not run)

---

**ssm_ung**  
*General univariate non-Gaussian state space model*

**Description**

Construct an object of class `ssm_ung` by directly defining the corresponding terms of the model.

**Usage**

```r
ssm_ung(
 y,
 Z,
 T,
 R,
 a1,
 P1,
 distribution,
 phi = 1,
 u = 1,
 init_theta = numeric(0),
 ...)```
Arguments

- y: Observations as time series (or vector) of length n.
- Z: System matrix Z of the observation equation. Either a vector of length m, a $m \times n$ matrix, or object which can be coerced to such.
- T: System matrix T of the state equation. Either a $m \times m$ matrix or a $m \times m \times n$ array, or object which can be coerced to such.
- R: Lower triangular matrix R the state equation. Either a $m \times k$ matrix or a $m \times k \times n$ array, or object which can be coerced to such.
- a_1: Prior mean for the initial state as a vector of length m.
- P_1: Prior covariance matrix for the initial state as $m \times m$ matrix.
- $distribution$: Distribution of the observed time series. Possible choices are "poisson", "binomial", "gamma", and "negative binomial".
- phi: Additional parameter relating to the non-Gaussian distribution. For negative binomial distribution this is the dispersion term, for gamma distribution this is the shape parameter, and for other distributions this is ignored.
- u: Constant parameter vector for non-Gaussian models. For Poisson, gamma, and negative binomial distribution, this corresponds to the offset term. For binomial, this is the number of trials.
- $init_theta$: Initial values for the unknown hyperparameters θ.
- D: Intercept terms D_t for the observations equation, given as a 1×1 or $1 \times n$ matrix.
- C: Intercept terms C_t for the state equation, given as a m times 1 or m times n matrix.
- $state_names$: Names for the states.
- $update_fn$: Function which returns list of updated model components given input vector θ. See details.
- $prior_fn$: Function which returns log of prior density given input vector θ.

Details

The general univariate non-Gaussian model is defined using the following observational and state equations:

\[p(y_t | D_t + Z_t \alpha_t), \text{(observation equation)} \]
\[\alpha_{t+1} = C_t + T_t \alpha_t + R_t \eta_t, \text{(transition equation)} \]
where $\eta_t \sim N(0, I_k)$ and $\alpha_1 \sim N(\alpha_1, P_1)$ independently of each other, and \(p(y_t|.)\) is either Poisson, binomial, gamma, or negative binomial distribution. Here \(k\) is the number of disturbance terms which can be less than \(m\), the number of states.

The `update_fn` function should take only one vector argument which is used to create list with elements named as \(Z, \phi, T, R, a_1, P_1, D,\) and \(C\), where each element matches the dimensions of the original model. If any of these components is missing, it is assumed to be constant wrt. theta. Note that while you can input say \(R\) as \(m \times k\) matrix for `ssm_ung`, `update_fn` should return \(R\) as \(m \times k \times 1\) in this case. It might be useful to first construct the model without updating function and then check the expected structure of the model components from the output.

Value

Object of class `ssm_ung`.

Examples

```r
data("drownings", package = "bssm")
model <- ssm_ung(drownings[, "deaths"], Z = 1, T = 1, R = 0.2,
a1 = 0, P1 = 10, distribution = "poisson", u = drownings[, "population"])

# approximate results based on Gaussian approximation
out <- smoother(model)
ts.plot(cbind(model$y / model$u, exp(out$alphahat)), col = 1:2)
```

Description

This function returns a list containing mean, standard deviations, standard errors, and effective sample size estimates for parameters and states.

Usage

```r
## S3 method for class 'mcmc_output'
summary(object, return_se = FALSE, variable = "theta", only_theta = FALSE, ...)
```

Arguments

- `object`: Output from `run_mcmc`.
- `return_se`: if `FALSE` (default), computation of standard errors and effective sample sizes is omitted.
- `variable`: Are the summary statistics computed for either "theta" (default), "states", or "both"?
- `only_theta`: Deprecated. If `TRUE`, summaries are computed only for hyperparameters theta.
- `...`: Ignored.
Stochastic Volatility Model

Description

Constructs a simple stochastic volatility model with Gaussian errors and first order autoregressive signal.

Usage

\[
\text{svm}(y, \rho, \text{sd}_{\text{ar}}, \sigma, \mu)
\]

Arguments

- \(y\): Vector or a \texttt{ts} object of observations.
- \(\rho\): Prior for autoregressive coefficient.
- \(\text{sd}_{\text{ar}}\): Prior for the standard deviation of noise of the AR-process.
- \(\sigma\): Prior for \(\sigma\) parameter of observation equation.
- \(\mu\): Prior for \(\mu\) parameter of transition equation. Ignored if \(\sigma\) is provided.

Value

Object of class \texttt{svm} or \texttt{svm2}.

Examples

```r
data("exchange")
exchange <- exchange[1:100]  # faster CRAN check
model <- svm(exchange, rho = uniform(0.98, -0.999, 0.999),
             sd_ar = halfnormal(0.15, 5), sigma = halfnormal(0.6, 2))

obj <- function(pars) {
  -logLik(svm(exchange, rho = uniform(pars[1], -0.999, 0.999),
              sd_ar = halfnormal(pars[2], sd=5),
              sigma = halfnormal(pars[3], sd=2)), nsim = 0)
}
opt <- nlminb(c(0.98, 0.15, 0.6), obj, lower = c(-0.999, 1e-4, 1e-4), upper = c(0.999, 10, 10))
pars <- opt$par
model <- svm(exchange, rho = uniform(pars[1], -0.999, 0.999),
             sd_ar = halfnormal(pars[2], sd=5),
             sigma = halfnormal(pars[3], sd=2))
```
ukf
Unscented Kalman Filtering

Description

Function `ukf` runs the unscented Kalman filter for the given non-linear Gaussian model of class `ssm_nlg`, and returns the filtered estimates and one-step-ahead predictions of the states α_t given the data up to time t.

Usage

```
ukf(model, alpha = 1, beta = 0, kappa = 2)
```

Arguments

- `model`: Model model
- `alpha`, `beta`, `kappa`: Tuning parameters for the UKF.

Value

List containing the log-likelihood, one-step-ahead predictions at t and filtered estimates at t of states, and the corresponding variances P_t and P_{tt}.

uniform
Prior objects for bssm models

Description

These simple objects of class `bssm_prior` are used to construct a prior distributions for the MCMC runs of `bssm` package. Currently supported priors are uniform (`uniform()`), half-normal (`halfnormal()`), normal (`normal()`), and truncated normal distribution (`tnormal()`).

Usage

```
uniform(init, min, max)

halfnormal(init, sd)

normal(init, mean, sd)

tnormal(init, mean, sd, min = -Inf, max = Inf)
```
Arguments

- `init`: Initial value for the parameter, used in initializing the model components and as a starting value in MCMC.
- `min`: Lower bound of the uniform and truncated normal prior.
- `max`: Upper bound of the uniform and truncated normal prior.
- `sd`: Standard deviation of the (underlying i.e. non-truncated) Normal distribution.
- `mean`: Mean of the Normal prior.

Value

object of class `bssm_prior`.
Index

* datasets
 drownings,11
 exchange,13
 poisson_series,22

ar1_lg,3
ar1_ng,3
as.data.frame.mcmc_output,4
as_bssm,5
bootstrap_filter,6,17
bsm_lg,7
bsm_ng,9
bssm,10
drownings,11
ekf,11
ekf_smoother,12
ekpf_filter,12
exchange,13
expand_sample,14
fast_smoother,14
gaussian_approx,15
halfnormal(uniform),48
importance_sample,16
kfilter,16
logLik.gaussian,17
logLik.nongaussian(logLik.gaussian),17
logLik.ssm_nlg,18
logLik.ssm_sde,19
normal(uniform),48
particle_smoother,20
poisson_series,22
predict.mcmc_output,22
print.mcmc_output,25
priors,8,9
run_mcmc,4,5,14,23,25,25
run_mcmc.gaussian,25,26
run_mcmc.nongaussian,25,27
run_mcmc.ssm_nlg,25,30
run_mcmc.ssm_sde,25,32
sim_smoother,33
smoother(fast_smoother),14
ssm_mlg,35
ssm_mng,36
ssm_nlg,38
ssm_sde,39
ssm_ulg,40
ssm_ung,44
summary.mcmc_output,46
svm,47
tnormal(uniform),48
ts,3,4,8,9,47
ukf,48
uniform,48