Package ‘brms’

May 27, 2020

Encoding UTF-8

Type Package

Title Bayesian Regression Models using 'Stan'

Version 2.13.0

Date 2020-05-22

Depends R (>= 3.5.0), Rcpp (>= 0.12.0), methods

Imports rstan (>= 2.19.2), ggplot2 (>= 2.0.0), loo (>= 2.2.0), Matrix
(>= 1.1.1), mgcv (>= 1.8-13), rstantools (>= 2.0.0), bayesplot
(>= 1.5.0), shinystan (>= 2.4.0), bridgesampling (>= 0.3-0),
glue (>= 1.3.0), matrixStats, nleqslv, nlme, coda, abind,
future, stats, utils, parallel, grDevices, backports

Suggests testthat (>= 0.9.1), emmeans (>= 1.4.2), RWiener, mice,
spdep, mnormt, lme4, MCMCglmm, splines2, ape, arm, statmod,
digest, R.rsp, knitr, rmarkdown

Description Fit Bayesian generalized (non-)linear multivariate multilevel models
using 'Stan' for full Bayesian inference. A wide range of distributions
and link functions are supported, allowing users to fit -- among others --
linear, robust linear, count data, survival, response times, ordinal,
zero-inflated, hurdle, and even self-defined mixture models all in a
multilevel context. Further modeling options include non-linear and
smooth terms, auto-correlation structures, censored data, meta-analytic
standard errors, and quite a few more. In addition, all parameters of the
response distribution can be predicted in order to perform distributional
regression. Prior specifications are flexible and explicitly encourage
users to apply prior distributions that actually reflect their beliefs.
Model fit can easily be assessed and compared with posterior predictive

LazyData true

NeedsCompilation no

License GPL-2
URL: https://github.com/paul-buerkner/brms,
 http://discourse.mc-stan.org

BugReports https://github.com/paul-buerkner/brms/issues

VignetteBuilder knitr, R.rsp

RoxygenNote 7.1.0

Author Paul-Christian Bürkner [aut, cre]

Maintainer Paul-Christian Bürkner <paul.buerkner@gmail.com>

Repository CRAN

Date/Publication 2020-05-27 05:30:08 UTC

R topics documented:

 brms-package .. 5
 addition-terms .. 6
 add_criterion .. 9
 add_loo .. 10
 ar ... 11
 arma ... 12
 as.mcmc.brmsfit ... 13
 AsymLaplace ... 14
 autocor-terms .. 15
 autocor.brmsfit .. 16
 bayes_factor.brmsfit ... 16
 bayes_R2.brmsfit ... 17
 bridge_sampler.brmsfit .. 19
 brm .. 20
 brmsfamily .. 27
 brmsfit-class ... 33
 brmsformula .. 34
 brmsformula-helpers ... 43
 brms_hypothesis ... 45
 brmsterms ... 47
 brm_multiple .. 48
 car .. 51
 coef.brmsfit ... 52
 combine_models .. 53
 compare_ic .. 54
 conditional_effects.brmsfit 55
 conditional_smooths.brmsfit 60
 control_params .. 62
 cor_ar .. 63
 corarma .. 64
 cor_brms .. 65
 cor_car .. 65
 cor_cosy .. 67
R topics documented:

- cor_fixed .. 67
- cor_ma ... 68
- cor_sar ... 69
- cosy .. 70
- cs .. 71
- custom_family 72
- density_ratio 74
- diagnostic-quantities 75
- Dirichlet .. 76
- emmeans-brms-helpers 77
- epilepsy .. 78
- ExGaussian 79
- expose_functions.brmsfit 80
- exppl .. 81
- family.brmsfit 81
- fcor ... 82
- fitted.brmsfit 83
- fixef.brmsfit 85
- Frechet ... 86
- GenExtremeValue 87
- get_prior .. 88
- gp .. 89
- gr .. 92
- horseshoe .. 93
- Hurdle .. 95
- hypothesis.brmsfit 96
- inhaler ... 99
- InvGaussian 100
- inv_logit_scaled 101
- is.brmsfit 101
- is.brmsfit_multiple 102
- is.brmsformula 102
- is.brmsprior 102
- is.brmsterms 103
- is.cor_brms 103
- is.mvbrmsformula 104
- is.mvbrmsterms 104
- kfold.brmsfit 105
- kfold_predict 107
- kidney ... 108
- lasso ... 109
- launch_shinystan.brmsfit 110
- logit_scaled 111
- logm1 ... 112
- log_lik.brmsfit 112
- loo.brmsfit 113
- loo_compare.brmsfit 115
- loo_model_weights.brmsfit 116
R topics documented:

- loo_predict.brmsfit
- loo_R2.brmsfit
- loo_samples.brmsfit
- make_conditions
- make_stancode
- make_standata
- mcmc_plot.brmsfit
- me
- mi
- mixture
- mm
- mmc
- mo
- model_weights.brmsfit
- MultiNormal
- MultiStudentT
- mvbind
- mvbrmsformula
- ngrps.brmsfit
- nsamples.brmsfit
- pairs.brmsfit
- parnames
- plot.brmsfit
- posterior_average.brmsfit
- posterior_epred.brmsfit
- posterior_interval.brmsfit
- posterior_linpred.brmsfit
- posterior_predict.brmsfit
- posterior_samples.brmsfit
- posterior_summary
- posterior_table
- post_prob.brmsfit
- pp_average.brmsfit
- pp_check.brmsfit
- pp_mixture.brmsfit
- predict.brmsfit
- predictive_error.brmsfit
- predictive_interval.brmsfit
- prepare_predictions.brmsfit
- print.brmsfit
- print.brmsprior
- prior_samples.brmsfit
- prior_summary.brmsfit
- ranef.brmsfit
- reloo.brmsfit
- rename_pars
- residuals.brmsfit
Description

The **brms** package provides an interface to fit Bayesian generalized multivariate (non-)linear multilevel models using **Stan**, which is a C++ package for obtaining full Bayesian inference (see http://mc-stan.org/). The formula syntax is an extended version of the syntax applied in the **lme4** package to provide a familiar and simple interface for performing regression analyses.

Details

The main function of **brms** is **brm**, which uses formula syntax to specify a wide range of complex Bayesian models (see **brmsformula** for details). Based on the supplied formulas, data, and additional information, it writes the Stan code on the fly via **make_stancode**, prepares the data via **make_standata**, and fits the model using **Stan**.

Subsequently, a large number of post-processing methods can be applied: To get an overview on the estimated parameters, **summary** or **conditional_effects** are perfectly suited. Detailed visual analyses can be performed by applying the **pp_check** and **stanplot** methods, which both rely on the **bayesplot** package. Model comparisons can be done via **loo** and **waic**, which make use of the...
\texttt{loo} package as well as via \texttt{bayes_factor} which relies on the \texttt{bridgesampling} package. For a full list of methods to apply, type \texttt{methods(class = "brmsfit").}

Because \texttt{brms} is based on \texttt{Stan}, a C++ compiler is required. The program Rtools (available on \url{https://cran.r-project.org/bin/windows/Rtools/}) comes with a C++ compiler for Windows. On Mac, you should use Xcode. For further instructions on how to get the compilers running, see the prerequisites section at the \texttt{RSan-Getting-Started} page.

When comparing other packages fitting multilevel models to \texttt{brms}, keep in mind that the latter needs to compile models before actually fitting them, which will require between 20 and 40 seconds depending on your machine, operating system and overall model complexity.

Thus, fitting smaller models may be relatively slow as compilation time makes up the majority of the whole running time. For larger / more complex models however, fitting my take several minutes or even hours, so that the compilation time won’t make much of a difference for these models.

See \texttt{vignette("brms_overview")} and \texttt{vignette("brms_multilevel")} for a general introduction and overview of \texttt{brms}. For a full list of available vignettes, type \texttt{vignette(package = "brms").}

\section*{References}

\section*{See Also}

\texttt{brm, brmsformula, brmsfamily, brmsfit}

\section*{addition-terms \quad \textit{Additional Response Information}}

\subsection*{Description}
Provide additional information on the response variable in \texttt{brms} models, such as censoring, truncation, or known measurement error.

\subsection*{Usage}

\begin{verbatim}
resp_se(x, sigma = FALSE)
resp_weights(x, scale = FALSE)
resp_trials(x)
\end{verbatim}
resp_thres(x, gr = NA)
resp_cat(x)
resp_dec(x)
resp_cens(x, y2 = NA)
resp_trunc(lb = -Inf, ub = Inf)
resp_mi(sdy = NA)
resp_rate(denom)
resp_subset(x)
resp_vreal(...)
resp_vint(...)
For `resp_vreal`, vectors of real values. For `resp_vint`, vectors of integer values.

Details

These functions are almost solely useful when called in formulas passed to the `brms` package. Within formulas, the `resp_` prefix may be omitted. More information is given in the 'Details' section of `brmsformula`.

Value

A list of additional response information to be processed further by `brms`.

See Also

`brm`, `brmsformula`

Examples

```r
## Not run:
## Random effects meta-analysis
nstudies <- 20
ttrue_effects <- rnorm(nstudies, 0.5, 0.2)
sei <- runif(nstudies, 0.05, 0.3)
outcomes <- rnorm(nstudies, true_effects, sei)
data1 <- data.frame(outcomes, sei)
fit1 <- brm(outcomes | se(sei, sigma = TRUE) ~ 1, data = data1)
summary(fit1)

## Probit regression using the binomial family
n <- sample(1:10, 100, TRUE) # number of trials
success <- rbinom(100, size = n, prob = 0.4)
x <- rnorm(100)
data2 <- data.frame(n, success, x)
fit2 <- brm(success | trials(n) ~ x, data = data2, family = binomial("probit"))
summary(fit2)

## Survival regression modeling the time between the first
## and second recurrence of an infection in kidney patients.
fit3 <- brm(time | cens(censored) ~ age * sex + disease + (1|patient),
            data = kidney, family = lognormal())
summary(fit3)

## Poisson model with truncated counts
fit4 <- brm(count | trunc(ub = 104) ~ zBase * Trt,
            data = epilepsy, family = poisson())
summary(fit4)

## End(Not run)
```
add_criterion

Add model fit criteria to model objects

Description

Add model fit criteria to model objects

Usage

```r
add_criterion(x, ...)  
```

```r
## S3 method for class 'brmsfit'
add_criterion(
  x,
  criterion,
  model_name = NULL,
  overwrite = FALSE,
  file = NULL,
  force_save = FALSE,
  ...
)
```

Arguments

- **x**
 - An R object typically of class `brmsfit`.

- **...**
 - Further arguments passed to the underlying functions computing the model fit criteria.

- **criterion**
 - Names of model fit criteria to compute. Currently supported are "loo", "waic", "kfold", "loo_subsample", "bayes_R2" (Bayesian R-squared), "loo_R2" (LOO-adjusted R-squared), and "marglik" (log marginal likelihood).

- **model_name**
 - Optional name of the model. If NULL (the default) the name is taken from the call to `x`.

- **overwrite**
 - Logical; Indicates if already stored fit indices should be overwritten. Defaults to FALSE.

- **file**
 - Either NULL or a character string. In the latter case, the fitted model object including the newly added criterion values is saved via `saveRDS` in a file named after the string supplied in file. The .rds extension is added automatically. If `x` was already stored in a file before, the file name will be reused automatically (with a message) unless overwritten by `file`. In any case, `file` only applies if new criteria were actually added via `add_criterion` or if `force_save` was set to TRUE.

- **force_save**
 - Logical; only relevant if `file` is specified and ignored otherwise. If TRUE, the fitted model object will be saved regardless of whether new criteria were added via `add_criterion`.
Details

Functions `add_loo` and `add_waic` are aliases of `add_criterion` with fixed values for the `criterion` argument.

Value

An object of the same class as `x`, but with model fit criteria added for later usage.

Examples

```r
## Not run:
fit <- brm(count ~ Trt, data = epilepsy)
# add both LOO and WAIC at once
fit <- add_criterion(fit, c("loo", "waic"))
print(fit$criteria$loo)
print(fit$criteria$waic)
## End(Not run)
```

`add_loo`
Add model fit criteria to model objects

Description

Deprecated aliases of `add_criterion`.

Usage

```r
add_loo(x, model_name = NULL, ...)
add_waic(x, model_name = NULL, ...)
add_ic(x, ...)
```

S3 method for class 'brmsfit'

```r
add_ic(x, ic = "loo", model_name = NULL, ...)
add_ic(x, ...) <- value
```

Arguments

- `x`: An R object typically of class `brmsfit`.
- `model_name`: Optional name of the model. If `NULL` (the default) the name is taken from the call to `x`.
- `...`: Further arguments passed to the underlying functions computing the model fit criteria.
- `ic, value`: Names of model fit criteria to compute. Currently supported are "loo", "waic", "kfold", "R2" (R-squared), and "marglik" (log marginal likelihood).
ar

Value

An object of the same class as x, but with model fit criteria added for later usage. Previously computed criterion objects will be overwritten.

Description

Set up an autoregressive (AR) term of order p in brms. The function does not evaluate its arguments – it exists purely to help set up a model with AR terms.

Usage

ar(time = NA, gr = NA, p = 1, cov = FALSE)

Arguments

time An optional time variable specifying the time ordering of the observations. By default, the existing order of the observations in the data is used.

gr An optional grouping variable. If specified, the correlation structure is assumed to apply only to observations within the same grouping level.

p A non-negative integer specifying the autoregressive (AR) order of the ARMA structure. Default is 1.

cov A flag indicating whether ARMA effects should be estimated by means of residual covariance matrices. This is currently only possible for stationary ARMA effects of order 1. If the model family does not have natural residuals, latent residuals are added automatically. If FALSE (the default), a regression formulation is used that is considerably faster and allows for ARMA effects of order higher than 1 but is only available for gaussian models and some of its generalizations.

Value

An object of class 'arma_term', which is a list of arguments to be interpreted by the formula parsing functions of brms.

See Also

autocor-terms, arma, ma
Examples

```r
## Not run:
data("LakeHuron")
LakeHuron <- as.data.frame(LakeHuron)
fit <- brm(x ~ ar(p = 2), data = LakeHuron)
summary(fit)

## End(Not run)
```

arma

Set up ARMA(p,q) correlation structures

Description

Set up an autoregressive moving average (ARMA) term of order (p, q) in `brms`. The function does not evaluate its arguments – it exists purely to help set up a model with ARMA terms.

Usage

```r
arma(time = NA, gr = NA, p = 1, q = 1, cov = FALSE)
```

Arguments

- `time`:
 An optional time variable specifying the time ordering of the observations. By default, the existing order of the observations in the data is used.

- `gr`:
 An optional grouping variable. If specified, the correlation structure is assumed to apply only to observations within the same grouping level.

- `p`:
 A non-negative integer specifying the autoregressive (AR) order of the ARMA structure. Default is 1.

- `q`:
 A non-negative integer specifying the moving average (MA) order of the ARMA structure. Default is 1.

- `cov`:
 A flag indicating whether ARMA effects should be estimated by means of residual covariance matrices. This is currently only possible for stationary ARMA effects of order 1. If the model family does not have natural residuals, latent residuals are added automatically. If FALSE (the default), a regression formulation is used that is considerably faster and allows for ARMA effects of order higher than 1 but is only available for gaussian models and some of its generalizations.

Value

An object of class `'arma_term'`, which is a list of arguments to be interpreted by the formula parsing functions of `brms`.
as.mcmc.brmsfit

See Also

 autocor-terms, ar, ma.

Examples

```r
## Not run:
data("LakeHuron")
LakeHuron <- as.data.frame(LakeHuron)
fit <- brm(x ~ arma(p = 2, q = 1), data = LakeHuron)
summary(fit)

## End(Not run)
```

as.mcmc.brmsfit Extract posterior samples for use with the coda package

Description

Extract posterior samples for use with the coda package

Usage

```r
## S3 method for class 'brmsfit'
as.mcmc(  
  x,  
  pars = NA,  
  fixed = FALSE,  
  combine_chains = FALSE,  
  inc_warmup = FALSE,  
  ...  
)
```

Arguments

- **x**: An R object typically of class brmsfit
- **pars**: Names of parameters for which posterior samples should be returned, as given by a character vector or regular expressions. By default, all posterior samples of all parameters are extracted.
- **fixed**: Indicates whether parameter names should be matched exactly (TRUE) or treated as regular expressions (FALSE). Default is FALSE.
- **combine_chains**: Indicates whether chains should be combined.
- **inc_warmup**: Indicates if the warmup samples should be included. Default is FALSE. Warmup samples are used to tune the parameters of the sampling algorithm and should not be analyzed.
- **...**: currently unused
Value

If `combine_chains = TRUE` an `mcmc` object is returned. If `combine_chains = FALSE` an `mcmc.list` object is returned.

AsymLaplace
The Asymmetric Laplace Distribution

Description

Density, distribution function, quantile function and random generation for the asymmetric Laplace distribution with location `mu`, scale `sigma` and asymmetry parameter `quantile`.

Usage

```r
dasym_laplace(x, mu = 0, sigma = 1, quantile = 0.5, log = FALSE)
pasym_laplace(q, mu = 0, sigma = 1, quantile = 0.5, lower.tail = TRUE, log.p = FALSE)
qasym_laplace(p, mu = 0, sigma = 1, quantile = 0.5, lower.tail = TRUE, log.p = FALSE)
rasym_laplace(n, mu = 0, sigma = 1, quantile = 0.5)
```

Arguments

- `x, q` Vector of quantiles.
- `mu` Vector of locations.
- `sigma` Vector of scales.
- `quantile` Asymmetry parameter corresponding to quantiles in quantile regression (hence the name).
- `log` Logical; If `TRUE`, values are returned on the log scale.
- `lower.tail` Logical; If `TRUE` (default), return \(P(X \leq x) \). Else, return \(P(X > x) \).
log.p Logical; If TRUE, values are returned on the log scale.

p Vector of probabilities.

n Number of samples to draw from the distribution.

Details

See vignette("brms_families") for details on the parameterization.

Description

Specify autocorrelation terms in \texttt{brms} models. Currently supported terms are \texttt{arma, ar, ma, cosy, sar, car,} and \texttt{fcor}. Terms can be directly specified within the formula, or passed to the autocor argument of \texttt{brmsformula} in the form of a one-sided formula. For deprecated ways of specifying autocorrelation terms, see \texttt{cor_brms}.

Details

The autocor term functions are almost solely useful when called in formulas passed to the \texttt{brms} package. They do not evaluate its arguments – but exist purely to help set up a model with autocorrelation terms.

See Also

\texttt{brmsformula, acformula, arma, ar, ma, cosy, sar, car, fcor}

Examples

```r
# specify autocor terms within the formula
y ~ x + arma(p = 1, q = 1) + car(M)

# specify autocor terms in the 'autocor' argument
bf(y ~ x, autocor = ~ arma(p = 1, q = 1) + car(M))

# specify autocor terms via 'acformula'
bf(y ~ x) + acformula(~ arma(p = 1, q = 1) + car(M))
```
autocor.brmsfit (Deprecated) Extract Autocorrelation Objects

Description

(Deprecated) Extract Autocorrelation Objects

Usage

S3 method for class 'brmsfit'
autocor(object, resp = NULL, ...)

Arguments

object An object of class brmsfit.
resp Optional names of response variables. If specified, predictions are performed only for the specified response variables.
... Currently unused.

Value

A cor_brms object or a list of such objects for multivariate models. Not supported for models fitted with brms 2.11.1 or higher.

bayes_factor.brmsfit Bayes Factors from Marginal Likelihoods

Description

Compute Bayes factors from marginal likelihoods.

Usage

S3 method for class 'brmsfit'
bayes_factor(x1, x2, log = FALSE, ...)

Arguments

x1 A brmsfit object
x2 Another brmsfit object based on the same responses.
log Report Bayes factors on the log-scale?
... Additional arguments passed to bridge_sampler.
Details

Computing the marginal likelihood requires samples of all variables defined in Stan’s parameters block to be saved. Otherwise bayes_factor cannot be computed. Thus, please set `save_all_pars = TRUE` in the call to `brm`, if you are planning to apply `bayes_factor` to your models.

The computation of Bayes factors based on bridge sampling requires a lot more posterior samples than usual. A good conservative rule of thumb is perhaps 10-fold more samples (read: the default of 4000 samples may not be enough in many cases). If not enough posterior samples are provided, the bridge sampling algorithm tends to be unstable, leading to considerably different results each time it is run. We thus recommend running `bayes_factor` multiple times to check the stability of the results.

More details are provided under `bridgesampling:bayes_factor`.

See Also

`bridge_sampler`, `post_prob`

Examples

```r
## Not run:
# model with the treatment effect
fit1 <- brm(
  count ~ zAge + zBase + Trt,
  data = epilepsy, family = negbinomial(),
  prior = prior(normal(0, 1), class = b),
  save_all_pars = TRUE
)
summary(fit1)

# model without the treatment effect
fit2 <- brm(
  count ~ zAge + zBase,
  data = epilepsy, family = negbinomial(),
  prior = prior(normal(0, 1), class = b),
  save_all_pars = TRUE
)
summary(fit2)

# compute the bayes factor
bayes_factor(fit1, fit2)

## End(Not run)
```

bayes_R2.brmsfit

Compute a Bayesian version of R-squared for regression models

Description

Compute a Bayesian version of R-squared for regression models
Usage

```r
## S3 method for class 'brmsfit'
bayes_R2(
  object,
  resp = NULL,
  summary = TRUE,
  robust = FALSE,
  probs = c(0.025, 0.975),
  ...
)
```

Arguments

- `object` : An object of class `brmsfit`.
- `resp` : Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- `summary` : Should summary statistics be returned instead of the raw values? Default is `TRUE`.
- `robust` : If `FALSE` (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If `TRUE`, the median and the median absolute deviation (MAD) are applied instead. Only used if `summary` is `TRUE`.
- `probs` : The percentiles to be computed by the `quantile` function. Only used if `summary` is `TRUE`.
- `...` : Further arguments passed to `posterior_epred`, which is used in the computation of the R-squared values.

Details

For an introduction to the approach, see Gelman et al. (2018) and https://github.com/jgabry/bayes_R2/.

Value

If `summary = TRUE` a 1 x C matrix is returned (C = `length(probs) + 2`) containing summary statistics of Bayesian R-squared values. If `summary = FALSE` the posterior samples of the R-squared values are returned in a S x 1 matrix (S is the number of samples).

References

bridge_sampler.brmsfit

Log Marginal Likelihood via Bridge Sampling

Description

Computes log marginal likelihood via bridge sampling, which can be used in the computation of bayes factors and posterior model probabilities. The **brmsfit** method is just a thin wrapper around the corresponding method for **stanfit** objects.

Usage

```r
## S3 method for class 'brmsfit'
bridge_sampler(samples, ...)
```

Arguments

- `samples`: A brmsfit object.
- `...`: Additional arguments passed to `bridge_sampler.stanfit`.

Details

Computing the marginal likelihood requires samples of all variables defined in Stan’s `parameters` block to be saved. Otherwise `bridge_sampler` cannot be computed. Thus, please set `save_all_pars = TRUE` in the call to `brm`, if you are planning to apply `bridge_sampler` to your models.

The computation of marginal likelihoods based on bridge sampling requires a lot more posterior samples than usual. A good conservative rule of thumb is perhaps 10-fold more samples (read: the default of 4000 samples may not be enough in many cases). If not enough posterior samples are provided, the bridge sampling algorithm tends to be unstable leading to considerably different results each time it is run. We thus recommend running `bridge_sampler` multiple times to check the stability of the results.

More details are provided under `bridgesampling:bridge_sampler`.

Examples

```r
## Not run:
fit <- brm(mpg ~ wt + cyl, data = mtcars)
summary(fit)
bayes_R2(fit)

# compute R2 with new data
nd <- data.frame(mpg = c(10, 20, 30), wt = c(4, 3, 2), cyl = c(8, 6, 4))
bayes_R2(fit, newdata = nd)

## End(Not run)
```
See Also

bayes_factor, post_prob

Examples

```r
## Not run:
# model with the treatment effect
fit1 <- brm(
  count ~ zAge + zBase + Trt,
  data = epilepsy, family = negbinomial(),
  prior = prior(normal(0, 1), class = b),
  save_all_pars = TRUE
)
summary(fit1)
bridge_sampler(fit1)

# model without the treatment effect
fit2 <- brm(
  count ~ zAge + zBase,
  data = epilepsy, family = negbinomial(),
  prior = prior(normal(0, 1), class = b),
  save_all_pars = TRUE
)
summary(fit2)
bridge_sampler(fit2)
## End(Not run)
```

brm

Fit Bayesian Generalized (Non-)Linear Multivariate Multilevel Models

Description

Fit Bayesian generalized (non-)linear multivariate multilevel models using Stan for full Bayesian inference. A wide range of distributions and link functions are supported, allowing users to fit – among others – linear, robust linear, count data, survival, response times, ordinal, zero-inflated, hurdle, and even self-defined mixture models all in a multilevel context. Further modeling options include non-linear and smooth terms, auto-correlation structures, censored data, meta-analytic standard errors, and quite a few more. In addition, all parameters of the response distributions can be predicted in order to perform distributional regression. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their beliefs. In addition, model fit can easily be assessed and compared with posterior predictive checks and leave-one-out cross-validation.
Usage

```r
brm(
  formula,
  data,
  family = gaussian(),
  prior = NULL,
  autocor = NULL,
  data2 = NULL,
  cov_ranef = NULL,
  sample_prior = "no",
  sparse = NULL,
  knots = NULL,
  stanvars = NULL,
  stan_funs = NULL,
  fit = NA,
  save_ranef = TRUE,
  save_mevars = FALSE,
  save_all_pars = FALSE,
  inits = "random",
  chains = 4,
  iter = 2000,
  warmup = floor(iter/2),
  thin = 1,
  cores = getOption("mc.cores", 1L),
  control = NULL,
  algorithm = c("sampling", "meanfield", "fullrank"),
  future = getOption("future", FALSE),
  silent = TRUE,
  seed = NA,
  save_model = NULL,
  stan_model_args = list(),
  save_dso = TRUE,
  file = NULL,
  empty = FALSE,
  rename = TRUE,
  ...
)
```

Arguments

- **formula**: An object of class `formula`, `brmsformula`, or `mvbrmsformula` (or one that can be coerced to that classes): A symbolic description of the model to be fitted. The details of model specification are explained in `brmsformula`.

- **data**: An object of class `data.frame` (or one that can be coerced to that class) containing data of all variables used in the model.

- **family**: A description of the response distribution and link function to be used in the model. This can be a family function, a call to a family function or a character string naming the family. Every family function has a `link` argument allowing to
specify the link function to be applied on the response variable. If not specified, default links are used. For details of supported families see \texttt{brmsfamily}. By default, a linear gaussian model is applied. In multivariate models, \texttt{family} might also be a list of families.

\textbf{prior} One or more \texttt{brmsprior} objects created by \texttt{set_prior} or related functions and combined using the \texttt{c} method or the \texttt{+} operator. See also \texttt{get_prior} for more help.

\textbf{autocor} (Deprecated) An optional \texttt{cor_brms} object describing the correlation structure within the response variable (i.e., the 'autocorrelation'). See the documentation of \texttt{cor_brms} for a description of the available correlation structures. Defaults to \texttt{NULL}, corresponding to no correlations. In multivariate models, \texttt{autocor} might also be a list of autocorrelation structures. It is now recommend to specify autocorrelation terms directly within formula. See \texttt{brmsformula} for more details.

\textbf{data2} A named list of objects containing data, which cannot be passed via argument \texttt{data}. Required for some objects used in autocorrelation structures to specify dependency structures as well as for within-group covariance matrices.

\textbf{cov_ranef} (Deprecated) A list of matrices that are proportional to the (within) covariance structure of the group-level effects. The names of the matrices should correspond to columns in \texttt{data} that are used as grouping factors. All levels of the grouping factor should appear as rownames of the corresponding matrix. This argument can be used, among others to model pedigrees and phylogenetic effects. It is now recommended to specify those matrices in the formula interface using the \texttt{gr} and related functions. See vignette("brms_phylogenetics") for more details.

\textbf{sample_prior} Indicate if samples from priors should be drawn additionally to the posterior samples. Options are "no" (the default), "yes", and "only". Among others, these samples can be used to calculate Bayes factors for point hypotheses via \texttt{hypothesis}. Please note that improper priors are not sampled, including the default improper priors used by \texttt{brm}. See \texttt{set_prior} on how to set (proper) priors. Please also note that prior samples for the overall intercept are not obtained by default for technical reasons. See \texttt{brmsformula} how to obtain prior samples for the intercept. If \texttt{sample_prior} is set to "only", samples are drawn solely from the priors ignoring the likelihood, which allows among others to generate samples from the prior predictive distribution. In this case, all parameters must have proper priors.

\textbf{sparse} (Deprecated) Logical; indicates whether the population-level design matrices should be treated as sparse (defaults to \texttt{FALSE}). For design matrices with many zeros, this can considerably reduce required memory. Sampling speed is currently not improved or even slightly decreased. It is now recommended to use the \texttt{sparse} argument of \texttt{brmsformula} and related functions.

\textbf{knots} Optional list containing user specified knot values to be used for basis construction of smoothing terms. See \texttt{gamm} for more details.

\textbf{stanvars} An optional \texttt{stanvars} object generated by function \texttt{stanvar} to define additional variables for use in \texttt{Stan}'s program blocks.

\textbf{stan_funs} (Deprecated) An optional character string containing self-defined \texttt{Stan} functions, which will be included in the functions block of the generated \texttt{Stan} code. It is now recommended to use the \texttt{stanvars} argument for this purpose instead.
fit

An instance of S3 class `brmsfit` derived from a previous fit; defaults to NA. If `fit` is of class `brmsfit`, the compiled model associated with the fitted result is re-used and all arguments modifying the model code or data are ignored. It is not recommended to use this argument directly, but to call the `update` method, instead.

save_ranef

A flag to indicate if group-level effects for each level of the grouping factor(s) should be saved (default is TRUE). Set to FALSE to save memory. The argument has no impact on the model fitting itself.

save_mevars

A flag to indicate if samples of latent noise-free variables obtained by using `me` and `mi` terms should be saved (default is FALSE). Saving these samples allows to better use methods such as `predict` with the latent variables but leads to very large R objects even for models of moderate size and complexity.

save_all_pars

A flag to indicate if samples from all variables defined in Stan’s parameters block should be saved (default is FALSE). Saving these samples is required in order to apply the methods `bridge_sampler`, `bayes_factor`, and `post_prob`.

inits

Either "random" or "0". If `inits` is "random" (the default), Stan will randomly generate initial values for parameters. If it is "0", all parameters are initialized to zero. This option is sometimes useful for certain families, as it happens that default ("random") inits cause samples to be essentially constant. Generally, setting `inits = "0"` is worth a try, if chains do not behave well. Alternatively, `inits` can be a list of lists containing the initial values, or a function (or function name) generating initial values. The latter options are mainly implemented for internal testing.

chains

Number of Markov chains (defaults to 4).

iter

Number of total iterations per chain (including warmup; defaults to 2000).

warmup

A positive integer specifying number of warmup (aka burnin) iterations. This also specifies the number of iterations used for stepsize adaptation, so warmup samples should not be used for inference. The number of warmup should not be larger than `iter` and the default is `iter/2`.

thin

Thinning rate. Must be a positive integer. Set `thin > 1` to save memory and computation time if `iter` is large.

cores

Number of cores to use when executing the chains in parallel, which defaults to 1 but we recommend setting the `mc.cores` option to be as many processors as the hardware and RAM allow (up to the number of chains). For non-Windows OS in non-interactive R sessions, forking is used instead of PSOCK clusters.

control

A named list of parameters to control the sampler’s behavior. It defaults to NULL so all the default values are used. The most important control parameters are discussed in the 'Details' section below. For a comprehensive overview see `stan`.

algorithm

Character string indicating the estimation approach to use. Can be "sampling" for MCMC (the default), "meanfield" for variational inference with independent normal distributions, or "fullrank" for variational inference with a multivariate normal distribution.

future

Logical; If TRUE, the `future` package is used for parallel execution of the chains and argument `cores` will be ignored. Can be set globally for the current R
session via the `future` option. The execution type is controlled via `plan` (see the examples section below).

silent
logical; If `TRUE` (the default), most of the informational messages of compiler and sampler are suppressed. The actual sampling progress is still printed. Set `refresh = 0` to turn this off as well. To stop Stan from opening additional progress bars, set `open_progress = FALSE`.

seed
The seed for random number generation to make results reproducible. If `NA` (the default), Stan will set the seed randomly.

save_model
Either `NULL` or a character string. In the latter case, the model's Stan code is saved via `cat` in a text file named after the string supplied in `save_model`.

stan_model_args
A list of further arguments passed to `stan_model`.

save_dso
(Deprecated) Logical, defaulting to `TRUE`, indicating whether the dynamic shared object (DSO) compiled from the C++ code for the model will be saved or not. If `TRUE`, we can draw samples from the same model in another R session using the saved DSO (i.e., without compiling the C++ code again).

file
Either `NULL` or a character string. In the latter case, the fitted model object is saved via `saveRDS` in a file named after the string supplied in `file`. The `.rds` extension is added automatically. If the file already exists, `brm` will load and return the saved model object instead of refitting the model. As existing files won't be overwritten, you have to manually remove the file in order to refit and save the model under an existing file name. The file name is stored in the `brmsfit` object for later usage.

empty
Logical. If `TRUE`, the Stan model is not created and compiled and the corresponding `fit` slot of the `brmsfit` object will be empty. This is useful if you have estimated a brms-created Stan model outside of `brms` and want to feed it back into the package.

rename
For internal use only.

...
Further arguments passed to Stan that is to `sampling` or `vb`.

Details

Fit a generalized (non-)linear multivariate multilevel model via full Bayesian inference using Stan. A general overview is provided in the vignettes `vignette("brms_overview")` and `vignette("brms_multilevel")`. For a full list of available vignettes see `vignette(package = "brms")`.

Formula syntax of brms models

Details of the formula syntax applied in `brms` can be found in `brmsformula`.

Families and link functions

Details of families supported by `brms` can be found in `brmsfamily`.

Prior distributions

Priors should be specified using the `set_prior` function. Its documentation contains detailed information on how to correctly specify priors. To find out on which parameters or parameter classes priors can be defined, use `get_prior`. Default priors are chosen to be non or very weakly informative so that their influence on the results will be negligible and you usually don't have to worry
about them. However, after getting more familiar with Bayesian statistics, I recommend you to start thinking about reasonable informative priors for your model parameters: Nearly always, there is at least some prior information available that can be used to improve your inference.

Adjusting the sampling behavior of Stan

In addition to choosing the number of iterations, warmup samples, and chains, users can control the behavior of the NUTS sampler, by using the control argument. The most important reason to use control is to decrease (or eliminate at best) the number of divergent transitions that cause a bias in the obtained posterior samples. Whenever you see the warning “There were x divergent transitions after warmup.” you should really think about increasing adapt_delta. To do this, write control = list(adapt_delta = <x>), where <x> should usually be value between 0.8 (current default) and 1. Increasing adapt_delta will slow down the sampler but will decrease the number of divergent transitions threatening the validity of your posterior samples.

Another problem arises when the depth of the tree being evaluated in each iteration is exceeded. This is less common than having divergent transitions, but may also bias the posterior samples. When it happens, Stan will throw out a warning suggesting to increase max_treedepth, which can be accomplished by writing control = list(max_treedepth = <x>) with a positive integer <x> that should usually be larger than the current default of 10. For more details on the control argument see stan.

Value

An object of class brmsfit, which contains the posterior samples along with many other useful information about the model. Use methods(class = “brmsfit”) for an overview on available methods.

Author(s)

Paul-Christian Buerkner <paul.buerkner@gmail.com>

References

See Also

brms, brmsformula, brmsfamily, brmsfit

Examples

```r
## Not run:
# Poisson regression for the number of seizures in epileptic patients
# using student_t priors for population-level effects
# and half cauchy priors for standard deviations of group-level effects
bprior1 <- prior(student_t(5,0,10), class = b) +
  prior(cauchy(0,2), class = sd)
fit1 <- brm(count ~ zAge + zBase * Trt + (1|patient),
```
data = epilepsy, family = poisson(), prior = bprior1)

generate a summary of the results
summary(fit1)

plot the MCMC chains as well as the posterior distributions
plot(fit1, ask = FALSE)

predict responses based on the fitted model
head(predict(fit1))

plot conditional effects for each predictor
plot(conditional_effects(fit1), ask = FALSE)

investigate model fit
loo(fit1)
pp_check(fit1)

Ordinal regression modeling patient's rating of inhaler instructions
Category specific effects are estimated for variable 'treat'
fit2 <- brm(rating ~ period + carry + cs(treat),
 data = inhaler, family = sratio("logit"),
 prior = set_prior("normal(0,5)"), chains = 2)
summary(fit2)
plot(fit2, ask = FALSE)
WAIC(fit2)

Survival regression modeling the time between the first
and second recurrence of an infection in kidney patients.
fit3 <- brm(time | cens(censored) ~ age * sex + disease + (1|patient),
 data = kidney, family = lognormal())
summary(fit3)
plot(fit3, ask = FALSE)
plot(conditional_effects(fit3), ask = FALSE)

Probit regression using the binomial family
ntrials <- sample(1:10, 100, TRUE)
success <- rbinom(100, size = ntrials, prob = 0.4)
x <- rnorm(100)
data4 <- data.frame(ntrials, success, x)
fit4 <- brm(success | trials(ntrials) ~ x, data = data4,
 family = binomial("probit"))
summary(fit4)

Simple non-linear gaussian model
x <- rnorm(100)
y <- rnorm(100, mean = 2 - 1.5*x, sd = 1)
data5 <- data.frame(x, y)
bprior5 <- prior(normal(0, 2), nlpar = a1) +
prior(normal(0, 2), nlpar = a2)
fit5 <- brm(bf(y ~ a1 - a2^x, a1 + a2 ~ 1, nl = TRUE),
 data = data5, prior = bbprior5)
summary(fit5)
plot(conditional_effects(fit5), ask = FALSE)

Normal model with heterogeneous variances
data_het <- data.frame(
 y = c(rnorm(50), rnorm(50, 1, 2)),
 x = factor(rep(c("a", "b"), each = 50))
)
fit6 <- brm(bf(y ~ x, sigma ~ 0 + x), data = data_het)
summary(fit6)
plot(fit6)
conditional_effects(fit6)

extract estimated residual SDs of both groups
sigmas <- exp(posterior_samples(fit6, "^b_sigma_"))
ggplot(stack(sigmas), aes(values)) +
 geom_density(aes(fill = ind))

Quantile regression predicting the 25%-quantile
fit7 <- brm(bf(y ~ x, quantile = 0.25), data = data_het,
 family = asym_laplace())
summary(fit7)
conditional_effects(fit7)

use the future package for more flexible parallelization
library(future)
plan(multiprocess)
fit7 <- update(fit7, future = TRUE)

fit a model manually via rstan
scode <- make_stancode(count ~ Trt, data = epilepsy)
sdata <- make_standata(count ~ Trt, data = epilepsy)
stanfit <- rstan::stan(model_code = scode, data = sdata)
feed the Stan model back into brms
fit8$fit <- stanfit
fit8 <- rename_pars(fit8)
summary(fit8)

End(Not run)
Description

Family objects provide a convenient way to specify the details of the models used by many model fitting functions. The family functions presented here are for use with \texttt{brms} only and will **not** work with other model fitting functions such as \texttt{glm} or \texttt{glmer}. However, the standard family functions as described in \texttt{family} will work with \texttt{brms}. You can also specify custom families for use in \texttt{brms} with the \texttt{custom_family} function.

Usage

\begin{verbatim}
brmsfamily(
 family,
 link = NULL,
 link_sigma = "log",
 link_shape = "log",
 link_nu = "logm1",
 link_phi = "log",
 link_kappa = "log",
 link_beta = "log",
 link_zi = "logit",
 link_hu = "logit",
 link_zoi = "logit",
 link_coi = "logit",
 link_disc = "log",
 link_bs = "log",
 link_ndt = "log",
 link_bias = "logit",
 link_xi = "log1p",
 link_alpha = "identity",
 link_quantile = "logit",
 threshold = "flexible",
 refcat = NULL,
 bhaz = NULL
)

student(link = "identity", link_sigma = "log", link_nu = "logm1")

bernoulli(link = "logit")

negbinomial(link = "log", link_shape = "log")

geometric(link = "log")

lognormal(link = "identity", link_sigma = "log")

shifted_lognormal(link = "identity", link_sigma = "log", link_ndt = "log")

skew_normal(link = "identity", link_sigma = "log", link_alpha = "identity")
\end{verbatim}
exponential(link = "log")
weibull(link = "log", link_shape = "log")
frechet(link = "log", link_nu = "logm1")
gen_extreme_value(link = "identity", link_sigma = "log", link_xi = "log1p")
exgaussian(link = "identity", link_sigma = "log", link_beta = "log")
wiener(
 link = "identity",
 link_bs = "log",
 link_ndt = "log",
 link_bias = "logit"
)
Beta(link = "logit", link_phi = "log")
dirichlet(link = "logit", link_phi = "log", refcat = NULL)
von_mises(link = "tan_half", link_kappa = "log")
asymp_laplace(link = "identity", link_sigma = "log", link_quantile = "logit")
hurdle_poisson(link = "log")
hurdle_negbinomial(link = "log", link_shape = "log", link_hu = "logit")
hurdle_gamma(link = "log", link_shape = "log", link_hu = "logit")
hurdle_lognormal(link = "identity", link_sigma = "log", link_hu = "logit")
zero_inflated_beta(link = "logit", link_phi = "log", link_zi = "logit")
zero_one_inflated_beta(
 link = "logit",
 link_phi = "log",
 link_zoi = "logit",
 link_coi = "logit"
)
zero_inflated_poisson(link = "log", link_zi = "logit")
zero_inflated_negbinomial(link = "log", link_shape = "log", link_zi = "logit")
zero_inflated_binomial(link = "logit", link_zi = "logit")
categorical(link = "logit", refcat = NULL)

multinomial(link = "logit", refcat = NULL)

cumulative(link = "logit", link_disc = "log", threshold = "flexible")
sratio(link = "logit", link_disc = "log", threshold = "flexible")
cratio(link = "logit", link_disc = "log", threshold = "flexible")

acat(link = "logit", link_disc = "log", threshold = "flexible")

Arguments

family A character string naming the distribution of the response variable be used in the model. Currently, the following families are supported: gaussian, student, binomial, bernoulli, poisson, negbinomial, geometric, Gamma, skew_normal, lognormal, shifted_lognormal, exgaussian, wiener, inverse.gaussian, exponential, weibull, frechet, Beta, dirichlet, von_mises, asym_laplace, gen_extreme_value, categorical, multinomial, cumulative, cratio, sratio, acat, hurdle_poisson, hurdle_negbinomial, hurdle_gamma, hurdle_lognormal, zero_inflated_binomial, zero_inflated_beta, zero_inflated_negbinomial, zero_inflated_poisson, and zero_one_inflated_beta.

link A specification for the model link function. This can be a name/expression or character string. See the 'Details' section for more information on link functions supported by each family.

link_sigma Link of auxiliary parameter sigma if being predicted.
link_shape Link of auxiliary parameter shape if being predicted.
link_nu Link of auxiliary parameter nu if being predicted.
link_phi Link of auxiliary parameter phi if being predicted.
link_kappa Link of auxiliary parameter kappa if being predicted.
link_beta Link of auxiliary parameter beta if being predicted.
link_zi Link of auxiliary parameter zi if being predicted.
link_hu Link of auxiliary parameter hu if being predicted.
link_zoi Link of auxiliary parameter zoi if being predicted.
link_coi Link of auxiliary parameter coi if being predicted.
link_disc Link of auxiliary parameter disc if being predicted.
link_bs Link of auxiliary parameter bs if being predicted.
link_ndt Link of auxiliary parameter ndt if being predicted.
link_bias Link of auxiliary parameter bias if being predicted.
link_xi Link of auxiliary parameter xi if being predicted.
link_alpha Link of auxiliary parameter alpha if being predicted.
link_quantile Link of auxiliary parameter quantile if being predicted.
threshold A character string indicating the type of thresholds (i.e. intercepts) used in an ordinal model. "flexible" provides the standard unstructured thresholds, "equidistant" restricts the distance between consecutive thresholds to the same value, and "sum_to_zero" ensures the thresholds sum to zero.

refcat Optional name of the reference response category used in categorical, multinomial, and dirichlet models. If NULL (the default), the first category is used as the reference. If NA, all categories will be predicted, which requires strong priors or carefully specified predictor terms in order to lead to an identified model.

bhaz Currently for experimental purposes only.

Details

Below, we list common use cases for the different families. This list is not meant to be exhaustive.

- Family Gaussian can be used for linear regression.
- Family student can be used for robust linear regression that is less influenced by outliers.
- Family skew_normal can handle skewed responses in linear regression.
- Families poisson, negbinomial, and geometric can be used for regression of unbounded count data.
- Families bernoulli and binomial can be used for binary regression (i.e., most commonly logistic regression).
- Families categorical and multinomial can be used for multi-logistic regression when there are more than two possible outcomes.
- Families cumulative, cratio ('continuation ratio'), sratio ('stopping ratio'), and acat ('adjacent category') leads to ordinal regression.
- Families Gamma, weibull, exponential, lognormal, frechet, and inverse.gaussian can be used (among others) for survival regression.
- Families weibull, frechet, and gen_extreme_value ('generalized extreme value') allow for modeling extremes.
- Families beta and dirichlet can be used to model responses representing rates or probabilities.
- Family asym_laplace allows for quantile regression when fixing the auxiliary quantile parameter to the quantile of interest.
- Family exgaussian ('exponentially modified Gaussian') and shifted_lognormal are especially suited to model reaction times.
- Family wiener provides an implementation of the Wiener diffusion model. For this family, the main formula predicts the drift parameter 'delta' and all other parameters are modeled as auxiliary parameters (see brmsformula for details).
- Families hurdle_poisson, hurdle_negbinomial, hurdle_gamma, hurdle_lognormal, zero_inflated_poisson, zero_inflated_negbinomial, zero_inflated_binomial, zero_inflated_beta, and zero_one_inflated_beta allow to estimate zero-inflated and hurdle models. These models can be very helpful when there are many zeros in the data (or ones in case of one-inflated models) that cannot be explained by the primary distribution of the response.
Below, we list all possible links for each family. The first link mentioned for each family is the default.

- Families `gaussian`, `student`, `skew_normal`, `exgaussian`, `asym_laplace`, and `gen_extreme_value` support the links (as names) identity, log, inverse, and softplus.
- Families `poisson`, `negbinomial`, `geometric`, `zero_inflated_poisson`, `zero_inflated_negbinomial`, `hurdle_poisson`, and `hurdle_negbinomial` support log, identity, sqrt, and softplus.
- Families `binomial`, `bernoulli`, `Beta`, `zero_inflated_binomial`, `zero_inflated_beta`, and `zero_one_inflated_beta` support logit, probit, probit_approx, cloglog, cauchit, and identity.
- Families `cumulative`, `cratio`, `sratio`, and `acat` support logit, probit, probit_approx, cloglog, and cauchit.
- Families `categorical`, `multinomial`, and `dirichlet` support logit.
- Families `Gamma`, `weibull`, `exponential`, `frechet`, and `hurdle_gamma` support log, identity, inverse, and softplus.
- Families `lognormal` and `hurdle_lognormal` support identity and inverse.
- Family `inverse.gaussian` supports 1/\(\mu^2\), inverse, identity, log, and softplus.
- Family `von_mises` supports tan_half and identity.
- Family `wiener` supports identity, log, and softplus for the main parameter which represents the drift rate.

Please note that when calling the `Gamma` family function of the `stats` package, the default link will be inverse instead of log although the latter is the default in `brms`. Also, when using the family functions gaussian, binomial, poisson, and Gamma of the `stats` package (see `family`), special link functions such as softplus or cauchit won't work. In this case, you have to use `brmsfamily` to specify the family with corresponding link function.

See Also

`brm`, `family`, `customfamily`

Examples

```r
# create a family object
(fam1 <- student("log"))
# alternatively use the brmsfamily function
(fam2 <- brmsfamily("student", "log"))
# both leads to the same object
identical(fam1, fam2)
```
Class `brmsfit` of models fitted with the `brms` package

Description

Models fitted with the `brms` package are represented as a `brmsfit` object, which contains the posterior samples, model formula, Stan code, relevant data, and other information.

Details

See `methods(class = "brmsfit")` for an overview of available methods.

Slots

- `formula` A `brmsformula` object.
- `data` A `data.frame` containing all variables used in the model.
- `data2` A list of data objects which cannot be passed via `data`.
- `prior` A `brmsprior` object containing information on the priors used in the model.
- `stanvars` A `stanvars` object.
- `model` The model code in Stan language.
- `ranef` A `data.frame` containing the group-level structure.
- `exclude` The names of the parameters for which samples are not saved.
- `algorithm` The name of the algorithm used to fit the model.
- `fit` An object of class `stanfit` among others containing the posterior samples.
- `criteria` An empty list for adding model fit criteria after estimation of the model.
- `file` Optional name of a file in which the model object was stored in or loaded from.
- `version` The versions of `brms` and `rstan` with which the model was fitted.
- `family` (Deprecated) A `brmsfamily` object.
- `autocor` (Deprecated) An `cor_brms` object containing the autocorrelation structure if specified.
- `cov_ranef` (Deprecated) A list of customized group-level covariance matrices.
- `stan_funs` (Deprecated) A character string of length one or `NULL`.
- `data.name` (Deprecated) The name of data as specified by the user.

See Also

`brms`, `brm`, `brmsformula`, `brmsfamily`
Set up a model formula for use in `brms`

Description

Set up a model formula for use in the `brms` package allowing to define (potentially non-linear) additive multilevel models for all parameters of the assumed response distribution.

Usage

```r
brmsformula(
  formula,
  ..., 
  flist = NULL,
  family = NULL,
  autocor = NULL,
  nl = NULL,
  loop = NULL,
  center = NULL,
 cmc = NULL,
  sparse = NULL,
  decomp = NULL
)
```

Arguments

- **formula**: An object of class `formula` (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given in 'Details'.
- **...**: Additional `formula` objects to specify predictors of non-linear and distributional parameters. Formulas can either be named directly or contain names on their left-hand side. Alternatively, it is possible to fix parameters to certain values by passing numbers or character strings in which case arguments have to be named to provide the parameter names. See 'Details' for more information.
- **flist**: Optional list of formulas, which are treated in the same way as formulas passed via the `...` argument.
- **family**: Same argument as in `brm`. If `family` is specified in `brmsformula`, it will overwrite the value specified in other functions.
- **autocor**: An optional `formula` which contains autocorrelation terms as described in `autocor-terms` or alternatively a `cor_brms` object (deprecated). If `autocor` is specified in `brmsformula`, it will overwrite the value specified in other functions.
- **nl**: Logical; Indicates whether `formula` should be treated as specifying a non-linear model. By default, `formula` is treated as an ordinary linear model formula.
- **loop**: Logical; Only used in non-linear models. Indicates if the computation of the non-linear formula should be done inside (TRUE) or outside (FALSE) a loop over observations. Defaults to TRUE.
center
Logical; Indicates if the population-level design matrix should be centered, which usually increases sampling efficiency. See the 'Details' section for more information. Defaults to TRUE for distributional parameters and to FALSE for non-linear parameters.

cmc
Logical; Indicates whether automatic cell-mean coding should be enabled when removing the intercept by adding 0 to the right-hand of model formulas. Defaults to TRUE to mirror the behavior of standard R formula parsing.

sparse
Logical; indicates whether the population-level design matrices should be treated as sparse (defaults to FALSE). For design matrices with many zeros, this can considerably reduce required memory. Sampling speed is currently not improved or even slightly decreased.

decomp
Optional name of the decomposition used for the population-level design matrix. Defaults to NULL that is no decomposition. Other options currently available are "QR" for the QR decomposition that helps in fitting models with highly correlated predictors.

Details
General formula structure
The `formula` argument accepts formulas of the following syntax:

```
response | aterms ~ pterms + (gterms | group)
```

The `pters` part contains effects that are assumed to be the same across observations. We call them 'population-level' or 'overall' effects, or (adopting frequentist vocabulary) 'fixed' effects. The optional `gterms` part may contain effects that are assumed to vary across grouping variables specified in `group`. We call them 'group-level' or 'varying' effects, or (adopting frequentist vocabulary) 'random' effects, although the latter name is misleading in a Bayesian context. For more details type `vignette("brms_overview")` and `vignette("brms_multilevel")`.

Group-level terms
Multiple grouping factors each with multiple group-level effects are possible. (Of course we can also run models without any group-level effects.) Instead of | you may use || in grouping terms to prevent correlations from being modeled. Equivalently, the `cor` argument of the `gr` function can be used for this purpose, for example, `(1 + x || g)` is equivalent to `(1 + x | gr(g, cor = FALSE))`.

It is also possible to model different group-level terms of the same grouping factor as correlated (even across different formulas, e.g., in non-linear models) by using |<ID>| instead of |. All group-level terms sharing the same ID will be modeled as correlated. If, for instance, one specifies the terms `(1+x | i | g)` and `(1+z | i | g)` somewhere in the formulas passed to `brmsformula`, correlations between the corresponding group-level effects will be estimated. In the above example, `i` is not a variable in the data but just a symbol to indicate correlations between multiple group-level terms. Equivalently, the `id` argument of the `gr` function can be used as well, for example, `(1 + x | gr(g, id = "i"))`.

If levels of the grouping factor belong to different sub-populations, it may be reasonable to assume a different covariance matrix for each of the sub-populations. For instance, the variation within the treatment group and within the control group in a randomized control trial might differ. Suppose that `y` is the outcome, and `x` is the factor indicating the treatment and control group. Then, we could estimate different hyper-parameters of the varying effects (in this case a varying intercept) for treatment and control group via `y ~ x + (1 | gr(subject, by = x))`.
You can specify multi-membership terms using the `mm` function. For instance, a multi-membership term with two members could be `(1 | mm(g1, g2))`, where `g1` and `g2` specify the first and second member, respectively. Moreover, if a covariate `x` varies across the levels of the grouping-factors `g1` and `g2`, we can save the respective covariate values in the variables `x1` and `x2` and then model the varying effect as `(1 + mmc(x1, x2) | mm(g1, g2))`.

Special predictor terms

Flexible non-linear smooth terms can modeled using the `s` and `t2` functions in the `pterms` part of the model formula. This allows to fit generalized additive mixed models (GAMMs) with `brms`. The implementation is similar to that used in the `gamm4` package. For more details on this model class see `gamlss` and `gamm`.

Gaussian process terms can be fitted using the `gp` function in the `pterms` part of the model formula. Similar to smooth terms, Gaussian processes can be used to model complex non-linear relationships, for instance temporal or spatial autocorrelation. However, they are computationally demanding and are thus not recommended for very large datasets or approximations need to be used.

The `pterms` and `gterms` parts may contain four non-standard effect types namely monotonic, measurement error, missing value, and category specific effects, which can be specified using terms of the form `mo(predictor)`, `me(predictor, sd_predictor)`, `mi(predictor)`, and `cs(<predictors>)`, respectively. Category specific effects can only be estimated in ordinal models and are explained in more detail in the package's main vignette (type `vignette("brms_overview")`). The other three effect types are explained in the following.

A monotonic predictor must either be integer valued or an ordered factor, which is the first difference to an ordinary continuous predictor. More importantly, predictor categories (or integers) are not assumed to be equidistant with respect to their effect on the response variable. Instead, the distance between adjacent predictor categories (or integers) is estimated from the data and may vary across categories. This is realized by parameterizing as follows: One parameter takes care of the direction and size of the effect similar to an ordinary regression parameter, while an additional parameter vector estimates the normalized distances between consecutive predictor categories. A main application of monotonic effects are ordinal predictors that can this way be modeled without (falsely) treating them as continuous or as unordered categorical predictors. For more details and examples see `vignette("brms_monotonic")`.

Quite often, predictors are measured and as such naturally contain measurement error. Although most researchers are well aware of this problem, measurement error in predictors is ignored in most regression analyses, possibly because only few packages allow for modeling it. Notably, measurement error can be handled in structural equation models, but many more general regression models (such as those featured by `brms`) cannot be transferred to the SEM framework. In `brms`, effects of noise-free predictors can be modeled using the `me` (for 'measurement error') function. If, say, `y` is the response variable and `x` is a measured predictor with known measurement error `sdx`, we can simply include it on the right-hand side of the model formula via `y ~ me(x, sdx)`. This can easily be extended to more general formulas. If `x2` is another measured predictor with corresponding error `sdx2` and `z` is a predictor without error (e.g., an experimental setting), we can model all main effects and interactions of the three predictors in the well known manner: `y ~ me(x, sdx) * me(x2, sdx2) * z`. In future version of `brms`, a vignette will be added to explain more details about these so called 'error-in-variables' models and provide real world examples.

When a variable contains missing values, the corresponding rows will be excluded from the data by default (row-wise exclusion). However, quite often we want to keep these rows and instead estimate the missing values. There are two approaches for this: (a) Impute missing values before the model
fitting for instance via multiple imputation (see \texttt{brm_multiple} for a way to handle multiple imputed datasets). (b) Impute missing values on the fly during model fitting. The latter approach is explained in the following. Using a variable with missing values as predictors requires two things. First, we need to specify that the predictor contains missings that should to be imputed. If, say, \(y \) is the primary response, \(x \) is a predictor with missings and \(z \) is a predictor without missings, we go for \(y \sim \text{mi}(x) + z \). Second, we need to model \(x \) as an additional response with corresponding predictors and the addition term \(\text{mi}() \). In our example, we could write \(x \mid \text{mi}() \sim z \). See \texttt{mi} for examples with real data.

\textbf{Autocorrelation terms}

Autocorrelation terms can be directly specified inside the \texttt{pterms} part as well. Details can be found in \texttt{autocor-terms}.

\textbf{Additional response information}

Another special of the \texttt{brms} formula syntax is the optional \texttt{aterms} part, which may contain multiple terms of the form \texttt{fun(<variable>)} separated by \texttt{+} each providing special information on the response variable. \texttt{fun} can be replaced with either \texttt{se}, \texttt{weights}, \texttt{subset}, \texttt{cens}, \texttt{trunc}, \texttt{trials}, \texttt{cat}, \texttt{dec}, \texttt{rate}, \texttt{vreal}, or \texttt{vint}. Their meanings are explained below. (see also \texttt{addition-terms}).

For families \texttt{gaussian}, \texttt{student} and \texttt{skew_normal}, it is possible to specify standard errors of the observations, thus allowing to perform meta-analysis. Suppose that the variable \(y_i \) contains the effect sizes from the studies and \(\text{sei} \) the corresponding standard errors. Then, fixed and random effects meta-analyses can be conducted using the formulas \(y_i \mid \text{sei} \sim 1 \) and \(y_i \mid \text{sei} \sim 1 + (1 \mid \text{study}) \), respectively, where \(\text{study} \) is a variable uniquely identifying every study. If desired, meta-regression can be performed via \(y_i \mid \text{sei} \sim 1 + \text{mod1} + \text{mod2} + (1 \mid \text{study}) \) or \(y_i \mid \text{sei} \sim 1 + \text{mod1} + \text{mod2} + (1 + \text{mod1} + \text{mod2} \mid \text{study}) \), where \text{mod1} and \text{mod2} represent moderator variables. By default, the standard errors replace the parameter \text{sigma}. To model \text{sigma} in addition to the known standard errors, set argument \text{sigma} in function \text{se} to \text{TRUE}, for instance, \(y_i \mid \text{se} \sim 1 \).

For all families, weighted regression may be performed using weights in the \texttt{aterms} part. Internally, this is implemented by multiplying the log-posterior values of each observation by their corresponding weights. Suppose that variable \(\text{wei} \) contains the weights and that \(y_i \) is the response variable. Then, formula \(y_i \mid \text{wei} \sim \text{weights} \) implements a weighted regression.

For multivariate models, \texttt{subset} may be used in the \texttt{aterms} part, to use different subsets of the data in different univariate models. For instance, if \text{sub} is a logical variable and \(y \) is the response of one of the univariate models, we may write \(y \mid \text{subset(sub)} \sim \text{predictors} \) so that \(y \) is predicted only for those observations for which \text{sub} evaluates to \text{TRUE}.

For log-linear models such as poisson models, \texttt{rate} may be used in the \texttt{aterms} part to specify the denominator of a response that is expressed as a rate. The numerator is given by the actual response variable and has a distribution according to the family as usual. Using \texttt{rate(denom)} is equivalent to adding \texttt{offset(log(denom))} to the linear predictor of the main parameter but the former is arguably more convenient and explicit.

With the exception of categorical, ordinal, and mixture families, left, right, and interval censoring can be modeled through \(y \mid \text{cens}(\text{censored}) \sim \text{predictors} \). The censoring variable (named \text{censored} in this example) should contain the values \textquoteleft left\textquoteright , \textquoteleft none\textquoteright , \textquoteleft right\textquoteright , and \textquoteleft interval\textquoteright (or equivalently \text{-1, 0, 1, and 2}) to indicate that the corresponding observation is left censored, not censored, right censored, or interval censored. For interval censored data, a second variable (let’s call it \text{y2}) has to be passed to \text{cens}. In this case, the formula has the structure \(y \mid \text{cens}(\text{censored}, \text{y2}) \sim \text{predictors} \). While the lower bounds are given in \(y \), the upper bounds are
given in \(y_2 \) for interval censored data. Intervals are assumed to be open on the left and closed on the right: \((y, y_2] \).

With the exception of categorical, ordinal, and mixture families, the response distribution can be truncated using the `trunc` function in the addition part. If the response variable is truncated between, say, 0 and 100, we can specify this via \(y_i \mid \text{trunc}(\text{lb} = 0, \text{ub} = 100) \sim \text{predictors} \). Instead of numbers, variables in the data set can also be passed allowing for varying truncation points across observations. Defining only one of the two arguments in `trunc` leads to one-sided truncation.

For all continuous families, missing values in the responses can be imputed within Stan by using the addition term \(\text{mi} \). This is mostly useful in combination with \(\text{mi} \) predictor terms as explained above under 'Special predictor terms'.

For families `binomial` and `zero_inflated_binomial`, addition should contain a variable indicating the number of trials underlying each observation. In `lme4` syntax, we may write for instance `cbind(success, n - success)`, which is equivalent to `success \mid \text{trials(n) in brms} syntax`. If the number of trials is constant across all observations, say 10, we may also write `success \mid \text{trials(10)}`. Please note that the `cbind()` syntax will not work in `brms` in the expected way because this syntax is reserved for other purposes.

For all ordinal families, `aterms` may contain a term `thres(number)` to specify the number thresholds (e.g., `thres(6)`), which should be equal to the total number of response categories - 1. If not given, the number of thresholds is calculated from the data. If different threshold vectors should be used for different subsets of the data, the `gr` argument can be used to provide the grouping variable (e.g., `thres(6, gr = \text{item})` if `\text{item}` is the grouping variable). In this case, the number of thresholds can also be a variable in the data with different values per group.

A deprecated quasi alias of `thres()` is `cat()` with which the total number of response categories (i.e., number of thresholds + 1) can be specified.

In Wiener diffusion models (family `wiener`) the addition term `dec` is mandatory to specify the (vector of) binary decisions corresponding to the reaction times. Non-zero values will be treated as a response on the upper boundary of the diffusion process and zeros will be treated as a response on the lower boundary. Alternatively, the variable passed to `dec` might also be a character vector consisting of 'lower' and 'upper'.

For custom families, it is possible to pass an arbitrary number of real and integer vectors via the addition terms `vreal` and `vint`, respectively. An example is provided in vignette('brms_customfamilies').

Multiple addition terms may be specified at the same time using the `+` operator. For example, the formula `formula = yi | se(sei) + cens(censored) ~ 1` implies a censored meta-analytic model.

The addition argument `disp` (short for dispersion) has been removed in version 2.0. You may instead use the distributional regression approach by specifying `sigma ~ 1 + offset(log(xdisp))` or `shape ~ 1 + offset(log(xdisp))`, where `xdisp` is the variable being previously passed to `disp`.

Parameterization of the population-level intercept

By default, the population-level intercept (if incorporated) is estimated separately and not as part of population-level parameter vector \(b \). As a result, priors on the intercept also have to be specified separately. Furthermore, to increase sampling efficiency, the population-level design matrix \(X \) is centered around its column means \(X_{\text{means}} \) if the intercept is incorporated. This leads to a temporary bias in the intercept equal to \(<X_{\text{means}}, b> \), where \(<,> \) is the scalar product. The bias is corrected after fitting the model, but bear in mind that you are effectively defining a prior on the intercept of the centered design matrix not on the real intercept. You can turn off this special handling of the intercept by setting argument `center` to `FALSE`. For more details on setting priors on population-level intercepts, see `set_prior`.

brmsformula
This behavior can be avoided by using the reserved (and internally generated) variable `Intercept`. Instead of `y ~ x`, you may write `y ~ 0 + Intercept + x`. This way, priors can be defined on the real intercept, directly. In addition, the intercept is just treated as an ordinary population-level effect and thus priors defined on `b` will also apply to it. Note that this parameterization may be less efficient than the default parameterization discussed above.

Formula syntax for non-linear models

In `brms`, it is possible to specify non-linear models of arbitrary complexity. The non-linear model can just be specified within the `formula` argument. Suppose, that we want to predict the response `y` through the predictor `x`, where `x` is linked to `y` through `y = alpha - beta * lambda^x`, with parameters `alpha`, `beta`, and `lambda`. This is certainly a non-linear model being defined via `formula = y ~ alpha - beta * lambda^x` (addition arguments can be added in the same way as for ordinary formulas). To tell `brms` that this is a non-linear model, we set argument `nl` to `TRUE`. Now we have to specify a model for each of the non-linear parameters. Let’s say we just want to estimate those three parameters with no further covariates or random effects. Then we can pass `alpha ~ 1`, `beta ~ 1`, and `lambda ~ 1` to the `...` argument. This can, of course, be extended. If we have another predictor `z` and observations nested within the grouping factor `g`, we may write for instance `alpha ~ 1`, `beta ~ 1 + z + (1|g)`, `lambda ~ 1`. The formula syntax described above applies here as well. In this example, we are using `z` and `g` only for the prediction of `beta`, but we might also use them for the other non-linear parameters (provided that the resulting model is still scientifically reasonable).

By default, non-linear covariates are treated as real vectors in Stan. However, if the data of the covariates is of type ‘integer’ in R (which can be enforced by the ‘as.integer’ function), the Stan type will be changed to an integer array. That way, covariates can also be used for indexing purposes in Stan.

Non-linear models may not be uniquely identified and / or show bad convergence. For this reason it is mandatory to specify priors on the non-linear parameters. For instructions on how to do that, see `set_prior`. For some examples of non-linear models, see vignette("brms_nonlinear").

Formula syntax for predicting distributional parameters

It is also possible to predict parameters of the response distribution such as the residual standard deviation `sigma` in gaussian models or the hurdle probability `hu` in hurdle models. The syntax closely resembles that of a non-linear parameter, for instance `sigma ~ x + s(z) + (1+x|g)`. For some examples of distributional models, see vignette("brms_distreg").

Parameter `mu` exists for every family and can be used as an alternative to specifying terms in `formula`. If both `mu` and `formula` are given, the right-hand side of `formula` is ignored. Accordingly, specifying terms on the right-hand side of both `formula` and `mu` at the same time is deprecated. In future versions, `formula` might be updated by `mu`.

The following are distributional parameters of specific families (all other parameters are treated as non-linear parameters): `sigma` (residual standard deviation or scale of the gaussian, student, skew_normal, lognormal exgaussian, and asym_laplace families); `shape` (shape parameter of the Gamma, weibull, negbinomial, and related zero-inflated / hurdle families); `nu` (degrees of freedom parameter of the student and frechet families); `phi` (precision parameter of the beta and zero_inflated_beta families); `kappa` (precision parameter of the von_mises family); `beta` (mean parameter of the exponential component of the exgaussian family); `quantile` (quantile parameter of the asym_laplace family); `zi` (zero-inflation probability); `hu` (hurdle probability); `zoi` (zero-one-inflation probability); `coi` (conditional one-inflation probability); `disc` (discrimination) for ordinal models; `bs`, `ndt`, and `bias` (boundary separation, non-decision time, and initial bias of
the Wiener diffusion model). By default, distributional parameters are modeled on the log scale if they can be positive only or on the logit scale if the can only be within the unit interval.

Alternatively, one may fix distributional parameters to certain values. However, this is mainly useful when models become too complicated and otherwise have convergence issues. We thus suggest to be generally careful when making use of this option. The quantile parameter of the asym_laplace distribution is a good example where it is useful. By fixing quantile, one can perform quantile regression for the specified quantile. For instance, quantile = 0.25 allows predicting the 25%-quantile. Furthermore, the bias parameter in drift-diffusion models, is assumed to be 0.5 (i.e. no bias) in many applications. To achieve this, simply write bias = 0.5. Other possible applications are the Cauchy distribution as a special case of the Student-t distribution with $\nu = 1$, or the geometric distribution as a special case of the negative binomial distribution with shape = 1. Furthermore, the parameter disc ('discrimination') in ordinal models is fixed to 1 by default and not estimated, but may be modeled as any other distributional parameter if desired (see examples). For reasons of identification, 'disc' can only be positive, which is achieved by applying the log-link.

In categorical models, distributional parameters do not have fixed names. Instead, they are named after the response categories (excluding the first one, which serves as the reference category), with the prefix 'mu'. If, for instance, categories are named cat1, cat2, and cat3, the distributional parameters will be named mucat2 and mucat3.

Some distributional parameters currently supported by \texttt{brmsformula} have to be positive (a negative standard deviation or precision parameter does not make any sense) or are bounded between 0 and 1 (for zero-inflated / hurdle probabilities, quantiles, or the initial bias parameter of drift-diffusion models). However, linear predictors can be positive or negative, and thus the log link (for positive parameters) or logit link (for probability parameters) are used by default to ensure that distributional parameters are within their valid intervals. This implies that, by default, effects for such distributional parameters are estimated on the log / logit scale and one has to apply the inverse link function to get to the effects on the original scale. Alternatively, it is possible to use the identity link to predict parameters on their original scale, directly. However, this is much more likely to lead to problems in the model fitting, if the parameter actually has a restricted range.

See also \texttt{brmsfamily} for an overview of valid link functions.

\textbf{Formula syntax for mixture models}

The specification of mixture models closely resembles that of non-mixture models. If not specified otherwise (see below), all mean parameters of the mixture components are predicted using the right-hand side of \texttt{formula}. All types of predictor terms allowed in non-mixture models are allowed in mixture models as well.

Distributional parameters of mixture distributions have the same name as those of the corresponding ordinary distributions, but with a number at the end to indicate the mixture component. For instance, if you use family \texttt{mixture(gaussian, gaussian)}, the distributional parameters are σ_1 and σ_2. Distributional parameters of the same class can be fixed to the same value. For the above example, we could write $\sigma_2 = \sigma_1$ to make sure that both components have the same residual standard deviation, which is in turn estimated from the data.

In addition, there are two types of special distributional parameters. The first are named $\mu_{<ID>}$, that allow for modeling different predictors for the mean parameters of different mixture components. For instance, if you want to predict the mean of the first component using predictor x and the mean of the second component using predictor z, you can write $\mu_1 \sim x$ as well as $\mu_2 \sim z$. The second are named $\theta_{<ID>}$, which constitute the mixing proportions. If the mixing proportions are fixed to certain values, they are internally normalized to form a probability vector. If one seeks to predict
the mixing proportions, all but one of the them has to be predicted, while the remaining one is
used as the reference category to identify the model. The softmax function is applied on the linear
predictor terms to form a probability vector.

For more information on mixture models, see the documentation of mixture.

Formula syntax for multivariate models

Multivariate models may be specified using mvbind notation or with help of the mvbf function. Sup-
pose that y1 and y2 are response variables and x is a predictor. Then mvbind(y1, y2) ~ x specifies a
multivariate model. The effects of all terms specified at the RHS of the formula are assumed to vary
across response variables. For instance, two parameters will be estimated for x, one for the effect
on y1 and another for the effect on y2. This is also true for group-level effects. When writing, for
instance, mvbind(y1, y2) ~ x + (1+x|g), group-level effects will be estimated separately for each
response. To model these effects as correlated across responses, use the ID syntax (see above). For
the present example, this would look as follows: mvbind(y1, y2) ~ x + (1+x|2|g). Of course, you
could also use any value other than 2 as ID.

It is also possible to specify different formulas for different responses. If, for instance, y1 should be
predicted by x and y2 should be predicted by z, we could write mvbf(y1 ~ x, y2 ~ z). Alternatively,
multiple brmsformula objects can be added to specify a joint multivariate model (see 'Examples').

Value

An object of class brmsformula, which is essentially a list containing all model formulas as well
as some additional information.

See Also

mvbrmsformula, brmsformula-helpers

Examples

multilevel model with smoothing terms
brmsformula(y ~ x1 * x2 + s(z) + (1+x1|1) + (1|g2))

additionally predict 'sigma'
brmsformula(y ~ x1 * x2 + s(z) + (1+x1|1) + (1|g2),
 sigma ~ x1 + (1|g2))

use the shorter alias 'bf'
(formula1 <- brmsformula(y ~ x + (x|g)))
(formula2 <- bf(y ~ x + (x|g)))
will be TRUE
identical(formula1, formula2)

incorporate censoring
bf(y | cens(censor_variable) ~ predictors)

define a simple non-linear model
bf(y ~ a1 - a2^x, a1 + a2 ~ 1, nl = TRUE)

predict a1 and a2 differently
bf(y ~ a1 - a2^x, a1 ~ 1, a2 ~ x + (x|g), nl = TRUE)
correlated group-level effects across parameters
bf(y ~ a1 - a2^x, a1 ~ 1 + (1 |2| g), a2 ~ x + (x |2| g), nl = TRUE)

alternative but equivalent way to specify the above model
bf(y ~ a1 - a2^x, a1 ~ 1 + (1 | gr(g, id = 2)),
 a2 ~ x + (x | gr(g, id = 2)), nl = TRUE)

define a multivariate model
bf(mvbind(y1, y2) ~ x * z + (1|g))

define a zero-inflated model
also predicting the zero-inflation part
bf(y ~ x * z + (1+x|ID1|g), zi ~ x + (1|ID1|g))

specify a predictor as monotonic
bf(y ~ mo(x) + more_predictors)

for ordinal models only
specify a predictor as category specific
bf(y ~ cs(x) + more_predictors)

add a category specific group-level intercept
bf(y ~ cs(x) + (cs(1)|g))

specify parameter 'disc'
bf(y ~ person + item, disc ~ item)

specify variables containing measurement error
bf(y ~ me(x, sdx))

specify predictors on all parameters of the wiener diffusion model
the main formula models the drift rate 'delta'
bf(rt | dec(decision) ~ x, bs ~ x, ndt ~ x, bias ~ x)

fix the bias parameter to 0.5
bf(rt | dec(decision) ~ x, bias = 0.5)

specify different predictors for different mixture components
mix <- mixture(gaussian, gaussian)
bf(y ~ 1, mu1 ~ x, mu2 ~ z, family = mix)

fix both residual standard deviations to the same value
bf(y ~ x, sigma2 = "sigma1", family = mix)

use the '+' operator to specify models
bf(y ~ 1) +
 nlf(sigma ~ a * exp(b * x), a ~ x) +
 lf(b ~ z + (1|g), dpar = "sigma") +
 gaussian()

specify a multivariate model using the '+' operator
bf(y1 ~ x + (1|g)) +
 gaussian() + cor_ar(~1|g) +
 bf(y2 ~ z) + poisson()
specify correlated residuals of a gaussian and a poisson model
form1 <- bf(y1 ~ 1 + x + (1|c|obs), sigma = 1) + gaussian()
form2 <- bf(y2 ~ 1 + x + (1|c|obs)) + poisson()

model missing values in predictors
bf(bmi ~ age * mi(chl)) +
 bf(chl | mi()) ~ age) +
 set_rescor(FALSE)

model sigma as a function of the mean
bf(y ~ eta, nl = TRUE) +
 lf(eta ~ 1 + x) +
 nlf(sigma ~ tau * sqrt(eta)) +
 lf(tau ~ 1)

Description

Helper functions to specify linear and non-linear formulas for use with `brmsformula`.

Usage

- `nlf(formula, ..., flist = NULL, dpar = NULL, resp = NULL, loop = NULL)`
- `lf(..., flist = NULL, dpar = NULL, resp = NULL, center = NULL, cmc = NULL, sparse = NULL, decomp = NULL)`
- `acformula(autocor, resp = NULL)`
- `set_nl(nl = TRUE, dpar = NULL, resp = NULL)`
- `set_rescor(rescor = TRUE)`
- `set_mecor(mecor = TRUE)`
Arguments

formula Non-linear formula for a distributional parameter. The name of the distributional parameter can either be specified on the left-hand side of formula or via argument dpar.

... Additional formula objects to specify predictors of non-linear and distributional parameters. Formulas can either be named directly or contain names on their left-hand side. Alternatively, it is possible to fix parameters to certain values by passing numbers or character strings in which case arguments have to be named to provide the parameter names. See 'Details' for more information.

flist Optional list of formulas, which are treated in the same way as formulas passed via the ... argument.
dpar Optional character string specifying the distributional parameter to which the formulas passed via ... and flist belong.
resp Optional character string specifying the response variable to which the formulas passed via ... and flist belong. Only relevant in multivariate models.
loop Logical; Only used in non-linear models. Indicates if the computation of the non-linear formula should be done inside (TRUE) or outside (FALSE) a loop over observations. Defaults to TRUE.
center Logical; Indicates if the population-level design matrix should be centered, which usually increases sampling efficiency. See the 'Details' section for more information. Defaults to TRUE for distributional parameters and to FALSE for non-linear parameters.
cmc Logical; Indicates whether automatic cell-mean coding should be enabled when removing the intercept by adding 0 to the right-hand of model formulas. Defaults to TRUE to mirror the behavior of standard R formula parsing.
sparse Logical; indicates whether the population-level design matrices should be treated as sparse (defaults to FALSE). For design matrices with many zeros, this can considerably reduce required memory. Sampling speed is currently not improved or even slightly decreased.
decomp Optional name of the decomposition used for the population-level design matrix. Defaults to NULL that is no decomposition. Other options currently available are "QR" for the QR decomposition that helps in fitting models with highly correlated predictors.
autocor A one sided formula containing autocorrelation terms. All none autocorrelation terms in autocor will be silently ignored.
nl Logical; Indicates whether formula should be treated as specifying a non-linear model. By default, formula is treated as an ordinary linear model formula.
rescor Logical; Indicates if residual correlation between the response variables should be modeled. Currently this is only possible in multivariate gaussian and student models. Only relevant in multivariate models.
mecor Logical; Indicates if correlations between latent variables defined by me terms should be modeled. Defaults to TRUE.
Value

For lf and nlf a list that can be passed to `brmsformula` or added to an existing brmsformula or mvbrmsformula object. For set_nl and set_rescor a logical value that can be added to an existing brmsformula or mvbrmsformula object.

See Also

`brmsformula`, `mvbrmsformula`

Examples

```r
# add more formulas to the model
bf(y ~ 1) +
   nlf(sigma ~ a * exp(b * x)) +
   lf(a ~ x, b ~ z + (1|g)) +
   gaussian()

# specify 'nl' later on
bf(y ~ a * inv_logit(x * b)) +
   lf(a + b ~ z) +
   set_nl(TRUE)

# specify a multivariate model
bf(y1 ~ x + (1|g)) +
   bf(y2 ~ z) +
   set_rescor(TRUE)

# add autocorrelation terms
bf(y ~ x) + acformula(~ arma(p = 1, q = 1) + car(W))
```

brmshypothesis

Descriptions of brmshypothesis Objects

Description

A brmshypothesis object contains posterior samples as well as summary statistics of non-linear hypotheses as returned by `hypothesis`.

Usage

```r
## S3 method for class 'brmshypothesis'
print(x, digits = 2, chars = 20, ...)

## S3 method for class 'brmshypothesis'
plot(
   x,
   N = 5,
   ignore_prior = FALSE,
)```
chars = 40,
colors = NULL,
theme = NULL,
ask = TRUE,
plot = TRUE,
...)

Arguments

x An object of class brmsfit.
digits Minimal number of significant digits, see print.default.
chars Maximum number of characters of each hypothesis to print or plot. If NULL, print the full hypotheses. Defaults to 20.
... Currently ignored.
N The number of parameters plotted per page.
ignore_prior A flag indicating if prior distributions should also be plotted. Only used if priors were specified on the relevant parameters.
colors Two values specifying the colors of the posterior and prior density respectively. If NULL (the default) colors are taken from the current color scheme of the bayesplot package.
theme A theme object modifying the appearance of the plots. For some basic themes see ggtheme and theme_default.
ask Logical; indicates if the user is prompted before a new page is plotted. Only used if plot is TRUE.
plot Logical; indicates if plots should be plotted directly in the active graphic device. Defaults to TRUE.

Details

The two most important elements of a brmshypothesis object are hypothesis, which is a data.frame containing the summary estimates of the hypotheses, and samples, which is a data.frame containing the corresponding posterior samples.

See Also

hypothesis
**brmsterms**

**Parse Formulas of brms Models**

**Description**

Parse formulas objects for use in **brms**.

**Usage**

```r
brmsterms(formula, ...)
```

## Default S3 method:

```r
brmsterms(formula, ...)
```

## S3 method for class 'brmsformula'

```r
brmsterms(formula, check_response = TRUE, resp_rhs_all = TRUE, ...)
```

## S3 method for class 'mvbrmsformula'

```r
brmsterms(formula)
```

**Arguments**

- `formula` An object of class `formula`, `brmsformula`, or `mvbrmsformula` (or one that can be coerced to that classes): A symbolic description of the model to be fitted. The details of model specification are explained in `brmsformula`.

- `...` Further arguments passed to or from other methods.

- `check_response` Logical; Indicates whether the left-hand side of `formula` (i.e. response variables and addition arguments) should be parsed. If FALSE, `formula` may also be one-sided.

- `resp_rhs_all` Logical; Indicates whether to also include response variables on the right-hand side of `formula`.$allvars, where . represents the output of `brmsterms`.

**Details**

This is the main formula parsing function of **brms**. It should usually not be called directly, but is exported to allow package developers making use of the formula syntax implemented in **brms**. As long as no other packages depend on this functions, it may be changed without deprecation warnings, when new features make this necessary.

**Value**

An object of class `brmsterms` or `mvbrmsterms` (for multivariate models), which is a list containing all required information initially stored in `formula` in an easier to use format, basically a list of formulas (not an abstract syntax tree).
See Also

brm, brmsformula, mvbrmsformula

---

**brm_multiple** Run the same **brms** model on multiple datasets

**Description**

Run the same **brms** model on multiple datasets and then combine the results into one fitted model object. This is useful in particular for multiple missing value imputation, where the same model is fitted on multiple imputed data sets. Models can be run in parallel using the **future** package.

**Usage**

```r
brm_multiple(
 formula,
 data,
 family = gaussian(),
 prior = NULL,
 data2 = NULL,
 autocor = NULL,
 cov_ranef = NULL,
 sample_prior = c("no", "yes", "only"),
 sparse = NULL,
 knots = NULL,
 stanvars = NULL,
 stan_funs = NULL,
 recompile = FALSE,
 combine = TRUE,
 fit = NA,
 seed = NA,
 file = NULL,
 ...
)
```

**Arguments**

- **formula** An object of class **formula**, **brmsformula**, or **mvbrmsformula** (or one that can be coerced to that classes): A symbolic description of the model to be fitted. The details of model specification are explained in **brmsformula**.
- **data** A list of data.frames each of which will be used to fit a separate model. Alternatively, a mids object from the **mice** package.
- **family** A description of the response distribution and link function to be used in the model. This can be a family function, a call to a family function or a character string naming the family. Every family function has a `link` argument allowing to specify the link function to be applied on the response variable. If not specified,
default links are used. For details of supported families see \texttt{brmsfamily}. By
default, a linear gaussian model is applied. In multivariate models, family
might also be a list of families.

\textbf{prior} \hspace{1cm} One or more \texttt{brmsprior} objects created by \texttt{set_prior} or related functions and
combined using the \texttt{c} method or the \texttt{+} operator. See also \texttt{get_prior} for more
help.

\textbf{data2} \hspace{1cm} A list of named lists each of which will be used to fit a separate model. Each
of the named lists contains objects representing data which cannot be passed via
argument \texttt{data} (see \texttt{brm} for examples). The length of the outer list should match
the length of the list passed to the \texttt{data} argument.

\textbf{autocor} \hspace{1cm} (Deprecated) An optional \texttt{cor_brms} object describing the correlation structure
within the response variable (i.e., the 'autocorrelation'). See the documentation
of \texttt{cor_brms} for a description of the available correlation structures. Defaults to
\texttt{NULL}, corresponding to no correlations. In multivariate models, \texttt{autocor}
might also be a list of autocorrelation structures. It is now recommend to specify auto-
correlation terms directly within \texttt{formula}. See \texttt{brmsformula} for more details.

\textbf{cov_ranef} \hspace{1cm} (Deprecated) A list of matrices that are proportional to the (within) covariance
structure of the group-level effects. The names of the matrices should corre-
spond to columns in \texttt{data} that are used as grouping factors. All levels of the
grouping factor should appear as rownames of the corresponding matrix. This
argument can be used, among others to model pedigrees and phylogenetic ef-
ects. It is now recommended to specify those matrices in the formula interface
using the \texttt{gr} and related functions. See \texttt{vignette("brms_phylogenetics")}
for more details.

\textbf{sample_prior} \hspace{1cm} Indicate if samples from priors should be drawn additionally to the posterior
samples. Options are "no" (the default), "yes", and "only". Among others,
these samples can be used to calculate Bayes factors for point hypotheses via
\texttt{hypothesis}. Please note that improper priors are not sampled, including the
default improper priors used by \texttt{brm}. See \texttt{set_prior} on how to set (proper) pri-
ors. Please also note that prior samples for the overall intercept are not obtained
by default for technical reasons. See \texttt{brmsformula} how to obtain prior samples for the
intercept. If \texttt{sample_prior} is set to "only", samples are drawn solely
from the priors ignoring the likelihood, which allows among others to generate
samples from the prior predictive distribution. In this case, all parameters must
have proper priors.

\textbf{sparse} \hspace{1cm} (Deprecated) Logical; indicates whether the population-level design matrices
should be treated as sparse (defaults to \texttt{FALSE}). For design matrices with many
zeros, this can considerably reduce required memory. Sampling speed is cur-
ently not improved or even slightly decreased. It is now recommended to use
the \texttt{sparse} argument of \texttt{brmsformula} and related functions.

\textbf{knots} \hspace{1cm} Optional list containing user specified knot values to be used for basis construc-
tion of smoothing terms. See \texttt{gamm} for more details.

\textbf{stanvars} \hspace{1cm} An optional \texttt{stanvars} object generated by function \texttt{stanvar} to define additional
variables for use in \texttt{Stan}'s program blocks.

\textbf{stan_funs} \hspace{1cm} (Deprecated) An optional character string containing self-defined \texttt{Stan}
functions, which will be included in the functions block of the generated \texttt{Stan} code.
It is now recommended to use the \texttt{stanvars} argument for this purpose instead.
recompile Logical, indicating whether the Stan model should be recompiled for every imputed data set. Defaults to FALSE. If NULL, brm_multiple tries to figure out internally, if recompilation is necessary, for example because data-dependent priors have changed. Using the default of no recompilation should be fine in most cases.

combine Logical; Indicates if the fitted models should be combined into a single fitted model object via `combine_models`. Defaults to TRUE.

fit An instance of S3 class brmsfit_multiple derived from a previous fit; defaults to NA. If fit is of class brmsfit_multiple, the compiled model associated with the fitted result is re-used and all arguments modifying the model code or data are ignored. It is not recommended to use this argument directly, but to call the `update` method, instead.

seed The seed for random number generation to make results reproducible. If NA (the default), Stan will set the seed randomly.

file Either NULL or a character string. In the latter case, the fitted model object is saved via `saveRDS` in a file named after the string supplied in file. The .rds extension is added automatically. If the file already exists, brm will load and return the saved model object instead of refitting the model. As existing files won’t be overwritten, you have to manually remove the file in order to refit and save the model under an existing file name. The file name is stored in the brmsfit object for later usage.

... Further arguments passed to brm.

Details

The combined model may issue false positive convergence warnings, as the MCMC chains corresponding to different datasets may not necessarily overlap, even if each of the original models did converge. To find out whether each of the original models converged, investigate `fit$rhats`, where `fit` denotes the output of brm_multiple.

Value

If `combine = TRUE` a brmsfit_multiple object, which inherits from class brmsfit and behaves essentially the same. If `combine = FALSE` a list of brmsfit objects.

Author(s)

Paul-Christian Buerkner <paul.buerkner@gmail.com>

Examples

```r
Not run:
library(mice)
imp <- mice(nhanes2)

fit the model using mice and lm
fit_imp1 <- with(lm(bmi ~ age + hyp + chl), data = imp)
summary(pool(fit_imp1))
```
# fit the model using brms
fit_imp2 <- brm_multiple(bmi ~ age + hyp + chl, data = imp, chains = 1)
summary(fit_imp2)
plot(fit_imp2, pars = "b_")

# investigate convergence of the original models
fit_imp2$rhats

# use the future package for parallelization
library(future)
plan(multiprocess)
fit_imp3 <- brm_multiple(bmi~age+hyp+chl, data = imp, chains = 1)
summary(fit_imp3)

## End(Not run)

car

**Spatial conditional autoregressive (CAR) structures**

**Description**

Set up an spatial conditional autoregressive (CAR) term in *brms*. The function does not evaluate its arguments – it exists purely to help set up a model with CAR terms.

**Usage**

```r
car(M, gr = NA, type = "escar")
```

**Arguments**

- **M**: Adjacency matrix of locations. All non-zero entries are treated as if the two locations are adjacent. If `gr` is specified, the row names of `W` have to match the levels of the grouping factor.
- **gr**: An optional grouping factor mapping observations to spatial locations. If not specified, each observation is treated as a separate location. It is recommended to always specify a grouping factor to allow for handling of new data in post-processing methods.
- **type**: Type of the CAR structure. Currently implemented are "escar" (exact sparse CAR), "esicar" (exact sparse intrinsic CAR), "icar" (intrinsic CAR), and "bym2". More information is provided in the 'Details' section.

**Details**

The `escar` and `esicar` types are implemented based on the case study of Max Joseph (https://github.com/mbjoseph/CARstan). The `icar` and `bym2` type is implemented based on the case study of Mitzi Morris (http://mc-stan.org/users/documentation/case-studies/icar_stan.html).
Value

An object of class ‘car_term’, which is a list of arguments to be interpreted by the formula parsing functions of \texttt{brms}.

See Also

\texttt{autocor-terms}

Examples

```r
Not run:
generate some spatial data
east <- north <- 1:10
Grid <- expand.grid(east, north)
K <- nrow(Grid)

data setup distance and neighbourhood matrices
distance <- as.matrix(dist(Grid))
W <- array(0, c(K, K))
W[distance == 1] <- 1

generate the covariates and response data
x1 <- rnorm(K)
x2 <- rnorm(K)
theta <- rnorm(K, sd = 0.05)
phi <- rmulti_normal(1, mu = rep(0, K), Sigma = 0.4 * exp(-0.1 * distance))
eta <- x1 + x2 + phi
prob <- exp(eta) / (1 + exp(eta))
size <- rep(50, K)
y <- rbinom(n = K, size = size, prob = prob)
dat <- data.frame(y, size, x1, x2)

fit a CAR model
fit <- brm(y | trials(size) ~ x1 + x2 + car(W),
 data = dat, data2 = list(W = W),
 family = binomial())
summary(fit)

End(Not run)
```

---

**Description**

Extract model coefficients, which are the sum of population-level effects and corresponding group-level effects
### S3 method for class 'brmsfit'

`coef(object, summary = TRUE, robust = FALSE, probs = c(0.025, 0.975), ...)`

**Arguments**

- **object**: An object of class `brmsfit`.
- **summary**: Should summary statistics be returned instead of the raw values? Default is `TRUE`.
- **robust**: If `FALSE` (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If `TRUE`, the median and the median absolute deviation (MAD) are applied instead. Only used if `summary` is `TRUE`.
- **probs**: The percentiles to be computed by the quantile function. Only used if `summary` is `TRUE`.
- **...**: Further arguments passed to `fixef.brmsfit` and `ranef.brmsfit`.

**Value**

A list of 3D arrays (one per grouping factor). If `summary` is `TRUE`, the 1st dimension contains the factor levels, the 2nd dimension contains the summary statistics (see `posterior_summary`), and the 3rd dimension contains the group-level effects. If `summary` is `FALSE`, the 1st dimension contains the posterior draws, the 2nd dimension contains the factor levels, and the 3rd dimension contains the group-level effects.

**Examples**

```r
Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1+Trt|visit),
 data = epilepsy, family = gaussian(), chains = 2)
extract population and group-level coefficients separately
fixef(fit)
ranef(fit)
extract combined coefficients
coef(fit)

End(Not run)
```

---

**combine_models**

**Combine Models fitted with brms**

**Description**

Combine multiple `brmsfit` objects, which fitted the same model. This is usefully for instance when having manually run models in parallel.
Usage

```r
combine_models(..., mlist = NULL, check_data = TRUE)
```

Arguments

- `...` One or more `brmsfit` objects.
- `mlist` Optional list of one or more `brmsfit` objects.
- `check_data` Logical; indicates if the data should be checked for being the same across models (defaults to `TRUE`). Setting it to `FALSE` may be useful for instance when combining models fitted on multiple imputed data sets.

Details

This function just takes the first model and replaces its `stanfit` object (slot `fit`) by the combined `stanfit` objects of all models.

Value

A `brmsfit` object.

---

**compare_ic**

*Compare Information Criteria of Different Models*

Description

Compare information criteria of different models fitted with `waic` or `loo`. Deprecated and will be removed in the future. Please use `loo_compare` instead.

Usage

```r
compare_ic(..., x = NULL, ic = c("loo", "waic", "kfold"))
```

Arguments

- `...` At least two objects returned by `waic` or `loo`. Alternatively, `brmsfit` objects with information criteria precomputed via `add_ic` may be passed, as well.
- `x` A list containing the same types of objects as can be passed via `...`
- `ic` The name of the information criterion to be extracted from `brmsfit` objects. Ignored if information criterion objects are only passed directly.

Details

See `loo_compare` for the recommended way of comparing models with the `loo` package.

Value

An object of class `iclist`. 
See Also

loo, loo_compare add_criterion

Examples

## Not run:
# model with population-level effects only
fit1 <- brm(rating ~ treat + period + carry,
            data = inhaler)
waic1 <- waic(fit1)

# model with an additional varying intercept for subjects
fit2 <- brm(rating ~ treat + period + carry + (1|subject),
            data = inhaler)
waic2 <- waic(fit2)

# compare both models
compare_ic(waic1, waic2)

## End(Not run)

conditional_effects.brmsfit

Display Conditional Effects of Predictors

Description

Display conditional effects of one or more numeric and/or categorical predictors including two-way interaction effects.

Usage

## S3 method for class 'brmsfit'
conditional_effects(
x,
effects = NULL,
conditions = NULL,
int_conditions = NULL,
re_formula = NA,
robust = TRUE,
probs = c(0.025, 0.975),
method = "posterior_epred",
spaghetti = FALSE,
surface = FALSE,
categorical = FALSE,
ordinal = FALSE,
transform = NULL,
conditional_effects.brmsfit

```r
conditional_effects(x,
 resolution = 100,
 select_points = 0,
 too_far = 0,
 ...
)
```

```r
S3 method for class 'brms_conditioned_effects'
plot(
 x,
 ncol = NULL,
 points = FALSE,
 rug = FALSE,
 mean = TRUE,
 jitter_width = 0,
 stype = c("contour", "raster"),
 line_args = list(),
 cat_args = list(),
 errorbar_args = list(),
 surface_args = list(),
 spaghetti_args = list(),
 point_args = list(),
 rug_args = list(),
 facet_args = list(),
 theme = NULL,
 ask = TRUE,
 plot = TRUE,
 ...
)
```

**Arguments**

- **x**
  - An object of class `brmsfit`.

- **effects**
  - An optional character vector naming effects (main effects or interactions) for which to compute conditional plots. Interactions are specified by a : between variable names. If NULL (the default), plots are generated for all main effects and two-way interactions estimated in the model. When specifying `effects` manually, *all* two-way interactions may be plotted even if not originally modeled.

- **conditions**
  - An optional data.frame containing variable values to condition on. Each effect defined in `effects` will be plotted separately for each row of conditions. Values in the `cond__` column will be used as titles of the subplots. If `cond__` is not given, the row names will be used for this purpose instead. It is recommended to only define a few rows in order to keep the plots clear. See `make_conditions` for an easy way to define conditions. If NULL (the default), numeric variables will be conditionalyzed by using their means and factors will get their reference level assigned. NA values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand
conditional_effects.brmsfit

mean when using sum coding.

**int_conditions** An optional named list whose elements are vectors of values of the variables specified in `effects`. At these values, predictions are evaluated. The names of `int_conditions` have to match the variable names exactly. Additionally, the elements of the vectors may be named themselves, in which case their names appear as labels for the conditions in the plots. Instead of vectors, functions returning vectors may be passed and are applied on the original values of the corresponding variable. If `NULL` (the default), predictions are evaluated at the mean and at mean + / − sd for numeric predictors and at all categories for factor-like predictors.

**re_formula** A formula containing random effects to be considered in the conditional predictions. If `NULL`, include all random effects; if `NA` (default), include no random effects.

**robust** If `TRUE` (the default) the median is used as the measure of central tendency. If `FALSE` the mean is used instead.

**probs** The quantiles to be used in the computation of credible intervals (defaults to 2.5 and 97.5 percent quantiles)

**method** Method used to obtain predictions. Can be set to "posterior_epred" (the default), "posterior_predict", or "posterior_linpred". For more details, see the respective function documentations.

**spaghetti** Logical. Indicates if predictions should be visualized via spaghetti plots. Only applied for numeric predictors. If `TRUE`, it is recommended to set argument `nsamples` to a relatively small value (e.g. 100) in order to reduce computation time.

**surface** Logical. Indicates if interactions or two-dimensional smooths should be visualized as a surface. Defaults to `FALSE`. The surface type can be controlled via argument `stype` of the related plotting method.

**categorical** Logical. Indicates if effects of categorical or ordinal models should be shown in terms of probabilities of response categories. Defaults to `FALSE`.

**ordinal** Deprecated! Please use argument `categorical`. Logical. Indicates if effects in ordinal models should be visualized as a raster with the response categories on the y-axis. Defaults to `FALSE`.

**transform** A function or a character string naming a function to be applied on the predicted responses before summary statistics are computed. Only allowed if `method = "posterior_predict"`.

**resolution** Number of support points used to generate the plots. Higher resolution leads to smoother plots. Defaults to 100. If `surface` is `TRUE`, this implies 10000 support points for interaction terms, so it might be necessary to reduce `resolution` when only few RAM is available.

**select_points** Positive number. Only relevant if `points` or `rug` are set to `TRUE`: Actual data points of numeric variables that are too far away from the values specified in `conditions` can be excluded from the plot. Values are scaled into the unit interval and then points more than `select_points` from the values in `conditions` are excluded. By default, all points are used.
too_far

Positive number. For surface plots only: Grid points that are too far away from the actual data points can be excluded from the plot. too_far determines what is too far. The grid is scaled into the unit square and then grid points more than too_far from the predictor variables are excluded. By default, all grid points are used. Ignored for non-surface plots.

 Further arguments such as subset or nsamples passed to posterior_predict or posterior_epred.

ncol

Number of plots to display per column for each effect. If NULL (default), ncol is computed internally based on the number of rows of conditions.

points

Logical; indicating whether the original data points should be added via geom_jitter. Default is FALSE. Note that only those data points will be added that match the specified conditions defined in conditions. For categorical predictors, the conditions have to match exactly. For numeric predictors, argument select_points is used to determine, which points do match a condition.

rug

Logical; indicating whether a rug representation of predictor values should be added via geom_rug. Default is FALSE. Depends on select_points in the same way as points does.

mean

Logical; only relevant for spaghetti plots. If TRUE (the default), display the mean regression line on top of the regression lines for each sample.

jitter_width

Only used if points = TRUE: Amount of horizontal jittering of the data points. Mainly useful for ordinal models. Defaults to 0 that is no jittering.

stype

Indicates how surface plots should be displayed. Either "contour" or "raster".

line_args

Only used in plots of continuous predictors: A named list of arguments passed to geom_smooth.

cat_args

Only used in plots of categorical predictors: A named list of arguments passed to geom_point.

errorbar_args

Only used in plots of categorical predictors: A named list of arguments passed to geom_errorbar.

surface_args

Only used in surface plots: A named list of arguments passed to geom_contour or geom_raster (depending on argument stype).

spaghetti_args

Only used in spaghetti plots: A named list of arguments passed to geom_smooth.

point_args

Only used if points = TRUE: A named list of arguments passed to geom_jitter.

rug_args

Only used if rug = TRUE: A named list of arguments passed to geom_rug.

facet_args

Only used if multiple conditions are provided: A named list of arguments passed to facet_wrap.

theme

A theme object modifying the appearance of the plots. For some basic themes see ggtheme and theme_default.

ask

Logical; indicates if the user is prompted before a new page is plotted. Only used if plot is TRUE.

plot

Logical; indicates if plots should be plotted directly in the active graphic device. Defaults to TRUE.
Details

When creating conditional_effects for a particular predictor (or interaction of two predictors), one has to choose the values of all other predictors to condition on. By default, the mean is used for continuous variables and the reference category is used for factors, but you may change these values via argument conditions. This also has an implication for the points argument: In the created plots, only those points will be shown that correspond to the factor levels actually used in the conditioning, in order not to create the false impression of bad model fit, where it is just due to conditioning on certain factor levels.

To fully change colors of the created plots, one has to amend both scale_colour and scale_fill. See scale_colour_grey or scale_colour_gradient for more details.

Value

An object of class 'brms_conditional_effects', which is a named list with one data.frame per effect containing all information required to generate conditional effects plots. Among others, these data.frames contain some special variables, namely estimate__ (predicted values of the response), se__ (standard error of the predicted response), lower__ and upper__ (lower and upper bounds of the uncertainty interval of the response), as well as cond__ (used in faceting when conditions contains multiple rows).

The corresponding plot method returns a named list of ggplot objects, which can be further customized using the ggplot2 package.

Examples

```r
Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1 | patient),
 data = epilepsy, family = poisson())

plot all conditional effects
plot(conditional_effects(fit), ask = FALSE)

change colours to grey scale
library(ggplot2)
me <- conditional_effects(fit, "zBase:Trt")
plot(me, plot = FALSE)[[1]] +
 scale_color_grey() +
 scale_fill_grey()

only plot the conditional interaction effect of 'zBase:Trt'
for different values for 'zAge'
conditions <- data.frame(zAge = c(-1, 0, 1))
plot(conditional_effects(fit, effects = "zBase:Trt",
 conditions = conditions))

also incorporate random effects variance over patients
also add data points and a rug representation of predictor values
plot(conditional_effects(fit, effects = "zBase:Trt",
 conditions = conditions, re_formula = NULL),
 points = TRUE, rug = TRUE)
```
## change handling of two-way interactions
int_conditions <- list(
  zBase = setNames(c(-2, 1, 0), c("b", "c", "a"))
)
conditional_effects(fit, effects = "Trt:zBase",
  int_conditions = int_conditions)
conditional_effects(fit, effects = "Trt:zBase",
  int_conditions = list(zBase = quantile))

## fit a model to illustrate how to plot 3-way interactions
fit3way <- brm(count ~ zAge * zBase * Trt, data = epilepsy)
conditions <- make_conditions(fit3way, "zAge")
conditional_effects(fit3way, "zBase:Trt", conditions = conditions)
## only include points close to the specified values of zAge
me <- conditional_effects(
  fit3way, "zBase:Trt", conditions = conditions,
  select_points = 0.1
)
plot(me, points = TRUE)

## End(Not run)

---

**conditional_smooths.brmsfit**

*Display Smooth Terms*

**Description**

Display smooth s and t2 terms of models fitted with `brms`.

**Usage**

```r
S3 method for class 'brmsfit'
conditional_smooths(
 x,
 smooths = NULL,
 int_conditions = NULL,
 probs = c(0.025, 0.975),
 spaghetti = FALSE,
 resolution = 100,
 too_far = 0,
 subset = NULL,
 nsamples = NULL,
 ...
)

conditional_smooths(x, ...)
```

### Arguments

- **x**: An object of class `brmsfit`.
- **smooths**: Optional character vector of smooth terms to display. If `NULL` (the default) all smooth terms are shown.
- **int_conditions**: An optional named list whose elements are vectors of values of the variables specified in `effects`. At these values, predictions are evaluated. The names of `int_conditions` have to match the variable names exactly. Additionally, the elements of the vectors may be named themselves, in which case their names appear as labels for the conditions in the plots. Instead of vectors, functions returning vectors may be passed and are applied on the original values of the corresponding variable. If `NULL` (the default), predictions are evaluated at the `mean` and at `mean + / − sd` for numeric predictors and at all categories for factor-like predictors.
- **probs**: The quantiles to be used in the computation of credible intervals (defaults to 2.5 and 97.5 percent quantiles)
- **spaghetti**: Logical. Indicates if predictions should be visualized via spaghetti plots. Only applied for numeric predictors. If `TRUE`, it is recommended to set argument `nsamples` to a relatively small value (e.g. 100) in order to reduce computation time.
- **resolution**: Number of support points used to generate the plots. Higher resolution leads to smoother plots. Defaults to 100. If `surface` is `TRUE`, this implies 10000 support points for interaction terms, so it might be necessary to reduce `resolution` when only few RAM is available.
- **too_far**: Positive number. For surface plots only: Grid points that are too far away from the actual data points can be excluded from the plot. `too_far` determines what is too far. The grid is scaled into the unit square and then grid points more than `too_far` from the predictor variables are excluded. By default, all grid points are used. Ignored for non-surface plots.
- **subset**: A numeric vector specifying the posterior samples to be used. If `NULL` (the default), all samples are used.
- **nsamples**: Positive integer indicating how many posterior samples should be used. If `NULL` (the default) all samples are used. Ignored if `subset` is not `NULL`.
- **...**: Currently ignored.

### Details

Two-dimensional smooth terms will be visualized using either contour or raster plots.

### Value

For the `brmsfit` method, an object of class `brms_conditional_effects`. See `conditional_effects` for more details and documentation of the related plotting function.
Examples

```r
Not run:
set.seed(0)
dat <- mgcv::gamSim(1, n = 200, scale = 2)
fit <- brm(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat)
show all smooth terms
plot(conditional_smooths(fit), rug = TRUE, ask = FALSE)
show only the smooth term s(x2)
plot(conditional_smooths(fit, smooths = "s(x2)"), ask = FALSE)

fit and plot a two-dimensional smooth term
fit2 <- brm(y ~ t2(x0, x2), data = dat)
ms <- conditional_smooths(fit2)
plot(ms, stype = "contour")
plot(ms, stype = "raster")

End(Not run)
```

---

control_params

*Extract Control Parameters of the NUTS Sampler*

**Description**

Extract control parameters of the NUTS sampler such as `adapt_delta` or `max_treedepth`.

**Usage**

```r
control_params(x, ...)
```

### S3 method for class ‘brmsfit’

```r
control_params(x, pars = NULL, ...)
```

**Arguments**

- `x` An R object
- `...` Currently ignored.
- `pars` Optional names of the control parameters to be returned. If `NULL` (the default) all control parameters are returned. See `stan` for more details.

**Value**

A named list with control parameter values.
cor_ar

(Deprecated) AR(p) correlation structure

Description

This function is deprecated. Please see ar for the new syntax. This function is a constructor for the cor_arma class, allowing for autoregression terms only.

Usage

```r
cor_ar(formula = ~1, p = 1, cov = FALSE)
```

Arguments

- `formula`: A one sided formula of the form \( ~ t \), or \( ~ t \mid g \), specifying a time covariate \( t \) and, optionally, a grouping factor \( g \). A covariate for this correlation structure must be integer valued. When a grouping factor is present in `formula`, the correlation structure is assumed to apply only to observations within the same grouping level; observations with different grouping levels are assumed to be uncorrelated. Defaults to \(~ 1\), which corresponds to using the order of the observations in the data as a covariate, and no groups.

- `p`: A non-negative integer specifying the autoregressive (AR) order of the ARMA structure. Default is 1.

- `cov`: A flag indicating whether ARMA effects should be estimated by means of residual covariance matrices. This is currently only possible for stationary ARMA effects of order 1. If the model family does not have natural residuals, latent residuals are added automatically. If `FALSE` (the default) a regression formulation is used that is considerably faster and allows for ARMA effects of order higher than 1 but is only available for `gaussian` models and some of its generalizations.

Details

AR refers to autoregressive effects of residuals, which is what is typically understood as autoregressive effects. However, one may also model autoregressive effects of the response variable, which is called ARR in `brms`.

Value

An object of class `cor_arma` containing solely autoregression terms.

See Also

- `cor_arma`
Examples

cor_ar(~visit|patient, p = 2)

---

cor_arma

(Deprecated) ARMA(p,q) correlation structure

Description

This function is deprecated. Please see arma for the new syntax. This functions is a constructor for the cor_arma class, representing an autoregression-moving average correlation structure of order (p, q).

Usage

cor_arma(formula = ~1, p = 0, q = 0, r = 0, cov = FALSE)

Arguments

- **formula**: A one sided formula of the form \sim t, or \sim t \mid g, specifying a time covariate t and, optionally, a grouping factor g. A covariate for this correlation structure must be integer valued. When a grouping factor is present in formula, the correlation structure is assumed to apply only to observations within the same grouping level; observations with different grouping levels are assumed to be uncorrelated. Defaults to \sim 1, which corresponds to using the order of the observations in the data as a covariate, and no groups.

- **p**: A non-negative integer specifying the autoregressive (AR) order of the ARMA structure. Default is 0.

- **q**: A non-negative integer specifying the moving average (MA) order of the ARMA structure. Default is 0.

- **r**: No longer supported.

- **cov**: A flag indicating whether ARMA effects should be estimated by means of residual covariance matrices. This is currently only possible for stationary ARMA effects of order 1. If the model family does not have natural residuals, latent residuals are added automatically. If FALSE (the default) a regression formulation is used that is considerably faster and allows for ARMA effects of order higher than 1 but is only available for gaussian models and some of its generalizations.

Value

An object of class cor_arma, representing an autoregression-moving-average correlation structure.

See Also

cor_ar, cor_ma
Examples

cor_arma(~ visit | patient, p = 2, q = 2)

Description

Classes of correlation structures available in the **brms** package. **cor_brms** is not a correlation structure itself, but the class common to all correlation structures implemented in **brms**.

Available correlation structures

- **cor_arma**: autoregressive-moving average (ARMA) structure, with arbitrary orders for the autoregressive and moving average components
- **cor_ar**: autoregressive (AR) structure of arbitrary order
- **cor_ma**: moving average (MA) structure of arbitrary order
- **cor_car**: Spatial conditional autoregressive (CAR) structure
- **cor_sar**: Spatial simultaneous autoregressive (SAR) structure
- **cor_fixed**: fixed user-defined covariance structure

See Also

- **cor_arma**, **cor_ar**, **cor_ma**, **cor_car**, **cor_sar**, **cor_fixed**

Description

These function are deprecated. Please see **car** for the new syntax. These functions are constructors for the **cor_car** class implementing spatial conditional autoregressive structures.

Usage

cor_car(W, formula = ~1, type = "escar")
cor_icar(W, formula = ~1)
Arguments

\(W\)  
Adjacency matrix of locations. All non-zero entries are treated as if the two locations are adjacent. If \(\text{formula}\) contains a grouping factor, the row names of \(W\) have to match the levels of the grouping factor.

\(\text{formula}\)  
An optional one-sided formula of the form \(\sim 1 \mid g\), where \(g\) is a grouping factor mapping observations to spatial locations. If not specified, each observation is treated as a separate location. It is recommended to always specify a grouping factor to allow for handling of new data in post-processing methods.

type  
Type of the CAR structure. Currently implemented are "escar" (exact sparse CAR), "esicar" (exact sparse intrinsic CAR), "icar" (intrinsic CAR), and "bym2". More information is provided in the 'Details' section.

Details

The escar and esicar types are implemented based on the case study of Max Joseph (https://github.com/mbjoseph/CARstan). The icar and bym2 type is implemented based on the case study of Mitzi Morris (http://mc-stan.org/users/documentation/case-studies/icar_stan.html).

Examples

```r
Not run:
generate some spatial data
east <- north <- 1:10
Grid <- expand.grid(east, north)
K <- nrow(Grid)

set up distance and neighbourhood matrices
distance <- as.matrix(dist(Grid))
W <- array(0, c(K, K))
W[distance == 1] <- 1

generate the covariates and response data
x1 <- rnorm(K)
x2 <- rnorm(K)
theta <- rnorm(K, sd = 0.05)
phi <- rmulti_normal(1, mu = rep(0, K), Sigma = 0.4 * exp(-0.1 * distance))
eta <- x1 + x2 + phi
prob <- exp(eta) / (1 + exp(eta))
size <- rep(50, K)
y <- rbinom(n = K, size = size, prob = prob)
dat <- data.frame(y, size, x1, x2)

fit a CAR model
fit <- brm(y | trials(size) ~ x1 + x2, data = dat,
family = binomial(), autocor = cor_car(W))
summary(fit)
End(Not run)
```
cor_cosy

(Deprecated) Compound Symmetry (COSY) Correlation Structure

Description

This function is deprecated. Please see cosy for the new syntax. This functions is a constructor for the cor_cosy class, representing a compound symmetry structure corresponding to uniform correlation.

Usage

```
cor_cosy(formula = ~1)
```

Arguments

- `formula`: A one sided formula of the form \( \sim t \) or \( \sim t \mid g \), specifying a time covariate \( t \) and, optionally, a grouping factor \( g \). A covariate for this correlation structure must be integer valued. When a grouping factor is present in `formula`, the correlation structure is assumed to apply only to observations within the same grouping level; observations with different grouping levels are assumed to be uncorrelated. Defaults to \( \sim 1 \), which corresponds to using the order of the observations in the data as a covariate, and no groups.

Value

An object of class `cor_cosy`, representing a compound symmetry correlation structure.

Examples

```
cor_cosy(~ visit | patient)
```

cor_fixed

(Deprecated) Fixed user-defined covariance matrices

Description

This function is deprecated. Please see `fcor` for the new syntax. Define a fixed covariance matrix of the response variable for instance to model multivariate effect sizes in meta-analysis.

Usage

```
cor_fixed(V)
```
Arguments

V

Known covariance matrix of the response variable. If a vector is passed, it will be used as diagonal entries (variances) and covariances will be set to zero.

Value

An object of class cor_fixed.

Examples

## Not run:
dat <- data.frame(y = rnorm(3))
V <- cbind(c(0.5, 0.3, 0.2), c(0.3, 1, 0.1), c(0.2, 0.1, 0.2))
fit <- brm(y~1, data = dat, autocor = cor_fixed(V))
## End(Not run)

cor_ma

(Deprecated) MA(q) correlation structure

Description

This function is deprecated. Please see ma for the new syntax. This function is a constructor for the cor_arma class, allowing for moving average terms only.

Usage

cor_ma(formula = ~1, q = 1, cov = FALSE)

Arguments

formula

A one sided formula of the form ~ t, or ~ t | g, specifying a time covariate t and, optionally, a grouping factor g. A covariate for this correlation structure must be integer valued. When a grouping factor is present in formula, the correlation structure is assumed to apply only to observations within the same grouping level; observations with different grouping levels are assumed to be uncorrelated. Defaults to ~ 1, which corresponds to using the order of the observations in the data as a covariate, and no groups.

q

A non-negative integer specifying the moving average (MA) order of the ARMA structure. Default is 1.

cov

A flag indicating whether ARMA effects should be estimated by means of residual covariance matrices. This is currently only possible for stationary ARMA effects of order 1. If the model family does not have natural residuals, latent residuals are added automatically. If FALSE (the default) a regression formulation is used that is considerably faster and allows for ARMA effects of order higher than 1 but is only available for gaussian models and some of its generalizations.
cor_sar

Value
An object of class cor arma containing solely moving average terms.

See Also
cor arma

Examples
cor ma(~visit|patient, q = 2)

cor_sar

( Deprecated) Spatial simultaneous autoregressive (SAR) structures

Description
These functions are deprecated. Please see sar for the new syntax. These functions are constructors for the cor sar class implementing spatial simultaneous autoregressive structures. The lagsar structure implements SAR of the response values:

\[ y = \rho Wy + \eta + e \]

The errorsar structure implements SAR of the residuals:

\[ y = \eta + u, u = \rho Wu + e \]

In the above equations, \( \eta \) is the predictor term and \( e \) are independent normally or t-distributed residuals.

Usage
cor_sar(W, type = c("lag", "error"))
cor_lagsar(W)
cor_errorsar(W)

Arguments

W An object specifying the spatial weighting matrix. Can be either the spatial weight matrix itself or an object of class listw or nb, from which the spatial weighting matrix can be computed.

type Type of the SAR structure. Either "lag" (for SAR of the response values) or "error" (for SAR of the residuals).

Details
Currently, only families gaussian and student support SAR structures.
Value

An object of class cor_sar to be used in calls to brm.

Examples

```r
Not run:
data(oldcol, package = "spdep")
fit1 <- brm(CRIME ~ INC + HOVAL, data = COL.OLD,
 autocor = cor_lagsar(COL.nb),
 chains = 2, cores = 2)
summary(fit1)
plot(fit1)

fit2 <- brm(CRIME ~ INC + HOVAL, data = COL.OLD,
 autocor = cor_errorsar(COL.nb),
 chains = 2, cores = 2)
summary(fit2)
plot(fit2)

End(Not run)
```

cosy

Set up COSY correlation structures

Description

Set up a compounds symmetry (COSY) term in brms. The function does not evaluate its arguments – it exists purely to help set up a model with COSY terms.

Usage

```r
cosy(time = NA, gr = NA)
```

Arguments

- **time**: An optional time variable specifying the time ordering of the observations. By default, the existing order of the observations in the data is used.
- **gr**: An optional grouping variable. If specified, the correlation structure is assumed to apply only to observations within the same grouping level.

Value

An object of class 'cosy_term', which is a list of arguments to be interpreted by the formula parsing functions of brms.

See Also

autocor-terms
### Examples

```r
Not run:
data("lh")
lh <- as.data.frame(lh)
fit <- brm(x ~ cosy(), data = lh)
summary(fit)

End(Not run)
```

---

**cs**  
Category Specific Predictors in **brms** Models

**Usage**

```r
cs(expr)
```

**Arguments**

- `expr`  
  Expression containing predictors, for which category specific effects should be estimated. For evaluation, R formula syntax is applied.

**Details**

For detailed documentation see `help(brmsformula)` as well as `vignette("brms_overview")`. This function is almost solely useful when called in formulas passed to the **brms** package.

**See Also**

`brmsformula`

---

### Examples

```r
Not run:
fit <- brm(rating ~ period + carry + cs(treat),
 data = inhaler, family = sratio("cloglog"),
 prior = set_prior("normal(0,5)"), chains = 2)
summary(fit)
plot(fit, ask = FALSE)

End(Not run)
```
custom_family

Custom Families in brms Models

Description

Define custom families (i.e. response distribution) for use in brms models. It allows users to benefit from the modeling flexibility of brms, while applying their self-defined likelihood functions. All of the post-processing methods for brmsfit objects can be made compatible with custom families. See vignette("brms_customfamilies") for more details. For a list of built-in families see brmsfamily.

Usage

custom_family(
  name,
  dpars = "mu",
  links = "identity",
  type = c("real", "int"),
  lb = NA,
  ub = NA,
  vars = NULL,
  specials = NULL,
  threshold = "flexible",
  log_lik = NULL,
  posterior_predict = NULL,
  posterior_epred = NULL,
  predict = NULL,
  fitted = NULL,
  env = parent.frame()
)

Arguments

name

Name of the custom family.

dpars

Names of the distributional parameters of the family. One parameter must be named "mu" and the main formula of the model will correspond to that parameter.

links

Names of the link functions of the distributional parameters.

type

Indicates if the response distribution is continuous ("real") or discrete ("int").

lb

Vector of lower bounds of the distributional parameters. Defaults to NA that is no lower bound.

ub

Vector of upper bounds of the distributional parameters. Defaults to NA that is no upper bound.
vars  Names of variables, which are part of the likelihood function without being distributional parameters. That is, vars can be used to pass data to the likelihood. See stanvar for details about adding self-defined data to the generated Stan model.
specials  A character vector of special options to enable for this custom family. Currently for internal use only.
threshold  Optional threshold type for custom ordinal families. Ignored for non-ordinal families.
log_lik  Optional function to compute log-likelihood values of the model in R. This is only relevant if one wants to ensure compatibility with method log_lik.
predict  Deprecated alias of 'posterior_predict'.
fitted  Deprecated alias of 'posterior_epred'.
env  An environment in which certain post-processing functions related to the custom family can be found, if there were not directly passed to custom_family. This is only relevant if one wants to ensure compatibility with the methods log_lik, posterior_predict, or posterior_epred. By default, env is the environment from which custom_family is called.

details

The corresponding probability density or mass Stan functions need to have the same name as the custom family. That is if a family is called myfamily, then the Stan functions should be called myfamily_lpdf or myfamily_lpmf depending on whether it defines a continuous or discrete distribution.

value

An object of class customfamily inheriting from class brmsfamily.

see also

brmsfamily, stanvar

examples

## Not run:
## demonstrate how to fit a beta-binomial model
## generate some fake data
phi <- 0.7
n <- 300
z <- rnorm(n, sd = 0.2)
Compute Density Ratios

Description

Compute the ratio of two densities at given points based on samples of the corresponding distributions.

Usage

density_ratio(x, y = NULL, point = 0, n = 4096, ...)

Arguments

- **x**: Vector of samples from the first distribution, usually the posterior distribution of the quantity of interest.
- **y**: Optional vector of samples from the second distribution, usually the prior distribution of the quantity of interest. If NULL (the default), only the density of x will be evaluated.
point Numeric values at which to evaluate and compare the densities. Defaults to 0.
n Single numeric value. Influences the accuracy of the density estimation. See `density` for details.
... Further arguments passed to `density`.

Details
In order to achieve sufficient accuracy in the density estimation, more samples than usual are required. That is you may need an effective sample size of 10,000 or more to reliably estimate the densities.

Value
A vector of length equal to `length(point)`. If `y` is provided, the density ratio of `x` against `y` is returned. Else, only the density of `x` is returned.

Examples
```r
x <- rnorm(10000)
y <- rnorm(10000, mean = 1)
density_ratio(x, y, point = c(0, 1))
```

---

**diagnostic-quantities**  
*Extract Diagnostic Quantities of brms Models*

### Description
Extract quantities that can be used to diagnose sampling behavior of the algorithms applied by Stan at the back-end of brms.

### Usage
```r
S3 method for class 'brmsfit'
log_posterior(object, ...)

S3 method for class 'brmsfit'
nuts_params(object, pars = NULL, ...)

S3 method for class 'brmsfit'
rhat(object, pars = NULL, ...)

S3 method for class 'brmsfit'
neff_ratio(object, pars = NULL, ...)
```
Dirichlet

Arguments

object  A brmsfit object.
...  Arguments passed to individual methods.
pars  An optional character vector of parameter names. For nuts_params these will be NUTS sampler parameter names rather than model parameters. If pars is omitted all parameters are included.

Details

For more details see bayesplot-extractors.

Value

The exact form of the output depends on the method.

Examples

```r
Not run:
fit <- brm(time ~ age * sex, data = kidney)

lp <- log_posterior(fit)
head(lp)

np <- nuts_params(fit)
str(np)
extract the number of divergence transitions
sum(subset(np, Parameter == "divergent__")$Value)

head(rhat(fit))
head(neff_ratio(fit))

End(Not run)
```

Dirichlet

*The Dirichlet Distribution*

Description

Density function and random number generation for the dirichlet distribution with shape parameter vector alpha.

Usage

```r
ddirichlet(x, alpha, log = FALSE)
rdirichlet(n, alpha)
```
Arguments

- **x**: Matrix of quantiles. Each row corresponds to one probability vector.
- **alpha**: Matrix of positive shape parameters. Each row corresponds to one probability vector.
- **log**: Logical; If TRUE, values are returned on the log scale.
- **n**: Number of samples to draw from the distribution.

Details

See vignette("brms_families") for details on the parameterization.

---

emmeans-brms-helpers  Support Functions for emmeans

Description

Functions required for compatibility of brms with emmeans. Users are not required to call these functions themselves. Instead, they will be called automatically by the emmeans function of the emmeans package.

Usage

```r
recover_data.brmsfit(object, data, resp = NULL, dpar = NULL, nlpar = NULL, ...)

emm_basis.brmsfit(
 object,
 trms,
 xlev,
 grid,
 vcov.,
 resp = NULL,
 dpar = NULL,
 nlpar = NULL,
 ...
)
```

Arguments

- **object**: An object of class brmsfit.
- **data, trms, xlev, grid, vcov.**: Arguments required by emmeans.
- **resp**: Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- **dpar**: Optional name of a predicted distributional parameter. If specified, expected predictions of this parameters are returned.
Optional name of a predicted non-linear parameter. If specified, expected predictions of this parameters are returned.

Additional arguments passed to `emmeans`.

Examples

```r
Not run:
fit <- brm(time | cens(censored) ~ age * sex + disease + (1|patient),
 data = kidney, family = lognormal())
summary(fit)

summarize via 'emmeans'
library(emmeans)
rg <- ref_grid(fit)
em <- emmeans(rg, "disease")
summary(em, point.est = mean)

End(Not run)
```

epilepsy

Epileptic seizure counts

Description

Breslow and Clayton (1993) analyze data initially provided by Thall and Vail (1990) concerning seizure counts in a randomized trial of anti-convulsant therapy in epilepsy. Covariates are treatment, 8-week baseline seizure counts, and age of the patients in years.

Usage

epilepsy

Format

A data frame of 236 observations containing information on the following 9 variables.

- **Age**: The age of the patients in years
- **Base**: The seizure count at 8-weeks baseline
- **Trt**: Either 0 or 1 indicating if the patient received anti-convulsant therapy
- **patient**: The patient number
- **visit**: The session number from 1 (first visit) to 4 (last visit)
- **count**: The seizure count between two visits
- **obs**: The observation number, that is a unique identifier for each observation
- **zAge**: Standardized Age
- **zBase**: Standardized Base
ExGaussian

Source


Examples

```r
Not run:
poisson regression without random effects.
fit1 <- brm(count ~ zAge + zBase * Trt,
 data = epilepsy, family = poisson())
sample(fit1)
plot(fit1)

poisson regression with varying intercepts of patients
as well as normal priors for overall effects parameters.
fit2 <- brm(count ~ zAge + zBase * Trt + (1|patient),
 data = epilepsy, family = poisson(),
 prior = set_prior("normal(0,5)"))
sample(fit2)
plot(fit2)

End(Not run)
```

ExGaussian: The Exponentially Modified Gaussian Distribution

Description

Density, distribution function, and random generation for the exponentially modified Gaussian distribution with mean $\mu$ and standard deviation $\sigma$ of the gaussian component, as well as scale $\beta$ of the exponential component.

Usage

dexgaussian(x, mu, sigma, beta, log = FALSE)
pexgaussian(q, mu, sigma, beta, lower.tail = TRUE, log.p = FALSE)
rexgaussian(n, mu, sigma, beta)
Arguments

- **x, q**: Vector of quantiles.
- **mu**: Vector of means of the combined distribution.
- **sigma**: Vector of standard deviations of the Gaussian component.
- **beta**: Vector of scales of the exponential component.
- **log**: Logical; If TRUE, values are returned on the log scale.
- **lower.tail**: Logical; If TRUE (default), return P(X <= x). Else, return P(X > x).
- **log.p**: Logical; If TRUE, values are returned on the log scale.
- **n**: Number of samples to draw from the distribution.

Details

See vignette("brms_families") for details on the parameterization.

---

**expose_functions.brmsfit**

*Expose user-defined Stan functions*

---

Description

Export user-defined Stan function and optionally vectorize them. For more details see `expose_stan_functions`.

Usage

```r
S3 method for class 'brmsfit'
expose_functions(x, vectorize = FALSE, env = globalenv(), ...)
expose_functions(x, ...)
```

Arguments

- **x**: An object of class `brmsfit`.
- **vectorize**: Logical; Indicates if the exposed functions should be vectorized via `Vectorize`. Defaults to FALSE.
- **env**: Environment where the functions should be made available. Defaults to the global environment.
- **...**: Further arguments passed to `expose_stan_functions`. 
Exponential function plus one.

**Description**

Computes \( \exp(x) + 1 \).

**Usage**

`expp1(x)`

**Arguments**

- `x` A numeric or complex vector.

---

Extract Model Family Objects

**Description**

Extract Model Family Objects

**Usage**

```r
S3 method for class 'brmsfit'
family(object, resp = NULL, ...)
```

**Arguments**

- `object` An object of class `brmsfit`.
- `resp` Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- `...` Currently unused.

**Value**

A `brmsfamily` object or a list of such objects for multivariate models.
Description

Set up a fixed residual correlation (FCOR) term in \texttt{brms}. The function does not evaluate its arguments – it exists purely to help set up a model with FCOR terms.

Usage

\texttt{fcor(M)}

Arguments

\texttt{M}  
Known correlation/covariance matrix of the response variable. If a vector is passed, it will be used as diagonal entries (variances) and correlations/covariances will be set to zero. The actual covariance matrix used in the likelihood is obtained by multiplying \texttt{M} by the square of the residual standard deviation parameter \texttt{sigma} estimated as part of the model.

Value

An object of class ‘\texttt{fcor\_term}’, which is a list of arguments to be interpreted by the formula parsing functions of \texttt{brms}.

See Also

\texttt{autocor\_terms}

Examples

```r
Not run:
dat <- data.frame(y = rnorm(3))
V <- cbind(c(0.5, 0.3, 0.2), c(0.3, 1, 0.1), c(0.2, 0.1, 0.2))
fit <- brm(y ~ 1 + fcor(V), data = dat, data2 = list(V = V))
End(Not run)
```
fitted.brmsfit

Expected Values of the Posterior Predictive Distribution

Description

This method is an alias of posterior_epred.brmsfit with additional arguments for obtaining summaries of the computed samples.

Usage

```r
S3 method for class 'brmsfit'
fitted(
 object,
 newdata = NULL,
 re_formula = NULL,
 scale = c("response", "linear"),
 resp = NULL,
 dpar = NULL,
 nlpar = NULL,
 nsamples = NULL,
 subset = NULL,
 sort = FALSE,
 summary = TRUE,
 robust = FALSE,
 probs = c(0.025, 0.975),
...)
```

Arguments

- **object**: An object of class brmsfit.
- **newdata**: An optional data.frame for which to evaluate predictions. If NULL (default), the original data of the model is used. NA values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.
- **re_formula**: formula containing group-level effects to be considered in the prediction. If NULL (default), include all group-level effects; if NA, include no group-level effects.
- **scale**: Either "response" or "linear". If "response", results are returned on the scale of the response variable. If "linear", results are returned on the scale of the linear predictor term, that is without applying the inverse link function or other transformations.
- **resp**: Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- **dpar**: Optional name of a predicted distributional parameter. If specified, expected predictions of this parameters are returned.
Optional name of a predicted non-linear parameter. If specified, expected predictions of this parameters are returned.

Positive integer indicating how many posterior samples should be used. If NULL (the default) all samples are used. Ignored if subset is not NULL.

A numeric vector specifying the posterior samples to be used. If NULL (the default), all samples are used.

Logical. Only relevant for time series models. Indicating whether to return predicted values in the original order (FALSE; default) or in the order of the time series (TRUE).

Should summary statistics be returned instead of the raw values? Default is TRUE..

If FALSE (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If TRUE, the median and the median absolute deviation (MAD) are applied instead. Only used if summary is TRUE.

The percentiles to be computed by the quantile function. Only used if summary is TRUE.

Further arguments passed to prepare_predictions that control several aspects of data validation and prediction.

An array of predicted mean response values. If summary = FALSE the output resembles those of posterior_epred.brmsfit.

If summary = TRUE the output depends on the family: For categorical and ordinal families, the output is an N x E x C array, where N is the number of observations, E is the number of summary statistics, and C is the number of categories. For all other families, the output is an N x E matrix. The number of summary statistics E is equal to 2 + length(probs): The Estimate column contains point estimates (either mean or median depending on argument robust), while the Est.Error column contains uncertainty estimates (either standard deviation or median absolute deviation depending on argument robust). The remaining columns starting with Q contain quantile estimates as specified via argument probs.

In multivariate models, an additional dimension is added to the output which indexes along the different response variables.

An array of predicted mean response values. If summary = FALSE the output resembles those of posterior_epred.brmsfit.

If summary = TRUE the output depends on the family: For categorical and ordinal families, the output is an N x E x C array, where N is the number of observations, E is the number of summary statistics, and C is the number of categories. For all other families, the output is an N x E matrix. The number of summary statistics E is equal to 2 + length(probs): The Estimate column contains point estimates (either mean or median depending on argument robust), while the Est.Error column contains uncertainty estimates (either standard deviation or median absolute deviation depending on argument robust). The remaining columns starting with Q contain quantile estimates as specified via argument probs.

In multivariate models, an additional dimension is added to the output which indexes along the different response variables.

See Also

posterior_epred.brmsfit

Examples

```r
Not run:
fit a model
fit <- brm(rating ~ treat + period + carry + (1|subject),
 data = inhaler)

compute expected predictions
```
fitted_values <- fitted(fit)
head(fitted_values)

## plot expected predictions against actual response
dat <- as.data.frame(cbind(Y = standata(fit)$Y, fitted_values))
ggplot(dat) + geom_point(aes(x = Estimate, y = Y))

## End(Not run)

---

**fixef.brmsfit**

### Extract Population-Level Estimates

**Description**

Extract the population-level ('fixed') effects from a brmsfit object.

**Usage**

```r
S3 method for class 'brmsfit'
fixef(
 object,
 summary = TRUE,
 robust = FALSE,
 probs = c(0.025, 0.975),
 pars = NULL,
 ...
)
```

**Arguments**

- **object**: An object of class brmsfit.
- **summary**: Should summary statistics be returned instead of the raw values? Default is TRUE.
- **robust**: If FALSE (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If TRUE, the median and the median absolute deviation (MAD) are applied instead. Only used if summary is TRUE.
- **probs**: The percentiles to be computed by the quantile function. Only used if summary is TRUE.
- **pars**: Optional names of coefficients to extract. By default, all coefficients are extracted.
- **...**: Currently ignored.
Value

If summary is TRUE, a matrix returned by posterior_summary for the population-level effects. If summary is FALSE, a matrix with one row per posterior draw and one column per population-level effect.

Examples

```r
Not run:
fit <- brm(time | cens(censored) ~ age + sex + disease,
data = kidney, family = "exponential")
fixef(fit)
extract only some coefficients
fixef(fit, pars = c("age", "sex"))
End(Not run)
```

---

**Frechet**

*The Frechet Distribution*

Description

Density, distribution function, quantile function and random generation for the Frechet distribution with location loc, scale scale, and shape shape.

Usage

```r
dfrechet(x, loc = 0, scale = 1, shape = 1, log = FALSE)
pfrechet(q, loc = 0, scale = 1, shape = 1, lower.tail = TRUE, log.p = FALSE)
qfrechet(p, loc = 0, scale = 1, shape = 1, lower.tail = TRUE, log.p = FALSE)
rfrechet(n, loc = 0, scale = 1, shape = 1)
```

Arguments

- **x, q** Vector of quantiles.
- **loc** Vector of locations.
- **scale** Vector of scales.
- **shape** Vector of shapes.
- **log** Logical; If TRUE, values are returned on the log scale.
- **lower.tail** Logical; If TRUE (default), return P(X <= x). Else, return P(X > x).
- **log.p** Logical; If TRUE, values are returned on the log scale.
- **p** Vector of probabilities.
- **n** Number of samples to draw from the distribution.
GenExtremeValue

The Generalized Extreme Value Distribution

Description

Density, distribution function, and random generation for the generalized extreme value distribution with location \( \mu \), scale \( \sigma \) and shape \( \xi \).

Usage

```r
\texttt{dgen_extreme_value(x, \mu = 0, \sigma = 1, \xi = 0, log = FALSE)}
```

```r
\texttt{pgen_extreme_value(q, \mu = 0, \sigma = 1, \xi = 0, lower.tail = TRUE, log.p = FALSE)}
```

```r
\texttt{rgen_extreme_value(n, \mu = 0, \sigma = 1, \xi = 0)}
```

Arguments

- \( x, q \) Vector of quantiles.
- \( \mu \) Vector of locations.
- \( \sigma \) Vector of scales.
- \( \xi \) Vector of shapes.
- \( \log \) Logical; If TRUE, values are returned on the log scale.
- \( \text{lower.tail} \) Logical; If TRUE (default), return \( P(X \leq x) \). Else, return \( P(X > x) \).
- \( \text{log.p} \) Logical; If TRUE, values are returned on the log scale.
- \( n \) Number of samples to draw from the distribution.

Details

See vignette("brms\_families") for details on the parameterization.
Overview on Priors for \texttt{brms} Models

**Description**

Get information on all parameters (and parameter classes) for which priors may be specified including default priors.

**Usage**

```r
default_prior(
 formula,
 data,
 family = gaussian(),
 autocor = NULL,
 knots = NULL,
 sparse = NULL,
 ...
)
```

**Arguments**

- **formula**: An object of class \texttt{formula}, \texttt{brmsformula}, or \texttt{mvbrmsformula} (or one that can be coerced to that class): A symbolic description of the model to be fitted. The details of model specification are explained in \texttt{brmsformula}.

- **data**: An object of class \texttt{data.frame} (or one that can be coerced to that class) containing data of all variables used in the model.

- **family**: A description of the response distribution and link function to be used in the model. This can be a family function, a call to a family function or a character string naming the family. Every family function has a link argument allowing to specify the link function to be applied on the response variable. If not specified, default links are used. For details of supported families see \texttt{brmsfamily}. By default, a linear gaussian model is applied. In multivariate models, family might also be a list of families.

- **autocor**: (Deprecated) An optional \texttt{cor_brms} object describing the correlation structure within the response variable (i.e., the 'autocorrelation'). See the documentation of \texttt{cor_brms} for a description of the available correlation structures. Defaults to \texttt{NULL}, corresponding to no correlations. In multivariate models, autocor might also be a list of autocorrelation structures. It is now recommend to specify autocorrelation terms directly within \texttt{formula}. See \texttt{brmsformula} for more details.

- **knots**: Optional list containing user specified knot values to be used for basis construction of smoothing terms. See \texttt{gamm} for more details.

- **sparse**: (Deprecated) Logical; indicates whether the population-level design matrices should be treated as sparse (defaults to \texttt{FALSE}). For design matrices with many
zeros, this can considerably reduce required memory. Sampling speed is currently not improved or even slightly decreased. It is now recommended to use the sparse argument of `brmsformula` and related functions.

... Other arguments for internal usage only.

Value
A data frame with columns `prior`, `class`, `coef`, and `group` and several rows, each providing information on a parameter (or parameter class) on which priors can be specified. The prior column is empty except for internal default priors.

See Also
`set_prior`

Examples
```r
get all parameters and parameters classes to define priors on
(prior <- get_prior(count ~ zAge + zBase * Trt + (1|patient) + (1|obs),
 data = epilepsy, family = poisson()))

define a prior on all population-level effects a once
prior$prior[1] <- "normal(0,10)"

define a specific prior on the population-level effect of Trt
prior$prior[5] <- "student_t(10, 0, 5)"

verify that the priors indeed found their way into Stan's model code
make_stancode(count ~ zAge + zBase * Trt + (1|patient) + (1|obs),
 data = epilepsy, family = poisson(),
 prior = prior)
```

---

### gp

**Set up Gaussian process terms in brms**

**Description**
Set up a Gaussian process (GP) term in `brms`. The function does not evaluate its arguments – it exists purely to help set up a model with GP terms.

**Usage**
```r
gp(
 ..., by = NA, k = NA, cov = "exp_quad",
```
iso = TRUE,
gr = TRUE,
cmc = TRUE,
scale = TRUE,
c = NULL)

Arguments

... One or more predictors for the GP.
by A numeric or factor variable of the same length as each predictor. In the numeric vector case, the elements multiply the values returned by the GP. In the factor variable case, a separate GP is fitted for each factor level.
k Optional number of basis functions for computing approximate GPs. If NA (the default), exact GPs are computed.
cov Name of the covariance kernel. By default, the exponentiated-quadratic kernel "exp_quad" is used.
iso A flag to indicate whether an isotropic (TRUE; the default) or non-isotropic GP should be used. In the former case, the same amount of smoothing is applied to all predictors. In the latter case, predictors may have different smoothing. Ignored if only a single predictor is supplied.
gr Logical; Indicates if auto-grouping should be used (defaults to TRUE). If enabled, observations sharing the same predictor values will be represented by the same latent variable in the GP. This will improve sampling efficiency drastically if the number of unique predictor combinations is small relative to the number of observations.
cmc Logical; Only relevant if by is a factor. If TRUE (the default), cell-mean coding is used for the by-factor, that is one GP per level is estimated. If FALSE, contrast GPs are estimated according to the contrasts set for the by-factor.
scale Logical; If TRUE (the default), predictors are scaled so that the maximum Euclidean distance between two points is 1. This often improves sampling speed and convergence.
c Numeric value only used in approximate GPs. Defines the multiplicative constant of the predictors' range over which predictions should be computed. A good default could be c = 5/4 but we are still working on providing better recommendations.

details

A GP is a stochastic process, which describes the relation between one or more predictors \( x = (x_1, \ldots, x_d) \) and a response \( f(x) \), where \( d \) is the number of predictors. A GP is the generalization of the multivariate normal distribution to an infinite number of dimensions. Thus, it can be interpreted as a prior over functions. Any finite sample realized from this stochastic process is jointly multivariate normal, with a covariance matrix defined by the covariance kernel \( k_p(x) \), where \( p \) is the vector of parameters of the GP:

\[
f(x) \sim \text{MVN}(0, k_p(x))
\]
The smoothness and general behavior of the function \( f \) depends only on the choice of covariance kernel. For a more detailed introduction to Gaussian processes, see https://en.wikipedia.org/wiki/Gaussian_process.

Below, we describe the currently supported covariance kernels:

- "exp_quad": The exponentiated-quadratic kernel is defined as 
  \[
  k(x_i, x_j) = \text{sdgp}^2 \exp(-||x_i - x_j||^2/(2\text{lscale}^2)),
  \]
  where \(||.||\) is the Euclidean norm, \text{sdgp} is a standard deviation parameter, and \text{lscale} is characteristic length-scale parameter. The latter practically measures how close two points \( x_i \) and \( x_j \) have to be to influence each other substantially.

In the current implementation, "exp_quad" is the only supported covariance kernel. More options will follow in the future.

Value

An object of class 'gp_term', which is a list of arguments to be interpreted by the formula parsing functions of \text{brms}.

See Also

\text{brmsformula}

Examples

```r
Not run:
simulate data using the mgcv package
dat <- mgcv::gamSim(1, n = 30, scale = 2)

fit a simple GP model
fit1 <- brm(y ~ gp(x2), dat, chains = 2)
summary(fit1)
me1 <- conditional_effects(fit1, nsamples = 200, spaghetti = TRUE)
plot(me1, ask = FALSE, points = TRUE)

fit a more complicated GP model
fit2 <- brm(y ~ gp(x0) + x1 + gp(x2) + x3, dat, chains = 2)
summary(fit2)
me2 <- conditional_effects(fit2, nsamples = 200, spaghetti = TRUE)
plot(me2, ask = FALSE, points = TRUE)

fit a multivariate GP model
fit3 <- brm(y ~ gp(x1, x2), dat, chains = 2)
summary(fit3)
me3 <- conditional_effects(fit3, nsamples = 200, spaghetti = TRUE)
plot(me3, ask = FALSE, points = TRUE)

compare model fit
LOO(fit1, fit2, fit3)

simulate data with a factor covariate
dat2 <- mgcv::gamSim(4, n = 90, scale = 2)
```
# fit separate gaussian processes for different levels of 'fac'
fit4 <- brm(y ~ gp(x2, by = fac), dat2, chains = 2)
summary(fit4)
plot(conditional_effects(fit4), points = TRUE)

## End(Not run)

---

gr  

Set up basic grouping terms in **brms**

**Description**

Function used to set up a basic grouping term in **brms**. The function does not evaluate its arguments – it exists purely to help set up a model with grouping terms. gr is called implicitly inside the package and there is usually no need to call it directly.

**Usage**

gr(..., by = NULL, cor = TRUE, id = NA, cov = NULL, dist = "gaussian")

**Arguments**

- **...**  
  One or more terms containing grouping factors.
- **by**  
  An optional factor variable, specifying sub-populations of the groups. For each level of the by variable, a separate variance-covariance matrix will be fitted. Levels of the grouping factor must be nested in levels of the by variable.
- **cor**  
  Logical. If TRUE (the default), group-level terms will be modelled as correlated.
- **id**  
  Optional character string. All group-level terms across the model with the same id will be modeled as correlated (if cor is TRUE). See **brmsformula** for more details.
- **cov**  
  An optional matrix which is proportional to the within-group covariance matrix of the group-level effects. All levels of the grouping factor should appear as row-names of the corresponding matrix. This argument can be used, among others, to model pedigrees and phylogenetic effects. See vignette("brms_phylogenetics") for more details. By default, levels of the same grouping factor are modeled as independent of each other.
- **dist**  
  Name of the distribution of the group-level effects. Currently "gaussian" is the only option.

**See Also**

**brmsformula**
horseshoe

Examples

```r
Not run:
model using basic lme4-style formula
fit1 <- brm(count ~ Trt + (1|patient), data = epilepsy)
summary(fit1)

equivalent model using 'gr' which is called anyway internally
fit2 <- brm(count ~ Trt + (1|gr(patient)), data = epilepsy)
summary(fit2)

include Trt as a by variable
fit3 <- brm(count ~ Trt + (1|gr(patient, by = Trt)), data = epilepsy)
summary(fit3)

End(Not run)
```

---

**horseshoe**

*Regularized horseshoe priors in brms*

**Description**

Function used to set up regularized horseshoe priors and related hierarchical shrinkage priors for population-level effects in brms. The function does not evaluate its arguments – it exists purely to help set up the model.

**Usage**

```r
horseshoe(
 df = 1,
 scale_global = 1,
 df_global = 1,
 scale_slab = 2,
 df_slab = 4,
 par_ratio = NULL,
 autoscale = TRUE
)
```

**Arguments**

- `df` Degrees of freedom of student-t prior of the local shrinkage parameters. Defaults to 1.
- `scale_global` Scale of the student-t prior of the global shrinkage parameter. Defaults to 1. In linear models, `scale_global` will internally be multiplied by the residual standard deviation parameter `sigma`. 
df_global  Degrees of freedom of student-t prior of the global shrinkage parameter. Defaults to 1. If df_global is greater 1, the shape of the prior will no longer resemble a horseshoe and it may be more appropriately called an hierarchical shrinkage prior in this case.

scale_slab  Scale of the student-t prior of the regularization parameter. Defaults to 2. The original unregularized horseshoe prior is obtained by setting scale_slab to infinite, which we can approximate in practice by setting it to a very large real value.

df_slab  Degrees of freedom of the student-t prior of the regularization parameter. Defaults to 4.

par_ratio  Ratio of the expected number of non-zero coefficients to the expected number of zero coefficients. If specified, scale_slab is ignored and internally computed as par_ratio / sqrt(N), where N is the total number of observations in the data.

autoscale  Logical; indicating whether the horseshoe prior should be scaled using the residual standard deviation sigma if possible and sensible (defaults to TRUE). Autoscaling is not applied for distributional parameters or when the model does not contain the parameter sigma.

Details

The horseshoe prior is a special shrinkage prior initially proposed by Carvalho et al. (2009). It is symmetric around zero with fat tails and an infinitely large spike at zero. This makes it ideal for sparse models that have many regression coefficients, although only a minority of them is non-zero. The horseshoe prior can be applied on all population-level effects at once (excluding the intercept) by using set_prior("horseshoe(1)"). The 1 implies that the student-t prior of the local shrinkage parameters has 1 degrees of freedom. This may, however, lead to an increased number of divergent transition in Stan. Accordingly, increasing the degrees of freedom to slightly higher values (e.g., 3) may often be a better option, although the prior no longer resembles a horseshoe in this case. Further, the scale of the global shrinkage parameter plays an important role in amount of shrinkage applied. It defaults to 1, but this may result in too few shrinkage (Piironen & Vehtari, 2016). It is thus possible to change the scale using argument scale_global of the horseshoe prior, for instance horseshoe(1, scale_global = 0.5). In linear models, scale_global will internally be multiplied by the residual standard deviation parameter sigma. See Piironen and Vehtari (2016) for recommendations how to properly set the global scale. The degrees of freedom of the global shrinkage prior may also be adjusted via argument df_global. Piironen and Vehtari (2017) recommend to specifying the ratio of the expected number of non-zero coefficients to the expected number of zero coefficients par_ratio rather than scale_global directly. As proposed by Piironen and Vehtari (2017), an additional regularization is applied that only affects non-zero coefficients. The amount of regularization can be controlled via scale_slab and df_slab. To make sure that shrinkage can equally affect all coefficients, predictors should be on the same scale. Generally, models with horseshoe priors a more likely than other models to have divergent transitions so that increasing adapt_delta from 0.8 to values closer to 1 will often be necessary. See the documentation of brm for instructions on how to increase adapt_delta.

Value

A character string obtained by match.call() with additional arguments.
References

Carvalho, C. M., Polson, N. G., & Scott, J. G. (2009). Handling sparsity via the horseshoe. In International Conference on Artificial Intelligence and Statistics (pp. 73-80).


See Also

set_prior

Examples

set_prior(horseshoe(df = 3, par_ratio = 0.1))

Hurdle Distribution

Description

Density and distribution functions for hurdle distributions.

Usage

dhurdle_poisson(x, lambda, hu, log = FALSE)

phurdle_poisson(q, lambda, hu, lower.tail = TRUE, log.p = FALSE)

dhurdle_negbinomial(x, mu, shape, hu, log = FALSE)

phurdle_negbinomial(q, mu, shape, hu, lower.tail = TRUE, log.p = FALSE)

dhurdle_gamma(x, shape, scale, hu, log = FALSE)

phurdle_gamma(q, shape, scale, hu, lower.tail = TRUE, log.p = FALSE)

dhurdle_lognormal(x, mu, sigma, hu, log = FALSE)

phurdle_lognormal(q, mu, sigma, hu, lower.tail = TRUE, log.p = FALSE)
Arguments

- **x**: Vector of quantiles.
- **hu**: Hurdle probability.
- **log**: Logical; If TRUE, values are returned on the log scale.
- **q**: Vector of quantiles.
- **lower.tail**: Logical; If TRUE (default), return P(X <= x). Else, return P(X > x).
- **log.p**: Logical; If TRUE, values are returned on the log scale.
- **mu, lambda**: Location parameter.
- **shape**: Shape parameter.
- **sigma, scale**: Scale parameter.

Details

The density of a hurdle distribution can be specified as follows. If \( x = 0 \) set \( f(x) = \theta \). Else set \( f(x) = (1 - \theta) \times g(x)/(1 - G(0)) \) where \( g(x) \) and \( G(x) \) are the density and distribution function of the non-hurdle part, respectively.

---

**hypothesis.brmsfit**  
*Non-Linear Hypothesis Testing*

**Description**

Perform non-linear hypothesis testing for all model parameters.

**Usage**

```r
S3 method for class 'brmsfit'
hypothesis(brmsfit,
 x,
 hypothesis,
 class = "b",
 group = "",
 scope = c("standard", "ranef", "coef"),
 alpha = 0.05,
 seed = NULL,
 ...
)

hypothesis(x, ...)
```

```r
Default S3 method:
hypothesis(x, hypothesis, alpha = 0.05, ...)
```
hypothesis.brmsfit

Arguments

- `x`: An R object. If it is not a `brmsfit` object, it must be coercible to a `data.frame`.
- `hypothesis`: A character vector specifying one or more non-linear hypotheses concerning parameters of the model.
- `class`: A string specifying the class of parameters being tested. Default is "b" for population-level effects. Other typical options are "sd" or "cor". If `class = NULL`, all parameters can be tested against each other, but have to be specified with their full name (see also `parnames`).
- `group`: Name of a grouping factor to evaluate only group-level effects parameters related to this grouping factor.
- `scope`: Indicates where to look for the variables specified in `hypothesis`. If "standard", use the full parameter names (subject to the restriction given by `class` and `group`). If "coef" or "ranef", compute the hypothesis for all levels of the grouping factor given in "group", based on the output of `coef.brmsfit` and `ranef.brmsfit`, respectively.
- `alpha`: The alpha-level of the tests (default is 0.05; see 'Details' for more information).
- `seed`: A single numeric value passed to `set.seed` to make results reproducible.
- `...`: Currently ignored.

Details

Among others, hypothesis computes an evidence ratio (Evid.Ratio) for each hypothesis. For a one-sided hypothesis, this is just the posterior probability (Post.Prob) under the hypothesis against its alternative. That is, when the hypothesis is of the form `a > b`, the evidence ratio is the ratio of the posterior probability of `a > b` and the posterior probability of `a < b`. In this example, values greater than one indicate that the evidence in favor of `a > b` is larger than evidence in favor of `a < b`. For an two-sided (point) hypothesis, the evidence ratio is a Bayes factor between the hypothesis and its alternative computed via the Savage-Dickey density ratio method. That is the posterior density at the point of interest divided by the prior density at that point. Values greater than one indicate that evidence in favor of the point hypothesis has increased after seeing the data. In order to calculate this Bayes factor, all parameters related to the hypothesis must have proper priors and argument `sample_prior` of function `brm` must be set to "yes". Otherwise Evid.Ratio (and Post.Prob) will be NA. Please note that, for technical reasons, we cannot sample from priors of certain parameters classes. Most notably, these include overall intercept parameters (prior class "Intercept") as well as group-level coefficients. When interpreting Bayes factors, make sure that your priors are reasonable and carefully chosen, as the result will depend heavily on the priors. In particular, avoid using default priors.

The Evid.Ratio may sometimes be 0 or Inf implying very small or large evidence, respectively, in favor of the tested hypothesis. For one-sided hypotheses pairs, this basically means that all posterior samples are on the same side of the value dividing the two hypotheses. In that sense, instead of 0 or Inf, you may rather read it as Evid.Ratio smaller 1 / S or greater S, respectively, where S denotes the number of posterior samples used in the computations.

The argument `alpha` specifies the size of the credible interval (i.e., Bayesian confidence interval). For instance, if we tested a two-sided hypothesis and set `alpha = 0.05 (5%)` an, the credible interval will contain 1 - alpha = 0.95 (95%) of the posterior values. Hence, alpha * 100% of the posterior
values will lie outside of the credible interval. Although this allows testing of hypotheses in a similar manner as in the frequentist null-hypothesis testing framework, we strongly argue against using arbitrary cutoffs (e.g., \( p < .05 \)) to determine the 'existence' of an effect.

Value

A \texttt{brmshypothesis} object.

Author(s)

Paul-Christian Buerkner <paul.buerkner@gmail.com>

See Also

\texttt{brmshypothesis}

Examples

```r
Not run:
define priors
prior <- c(set_prior("normal(0,2)", class = "b"),
 set_prior("student_t(10,0,1)", class = "sigma"),
 set_prior("student_t(10,0,1)", class = "sd"))

fit a linear mixed effects models
fit <- brm(time ~ age + sex + disease + (1 + age|patient),
 data = kidney, family = lognormal(),
 prior = prior, sample_prior = "yes",
 control = list(adapt_delta = 0.95))

perform two-sided hypothesis testing
(hyp1 <- hypothesis(fit, "sexfemale = age + diseasePKD"))
plot(hyp1)

perform one-sided hypothesis testing
hypothesis(fit, "exp(age) - 3 = 0", alpha = 0.01)

test more than one hypothesis at once
h <- c("diseaseGN = diseaseAN", "2 * diseaseGN - diseasePKD = 0")
(hyp3 <- hypothesis(fit, h))
plot(hyp3, ignore_prior = TRUE)
```
## Compute hypotheses for all levels of a grouping factor
```r
hypothesis(fit, "age = 0", scope = "coef", group = "patient")
```

## Use the default method
```r
dat <- as.data.frame(fit)
hypothesis(dat, "b_age > 0")
```

## End(Not run)

---

### inhaler

**Clarity of inhaler instructions**

#### Description

Ezzet and Whitehead (1991) analyze data from a two-treatment, two-period crossover trial to compare 2 inhalation devices for delivering the drug salbutamol in 286 asthma patients. Patients were asked to rate the clarity of leaflet instructions accompanying each device, using a 4-point ordinal scale.

#### Usage

```r
inhaler
```

#### Format

A data frame of 572 observations containing information on the following 5 variables.

- **subject**: The subject number
- **rating**: The rating of the inhaler instructions on a scale ranging from 1 to 4
- **treat**: A contrast to indicate which of the two inhaler devices was used
- **period**: A contrast to indicate the time of administration
- **carry**: A contrast to indicate possible carry over effects

#### Source


#### Examples

```r
Not run:
Ordinal regression with family "sratio"
fit1 <- brm(rating ~ treat + period + carry,
 data = inhaler, family = sratio(),
 prior = set_prior("normal(0,5)"))
summary(fit1)
plot(fit1)
```
## ordinal regression with family "cumulative"
## and random intercept over subjects
fit2 <- brm(rating ~ treat + period + carry + (1|subject),
            data = inhaler, family = cumulative(),
            prior = set_prior("normal(0,5)"))
summary(fit2)
plot(fit2)

## End(Not run)

---

InvGaussian

**The Inverse Gaussian Distribution**

### Description
Density, distribution function, and random generation for the inverse Gaussian distribution with location \( \mu \), and shape \( \text{shape} \).

### Usage
- `dinv_gaussian(x, mu = 1, shape = 1, log = FALSE)`
- `pinv_gaussian(q, mu = 1, shape = 1, lower.tail = TRUE, log.p = FALSE)`
- `rinv_gaussian(n, mu = 1, shape = 1)`

### Arguments
- **x, q** Vector of quantiles.
- **mu** Vector of locations.
- **shape** Vector of shapes.
- **log** Logical; If TRUE, values are returned on the log scale.
- **lower.tail** Logical; If TRUE (default), return \( P(X <= x) \). Else, return \( P(X > x) \).
- **log.p** Logical; If TRUE, values are returned on the log scale.
- **n** Number of samples to draw from the distribution.

### Details
See vignette("brms_families") for details on the parameterization.
**inv_logit_scaled**  
*Scaled inverse logit-link*

**Description**

Computes \( \text{inv_logit}(x) \times (\text{ub} - \text{lb}) + \text{lb} \)

**Usage**

\[
\text{inv_logit_scaled}(x, \text{lb} = 0, \text{ub} = 1)
\]

**Arguments**

- **x**: A numeric or complex vector.
- **lb**: Lower bound defaulting to 0.
- **ub**: Upper bound defaulting to 1.

**Value**

A numeric or complex vector between \( \text{lb} \) and \( \text{ub} \).

---

**is.brmsfit**  
*Checks if argument is a brmsfit object*

**Description**

Checks if argument is a brmsfit object

**Usage**

\[
\text{is.brmsfit}(x)
\]

**Arguments**

- **x**: An \( \mathbb{R} \) object
is.brmsfit_multiple  Checks if argument is a brmsfit_multiple object

Description
Checks if argument is a brmsfit_multiple object

Usage
is.brmsfit_multiple(x)

Arguments
x  An R object

is.brmsformula  Checks if argument is a brmsformula object

Description
Checks if argument is a brmsformula object

Usage
is.brmsformula(x)

Arguments
x  An R object

is.brmsprior  Checks if argument is a brmsprior object

Description
Checks if argument is a brmsprior object

Usage
is.brmsprior(x)

Arguments
x  An R object
**is.brms**

Checks if argument is a `brmstterms` object

**Description**

Checks if argument is a `brmstterms` object

**Usage**

```r
is.brms(x)
```

**Arguments**

- `x` An R object

**See Also**

`brmstterms`

---

**is.cor.brms**

Check if argument is a correlation structure

**Description**

Check if argument is one of the correlation structures used in `brms`.

**Usage**

```r
is.cor.brms(x)
```

```r
is.cor.arma(x)
```

```r
is.cor.cosy(x)
```

```r
is.cor.sar(x)
```

```r
is.cor.car(x)
```

```r
is.cor.fixed(x)
```

**Arguments**

- `x` An R object.
is.mvbrmsformula  Checks if argument is a mvbrmsformula object

Description
Checks if argument is a mvbrmsformula object

Usage
is.mvbrmsformula(x)

Arguments
x  An R object

is.mvbrmsterms  Checks if argument is a mvbrmsterms object

Description
Checks if argument is a mvbrmsterms object

Usage
is.mvbrmsterms(x)

Arguments
x  An R object

See Also
brmsterms
Description

Perform exact K-fold cross-validation by refitting the model \( K \) times each leaving out one-\( K \)th of the original data. Folds can be run in parallel using the \texttt{future} package.

Usage

```r
S3 method for class 'brmsfit'
kfold(
 x,
 ..., K = 10,
 Ksub = NULL,
 folds = NULL,
 group = NULL,
 exact_loo = NULL,
 compare = TRUE,
 resp = NULL,
 model_names = NULL,
 save_fits = FALSE
)
```

Arguments

- **x**: A \texttt{brmsfit} object.
- **...**: More \texttt{brmsfit} objects or further arguments passed to the underlying post-processing functions. In particular, see \texttt{prepare_predictions} for further supported arguments.
- **K**: The number of subsets of equal (if possible) size into which the data will be partitioned for performing \( K \)-fold cross-validation. The model is refit \( K \) times, each time leaving out one of the \( K \) subsets. If \( K \) is equal to the total number of observations in the data then \( K \)-fold cross-validation is equivalent to exact leave-one-out cross-validation.
- **Ksub**: Optional number of subsets (of those subsets defined by \( K \)) to be evaluated. If \texttt{NULL} (the default), \( K \)-fold cross-validation will be performed on all subsets. If \texttt{Ksub} is a single integer, \texttt{Ksub} subsets (out of all \( K \)) subsets will be randomly chosen. If \texttt{Ksub} consists of multiple integers or a one-dimensional array (created via \texttt{as.array}) potentially of length one, the corresponding subsets will be used. This argument is primarily useful if evaluation of all subsets is infeasible for some reason.
- **folds**: Determines how the subsets are being constructed. Possible values are \texttt{NULL} (the default), "stratified", "grouped", or "loo". May also be a vector of length equal to the number of observations in the data. Alters the way \texttt{group} is handled. More information is provided in the 'Details' section.
kfold.brmsfit

group

Optional name of a grouping variable or factor in the model. What exactly is done with this variable depends on argument folds. More information is provided in the 'Details' section.

exact_loo

Deprecated! Please use folds = "loo" instead.

compare

A flag indicating if the information criteria of the models should be compared to each other via loo_compare.

resp

Optional names of response variables. If specified, predictions are performed only for the specified response variables.

model_names

If NULL (the default) will use model names derived from deparsing the call. Otherwise will use the passed values as model names.

save_fits

If TRUE, a component fits is added to the returned object to store the cross-validated brmsfit objects and the indices of the omitted observations for each fold. Defaults to FALSE.

Details

The kfold function performs exact $K$-fold cross-validation. First the data are partitioned into $K$ folds (i.e. subsets) of equal (or as close to equal as possible) size by default. Then the model is refit $K$ times, each time leaving out one of the $K$ subsets. If $K$ is equal to the total number of observations in the data then $K$-fold cross-validation is equivalent to exact leave-one-out cross-validation (to which loo is an efficient approximation). The compare_ic function is also compatible with the objects returned by kfold.

The subsets can be constructed in multiple different ways:

- If both folds and group are NULL, the subsets are randomly chosen so that they have equal (or as close to equal as possible) size.
- If folds is NULL but group is specified, the data is split up into subsets, each time omitting all observations of one of the factor levels, while ignoring argument K.
- If folds = "stratified" the subsets are stratified after group using loo::kfold_split_stratified.
- If folds = "grouped" the subsets are split by group using loo::kfold_split_grouped.
- If folds = "loo" exact leave-one-out cross-validation will be performed and $K$ will be ignored. Further, if group is specified, all observations corresponding to the factor level of the currently predicted single value are omitted. Thus, in this case, the predicted values are only a subset of the omitted ones.
- If folds is a numeric vector, it must contain one element per observation in the data. Each element of the vector is an integer in 1:$K$ indicating to which of the $K$ folds the corresponding observation belongs. There are some convenience functions available in the loo package that create integer vectors to use for this purpose (see the Examples section below and also the kfold-helpers page).

Value

kfold returns an object that has a similar structure as the objects returned by the loo and waic methods and can be used with the same post-processing functions.
See Also

loo, reloo

Examples

## Not run:
fit1 <- brm(count ~ zAge + zBase * Trt + (1|patient) + (1|obs), data = epilepsy, family = poisson())
# throws warning about some pareto k estimates being too high
(loo1 <- loo(fit1))
# perform 10-fold cross validation
(kfold1 <- kfold(fit1, chains = 1))

# use the future package for parallelization
library(future)
plan(multiprocess)
kfold(fit1, chains = 1)

## End(Not run)

---

kfold_predict Predictions from K-Fold Cross-Validation

Description

Compute and evaluate predictions after performing K-fold cross-validation via kfold.

Usage

kfold_predict(x, method = c("predict", "fitted"), resp = NULL, ...)

Arguments

- **x**: Object of class 'kfold' computed by kfold. For kfold_predict to work, the fitted model objects need to have been stored via argument save_fits of kfold.
- **method**: The method used to make predictions. Either "predict" or "fitted". See predict.brmsfit for details.
- **resp**: Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- **...**: Further arguments passed to prepare_predictions that control several aspects of data validation and prediction.

Value

A list with two slots named 'y' and 'yrep'. Slot y contains the vector of observed responses. Slot yrep contains the matrix of predicted responses, with rows being posterior draws and columns being observations.
kidney

Infections in kidney patients

Description

This dataset, originally discussed in McGilchrist and Aisbett (1991), describes the first and second (possibly right censored) recurrence time of infection in kidney patients using portable dialysis equipment. In addition, information on the risk variables age, sex and disease type is provided.

Usage

kidney

Format

A data frame of 76 observations containing information on the following 7 variables.

- **time**: The time to first or second recurrence of the infection, or the time of censoring
- **recur**: A factor of levels 1 or 2 indicating if the infection recurred for the first or second time for this patient
- **censored**: Either 0 or 1, where 0 indicates no censoring of recurrence time and 1 indicates right censoring
- **patient**: The patient number

See Also

- **kfold**

Examples

```
Not run:
fit <- brm(count ~ zBase * Trt + (1|patient),
 data = epilepsy, family = poisson())

perform k-fold cross validation
(kf <- kfold(fit, save_fits = TRUE, chains = 1))

define a loss function
rmse <- function(y, yrep) {
 yrep_mean <- colMeans(yrep)
 sqrt(mean((yrep_mean - y)^2))
}

predict responses and evaluate the loss
kfp <- kfold_predict(kf)
rmse(y = kfp$y, yrep = kfp$yrep)
End(Not run)
```
**age**  The age of the patient

**sex**  The sex of the patient

**disease**  A factor of levels other than GN, AN, and PKD specifying the type of disease

**Source**


**Examples**

```r
Not run:
performing survival analysis using the "weibull" family
fit1 <- brm(time | cens(censored) ~ age + sex + disease,
 data = kidney, family = weibull, inits = "0")
summary(fit1)
plot(fit1)

adding random intercepts over patients
fit2 <- brm(time | cens(censored) ~ age + sex + disease + (1|patient),
 data = kidney, family = weibull(), inits = "0",
 prior = set_prior("cauchy(0,2)", class = "sd"))
summary(fit2)
plot(fit2)

End(Not run)
```

---

### lasso

**Set up a lasso prior in brms**

**Description**

Function used to set up a lasso prior for population-level effects in *brms*. The function does not evaluate its arguments – it exists purely to help set up the model.

**Usage**

```r
lasso(df = 1, scale = 1)
```

**Arguments**

- `df`  Degrees of freedom of the chi-square prior of the inverse tuning parameter. Defaults to 1.
- `scale`  Scale of the lasso prior. Defaults to 1.
Details

The lasso prior is the Bayesian equivalent to the LASSO method for performing variable selection (Park & Casella, 2008). With this prior, independent Laplace (i.e. double exponential) priors are placed on the population-level effects. The scale of the Laplace priors depends on a tuning parameter that controls the amount of shrinkage. In brms, the inverse of the tuning parameter is used so that smaller values imply more shrinkage. The inverse tuning parameter has a chi-square distribution and with degrees of freedom controlled via argument df of function lasso (defaults to 1). For instance, one can specify a lasso prior using set_prior("lasso(1)"). To make sure that shrinkage can equally affect all coefficients, predictors should be on the same scale. If you do not want to standardized all variables, you can adjust the general scale of the lasso prior via argument scale, for instance, lasso(1, scale = 10).

Value

A character string obtained by match.call() with additional arguments.

References


See Also

set_prior

Examples

set_prior(lasso(df = 1, scale = 10))
logit_scaled

Arguments

object A fitted model object typically of class brmsfit.

rstudio Only relevant for RStudio users. The default (rstudio=FALSE) is to launch the app in the default web browser rather than RStudio’s pop-up Viewer. Users can change the default to TRUE by setting the global option options(shinystan.rstudio = TRUE).

... Optional arguments to pass to runApp

Value

An S4 shinystan object

See Also

launch_shinystan

Examples

## Not run:
fit <- brm(rating ~ treat + period + carry + (1|subject),
    data = inhaler, family = "gaussian")
launch_shinystan(fit)

## End(Not run)

logit_scaled

Scaled logit-link

Description

Computes logit((x -lb) / (ub -lb))

Usage

logit_scaled(x, lb = 0, ub = 1)

Arguments

x A numeric or complex vector.

lb Lower bound defaulting to 0.

ub Upper bound defaulting to 1.

Value

A numeric or complex vector.
logm1  

*Logarithm with a minus one offset.*

**Description**

Computes \( \log(x - 1) \).

**Usage**

```r
logm1(x, base = exp(1))
```

**Arguments**

- `x` A numeric or complex vector.
- `base` A positive or complex number: the base with respect to which logarithms are computed. Defaults to \( e = \exp(1) \).

---

**log_lik.brmsfit**  

*Compute the Pointwise Log-Likelihood*

**Description**

Compute the Pointwise Log-Likelihood

**Usage**

```r
S3 method for class 'brmsfit'
log_lik(
 object,
 newdata = NULL,
 re_formula = NULL,
 resp = NULL,
 nsamples = NULL,
 subset = NULL,
 pointwise = FALSE,
 combine = TRUE,
 add_point_estimate = FALSE,
 ...
)
```
Arguments

- **object**: A fitted model object of class `brmsfit`.
- **newdata**: An optional data.frame for which to evaluate predictions. If NULL (default), the original data of the model is used. `NA` values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.
- **re_formula**: Formula containing group-level effects to be considered in the prediction. If NULL (default), include all group-level effects; if NA, include no group-level effects.
- **resp**: Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- **nsamples**: Positive integer indicating how many posterior samples should be used. If NULL (the default) all samples are used. Ignored if subset is not NULL.
- **subset**: A numeric vector specifying the posterior samples to be used. If NULL (the default), all samples are used.
- **pointwise**: A flag indicating whether to compute the full log-likelihood matrix at once (the default), or just return the likelihood function along with all data and samples required to compute the log-likelihood separately for each observation. The latter option is rarely useful when calling `log_lik` directly, but rather when computing `waic` or `loo`.
- **combine**: Only relevant in multivariate models. Indicates if the log-likelihoods of the sub-models should be combined per observation (i.e. added together; the default) or if the log-likelihoods should be returned separately.
- **add_point_estimate**: For internal use only. Ensures compatibility with the `loo_subsample` method.
- **...**: Further arguments passed to `prepare_predictions` that control several aspects of data validation and prediction.

Value

Usually, an S x N matrix containing the pointwise log-likelihood samples, where S is the number of samples and N is the number of observations in the data. For multivariate models and if combine is FALSE, an S x N x R array is returned, where R is the number of response variables. If pointwise = TRUE, the output is a function with a draws attribute containing all relevant data and posterior samples.

Description

Perform approximate leave-one-out cross-validation based on the posterior likelihood using the `loo` package. For more details see `loo`.
Usage

```r
S3 method for class 'brmsfit'
loo(
 x,
 ...,
 compare = TRUE,
 resp = NULL,
 pointwise = FALSE,
 reloo = FALSE,
 k_threshold = 0.7,
 reloo_args = list(),
 model_names = NULL
)
```

Arguments

- `x`: A `brmsfit` object.
- `...`: More `brmsfit` objects or further arguments passed to the underlying post-processing functions. In particular, see `prepare_predictions` for further supported arguments.
- `compare`: A flag indicating if the information criteria of the models should be compared to each other via `loo_compare`.
- `resp`: Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- `pointwise`: A flag indicating whether to compute the full log-likelihood matrix at once or separately for each observation. The latter approach is usually considerably slower but requires much less working memory. Accordingly, if one runs into memory issues, `pointwise = TRUE` is the way to go.
- `reloo`: Logical; Indicate whether reloo should be applied on problematic observations. Defaults to `FALSE`.
- `k_threshold`: The threshold at which pareto $k$ estimates are treated as problematic. Defaults to 0.7. Only used if argument `reloo` is `TRUE`. See `pareto_k_ids` for more details.
- `reloo_args`: Optional list of additional arguments passed to `reloo`.
- `model_names`: If NULL (the default) will use model names derived from deparsing the call. Otherwise will use the passed values as model names.

Details

See `loo_compare` for details on model comparisons. For `brmsfit` objects, L00 is an alias of `loo`. Use method `add_criterion` to store information criteria in the fitted model object for later usage.

Value

If just one object is provided, an object of class `loo`. If multiple objects are provided, an object of class `loolist`. 
References

Examples
## Not run:
# model with population-level effects only
fit1 <- brm(rating ~ treat + period + carry,
data = inhaler)
(loo1 <- loo(fit1))

# model with an additional varying intercept for subjects
fit2 <- brm(rating ~ treat + period + carry + (1|subject),
data = inhaler)
(loo2 <- loo(fit2))

# compare both models
loo_compare(loo1, loo2)
## End(Not run)
Details

All `brmsfit` objects should contain precomputed criterion objects. See `add_criterion` for more help.

Value

An object of class "compare.loo".

Examples

```r
Not run:
model with population-level effects only
fit1 <- brm(rating ~ treat + period + carry,
 data = inhaler)
fit1 <- add_criterion(fit1, "waic")

model with an additional varying intercept for subjects
fit2 <- brm(rating ~ treat + period + carry + (1|subject),
 data = inhaler)
fit2 <- add_criterion(fit2, "waic")

compare both models
loo_compare(fit1, fit2, criterion = "waic")
End(Not run)
```

## S3 method for class 'brmsfit'

```r
loo_model_weights(x, ..., model_names = NULL)
```

Arguments

- `x`: A `brmsfit` object.
- `...`: More `brmsfit` objects or further arguments passed to the underlying post-processing functions. In particular, see `prepare_predictions` for further supported arguments.
- `model_names`: If `NULL` (the default) will use model names derived from deparsing the call. Otherwise will use the passed values as model names.
Value

A named vector of model weights.

Examples

```r
Not run:
model with population-level effects only
fit1 <- brm(rating ~ treat + period + carry,
 data = inhaler, family = "gaussian")
model with an additional varying intercept for subjects
fit2 <- brm(rating ~ treat + period + carry + (1|subject),
 data = inhaler, family = "gaussian")
loo_model_weights(fit1, fit2)

End(Not run)
```

### Description

These functions are wrappers around the `E_loo` function of the `loo` package.

### Usage

```r
S3 method for class 'brmsfit'
loo_predict(
 object,
 type = c("mean", "var", "quantile"),
 probs = 0.5,
 psis_object = NULL,
 resp = NULL,
 ...
)

S3 method for class 'brmsfit'
loo_linpred(
 object,
 type = c("mean", "var", "quantile"),
 probs = 0.5,
 psis_object = NULL,
 resp = NULL,
 ...
)

S3 method for class 'brmsfit'
loo_predictive_interval(object, prob = 0.9, psis_object = NULL, ...)
```
Arguments

object An object of class `brmsfit`.
type The statistic to be computed on the results. Can by either "mean" (default), "var", or "quantile".
probs A vector of quantiles to compute. Only used if type = quantile.
psis_object An optional object returned by `psis`. If psis_object is missing then `psis` is executed internally, which may be time consuming for models fit to very large datasets.
resp Optional names of response variables. If specified, predictions are performed only for the specified response variables.
... Optional arguments passed to the underlying methods that is `log_lik`, as well as `posterior_predict` or `posterior_linpred`.
prob For `loo_predictive_interval`, a scalar in (0, 1) indicating the desired probability mass to include in the intervals. The default is prob = 0.9 (90% intervals).

Value

`loo_predict` and `loo_linpred` return a vector with one element per observation. The only exception is if type = "quantile" and length(probs) >= 2, in which case a separate vector for each element of probs is computed and they are returned in a matrix with length(probs) rows and one column per observation.

`loo_predictive_interval` returns a matrix with one row per observation and two columns. `loo_predictive_interval(..., prob = p)` is equivalent to `loo_predict(..., type = "quantile", probs = c(a, 1-a))` with a = (1 -p)/2, except it transposes the result and adds informative column names.

Examples

```r
Not run:
data from help("lm")
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
d <- data.frame(
 weight = c(ctl, trt),
 group = gl(2, 10, 20, labels = c("Ctl", "Trt")))

fit <- brm(weight ~ group, data = d)
loo_predictive_interval(fit, prob = 0.8)

optionally log-weights can be pre-computed and reused
psis <- loo::psis(-log_lik(fit), cores = 2)
loo_predictive_interval(fit, prob = 0.8, psis_object = psis)
loo_predict(fit, type = "var", psis_object = psis)

End(Not run)
```
Compute a LOO-adjusted R-squared for regression models

Description

Compute a LOO-adjusted R-squared for regression models

Usage

## S3 method for class 'brmsfit'
loo_R2(object, resp = NULL, ...)

Arguments

object
An object of class brmsfit.

resp
Optional names of response variables. If specified, predictions are performed only for the specified response variables.

...
Further arguments passed to posterior_epred and log_lik, which are used in the computation of the R-squared values.

Value

A real value per response variable indicating the LOO-adjusted R-squared.

Examples

## Not run:
fit <- brm(mpg ~ wt + cyl, data = mtcars)
summary(fit)
loo_R2(fit)

# compute R2 with new data
nd <- data.frame(mpg = c(10, 20, 30), wt = c(4, 3, 2), cyl = c(8, 6, 4))
loo_R2(fit, newdata = nd)

## End(Not run)

Efficient approximate leave-one-out cross-validation (LOO) using subsampling

Description

Efficient approximate leave-one-out cross-validation (LOO) using subsampling
Usage

```r
S3 method for class 'brmsfit'
loo_subsample(x, ..., compare = TRUE, resp = NULL, model_names = NULL)
```

Arguments

- `x`: A `brmsfit` object.
- `...`: More `brmsfit` objects or further arguments passed to the underlying post-processing functions. In particular, see `prepare_predictions` for further supported arguments.
- `compare`: A flag indicating if the information criteria of the models should be compared to each other via `loo_compare`.
- `resp`: Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- `model_names`: If `NULL` (the default) will use model names derived from deparsing the call. Otherwise will use the passed values as model names.

Details

More details can be found on `loo_subsample`.

Examples

```r
Not run:
model with population-level effects only
fit1 <- brm(rating ~ treat + period + carry,
data = inhaler)
(loo1 <- loo_subsample(fit1))

model with an additional varying intercept for subjects
fit2 <- brm(rating ~ treat + period + carry + (1|subject),
data = inhaler)
(loo2 <- loo_subsample(fit2))

compare both models
loo_compare(loo1, loo2)
End(Not run)
```

Description

Set up a moving average (MA) term of order q in `brms`. The function does not evaluate its arguments – it exists purely to help set up a model with MA terms.
Usage

\texttt{ma(time = NA, gr = NA, q = 1, cov = FALSE)}

Arguments

time \hspace{1cm} \text{An optional time variable specifying the time ordering of the observations. By default, the existing order of the observations in the data is used.}

gr \hspace{1cm} \text{An optional grouping variable. If specified, the correlation structure is assumed to apply only to observations within the same grouping level.}

q \hspace{1cm} \text{A non-negative integer specifying the moving average (MA) order of the ARMA structure. Default is 1.}

cov \hspace{1cm} \text{A flag indicating whether ARMA effects should be estimated by means of residual covariance matrices. This is currently only possible for stationary ARMA effects of order 1. If the model family does not have natural residuals, latent residuals are added automatically. If \texttt{FALSE} (the default), a regression formulation is used that is considerably faster and allows for ARMA effects of order higher than 1 but is only available for \texttt{gaussian} models and some of its generalizations.}

Value

An object of class ‘arma_term’, which is a list of arguments to be interpreted by the formula parsing functions of \texttt{brms}.

See Also

\texttt{autocor-terms, arma, ar}

Examples

```
Not run:
data("LakeHuron")
LakeHuron <- as.data.frame(LakeHuron)
fit <- brm(x ~ ma(p = 2), data = LakeHuron)
summary(fit)

End(Not run)
```

Description

This is a helper function to prepare fully crossed conditions primarily for use with the \texttt{conditions} argument of \texttt{conditional_effects}. Automatically creates labels for each row in the \texttt{cond__} column.
make_conditions(x, vars, ...)

Arguments

x
An R object from which to extract the variables that should be part of the conditions.

vars
Names of the variables that should be part of the conditions.

...
Arguments passed to `rows2labels`.

Details

For factor like variables, all levels are used as conditions. For numeric variables, \( \text{mean} + (-1:1) \times \text{SD} \) are used as conditions.

Value

A `data.frame` where each row indicates a condition.

See Also

`conditional_effects`, `rows2labels`

Examples

df <- data.frame(x = c("a", "b"), y = rnorm(10))
make_conditions(df, vars = c("x", "y"))

---

make_stancode

Stan Code for brms Models

Description

Generate Stan code for `brms` models

Usage

make_stancode(
    formula,
    data,
    family = gaussian(),
    prior = NULL,
    autocor = NULL,
    cov_ranef = NULL,
    sparse = NULL,
    sample_prior = "no",
    ...)
Arguments

formula An object of class `formula`, `brmsformula`, or `mvbrmsformula` (or one that can be coerced to that classes): A symbolic description of the model to be fitted. The details of model specification are explained in `brmsformula`.

data An object of class `data.frame` (or one that can be coerced to that class) containing data of all variables used in the model.

family A description of the response distribution and link function to be used in the model. This can be a family function, a call to a family function or a character string naming the family. Every family function has a `link` argument allowing to specify the link function to be applied on the response variable. If not specified, default links are used. For details of supported families see `brmsfamily`. By default, a linear gaussian model is applied. In multivariate models, family might also be a list of families.

prior One or more `brmsprior` objects created by `set_prior` or related functions and combined using the `c` method or the `+` operator. See also `get_prior` for more help.

autocor (Deprecated) An optional `cor_brms` object describing the correlation structure within the response variable (i.e., the 'autocorrelation'). See the documentation of `cor_brms` for a description of the available correlation structures. Defaults to `NULL`, corresponding to no correlations. In multivariate models, autocor might also be a list of autocorrelation structures. It is now recommend to specify autocorrelation terms directly within `formula`. See `brmsformula` for more details.

cov_ranef (Deprecated) A list of matrices that are proportional to the (within) covariance structure of the group-level effects. The names of the matrices should correspond to columns in `data` that are used as grouping factors. All levels of the grouping factor should appear as rownames of the corresponding matrix. This argument can be used, among others to model pedigrees and phylogenetic effects. It is now recommended to specify those matrices in the formula interface using the `gr` and related functions. See vignette("brms_phylogenetics") for more details.

sparse (Deprecated) Logical; indicates whether the population-level design matrices should be treated as sparse (defaults to `FALSE`). For design matrices with many zeros, this can considerably reduce required memory. Sampling speed is currently not improved or even slightly decreased. It is now recommended to use the `sparse` argument of `brmsformula` and related functions.

sample_prior Indicate if samples from priors should be drawn additionally to the posterior samples. Options are "no" (the default), "yes", and "only". Among others, these samples can be used to calculate Bayes factors for point hypotheses via `hypothesis`. Please note that improper priors are not sampled, including the...
default improper priors used by \texttt{brm}. See \texttt{set_prior} on how to set (proper) priors. Please also note that prior samples for the overall intercept are not obtained by default for technical reasons. See \texttt{brmsformula} how to obtain prior samples for the intercept. If \texttt{sample_prior} is set to "only", samples are drawn solely from the priors ignoring the likelihood, which allows among others to generate samples from the prior predictive distribution. In this case, all parameters must have proper priors.

\texttt{stanvars}  
An optional \texttt{stanvars} object generated by function \texttt{stanvar} to define additional variables for use in \texttt{Stan}'s program blocks.

\texttt{stan_funs}  
(Deprecated) An optional character string containing self-defined \texttt{Stan} functions, which will be included in the functions block of the generated \texttt{Stan} code. It is now recommended to use the \texttt{stanvars} argument for this purpose instead.

\texttt{knots}  
Optional list containing user specified knot values to be used for basis construction of smoothing terms. See \texttt{gamm} for more details.

\texttt{save_model}  
Either \texttt{NULL} or a character string. In the latter case, the model’s Stan code is saved via \texttt{cat} in a text file named after the string supplied in \texttt{save_model}.

\texttt{...}  
Other arguments for internal usage only.

\textbf{Value}  
A character string containing the fully commented \texttt{Stan} code to fit a \texttt{brms} model.

\textbf{Examples}  

\begin{verbatim}
make_stancode(rating ~ treat + period + carry + (1|subject),
  data = inhaler, family = "cumulative")

make_stancode(count ~ zAge + zBase * Trt + (1|patient),
  data = epilepsy, family = "poisson")
\end{verbatim}
Arguments

**formula**
An object of class `formula`, `brmsformula`, or `mvbrmsformula` (or one that can be coerced to that class): A symbolic description of the model to be fitted. The details of model specification are explained in `brmsformula`.

**data**
An object of class `data.frame` (or one that can be coerced to that class) containing data of all variables used in the model.

**family**
A description of the response distribution and link function to be used in the model. This can be a family function, a call to a family function or a character string naming the family. Every family function has a `link` argument allowing to specify the link function to be applied on the response variable. If not specified, default links are used. For details of supported families see `brmsfamily`. By default, a linear gaussian model is applied. In multivariate models, `family` might also be a list of families.

**prior**
One or more `brmsprior` objects created by `set_prior` or related functions and combined using the `c` method or the `+` operator. See also `get_prior` for more help.

**autocor**
(Deprecated) An optional `cor_brms` object describing the correlation structure within the response variable (i.e., the 'autocorrelation'). See the documentation of `cor_brms` for a description of the available correlation structures. Defaults to `NULL`, corresponding to no correlations. In multivariate models, autocor might also be a list of autocorrelation structures. It is now recommend to specify autocorrelation terms directly within `formula`. See `brmsformula` for more details.

**data2**
A named list of objects containing data, which cannot be passed via argument `data`. Required for some objects used in autocorrelation structures to specify dependency structures as well as for within-group covariance matrices.

**cov_ranef**
(Deprecated) A list of matrices that are proportional to the (within) covariance structure of the group-level effects. The names of the matrices should correspond to columns in `data` that are used as grouping factors. All levels of the grouping factor should appear as rownames of the corresponding matrix. This argument can be used, among others to model pedigrees and phylogenetic effects. It is now recommended to specify those matrices in the formula interface using the `gr` and related functions. See vignette("brms_phylogenetics") for more details.

**sample_prior**
Indicate if samples from priors should be drawn additionally to the posterior samples. Options are "no" (the default), "yes", and "only". Among others, these samples can be used to calculate Bayes factors for point hypotheses via `hypothesis`. Please note that improper priors are not sampled, including the
default improper priors used by brm. See set_prior on how to set (proper) priors. Please also note that prior samples for the overall intercept are not obtained by default for technical reasons. See brmsformula how to obtain prior samples for the intercept. If sample_prior is set to "only", samples are drawn solely from the priors ignoring the likelihood, which allows among others to generate samples from the prior predictive distribution. In this case, all parameters must have proper priors.

stanvars  An optional stanvars object generated by function stanvar to define additional variables for use in Stan's program blocks.

knots    Optional list containing user specified knot values to be used for basis construction of smoothing terms. See gamm for more details.

... Other arguments for internal use.

Value
A named list of objects containing the required data to fit a brms model with Stan.

Author(s)
Paul-Christian Buerkner <paul.buerkner@gmail.com>

Examples
sdata1 <- make_standata(rating ~ treat + period + carry + (1|subject),
  data = inhaler, family = "cumulative")
str(sdata1)

sdata2 <- make_standata(count ~ zAge + zBase * Trt + (1|patient),
  data = epilepsy, family = "poisson")
str(sdata2)

mcmc_plot.brmsfit  MCMC Plots Implemented in bayesplot

Description
Convenient way to call MCMC plotting functions implemented in the bayesplot package.

Usage
## S3 method for class 'brmsfit'
mcmc_plot(
  object,
  pars = NA,
  type = "intervals",
  fixed = FALSE,
mcmc_plot.brmsfit

exact_match = FALSE,

mcmc_plot(object, ...)

Arguments

object
An \texttt{R} object typically of class \texttt{brmsfit}

pars
Names of parameters to be plotted, as given by a character vector or regular expressions. By default, all parameters except for group-level and smooth effects are plotted. May be ignored for some plots.

type
The type of the plot. Supported types are (as names) \texttt{hist}, \texttt{dens}, \texttt{hist_by_chain}, \texttt{dens_overlay}, \texttt{violin}, \texttt{intervals}, \texttt{areas}, \texttt{acf}, \texttt{acf_bar}, \texttt{trace}, \texttt{trace_highlight}, \texttt{scatter}, \texttt{rhat}, \texttt{rhat_hist}, \texttt{neff}, \texttt{neff_hist}, \texttt{nuts_acceptance}, \texttt{nuts_divergence}, \texttt{nuts_stepsize}, \texttt{nuts_treedepth}, and \texttt{nuts_energy}. For an overview on the various plot types see \texttt{MCMC-overview}.

fixed
Indicates whether parameter names should be matched exactly (\texttt{TRUE}) or treated as regular expressions (\texttt{FALSE}). Default is \texttt{FALSE}.

exact_match
Deprecated alias of argument \texttt{fixed}.

...
Additional arguments passed to the plotting functions. See \texttt{MCMC-overview} for more details.

Details

Also consider using the \texttt{shinystan} package available via method \texttt{launch_shinystan} in \texttt{brms} for flexible and interactive visual analysis.

Value

A \texttt{ggplot} object that can be further customized using the \texttt{ggplot2} package.

Examples

## Not run:
model <- brm(count ~ zAge + zBase * Trt + (1|patient),
              data = epilepsy, family = "poisson")

# plot posterior intervals
mcmc_plot(model)

# only show population-level effects in the plots
mcmc_plot(model, pars = "b_")

# show histograms of the posterior distributions
mcmc_plot(model, type = "hist")

# plot some diagnostics of the sampler
mcmc_plot(model, type = "neff")
mcmc_plot(model, type = "rhat")

# plot some diagnostics specific to the NUTS sampler
mcmc_plot(model, type = "nuts_acceptance")
mcmc_plot(model, type = "nuts_divergence")

## End(Not run)
# fit a simple error-in-variables model
fit1 <- brm(y ~ me(x1, sdx) + me(x2, sdx), data = dat,
           save_mevars = TRUE)
summary(fit1)

# turn off modeling of correlations
bform <- bf(y ~ me(x1, sdx) + me(x2, sdx)) + set_mecor(FALSE)
fit2 <- brm(bform, data = dat, save_mevars = TRUE)
summary(fit2)

## End(Not run)

---

### mi

**Predictors with Missing Values in brms Models**

**Description**

Specify predictor term with missing values in `brms`. The function does not evaluate its arguments – it exists purely to help set up a model.

**Usage**

```r
mi(x)
```

**Arguments**

- `x` The variable containing missings.

**Details**

For detailed documentation see `help(brmsformula)`.  

**See Also**

- `brmsformula`

**Examples**

```r
Not run:
data("nhanes", package = "mice")
bform <- bf(bmi | mi() ~ age * mi(chl)) +
 bf(chl | mi() ~ age) + set_rescor(FALSE)
fit <- brm(bform, data = nhanes)
summary(fit)
plot(conditional_effects(fit, resp = "bmi"), ask = FALSE)
LOO(fit, newdata = na.omit(fit$data))

End(Not run)
```
Set up a finite mixture family for use in **brms**.

**Usage**

```r
mixture(..., flist = NULL, nmix = 1, order = NULL)
```

**Arguments**

- `...`: One or more objects providing a description of the response distributions to be combined in the mixture model. These can be family functions, calls to family functions or character strings naming the families. For details of supported families see `brmsfamily`.

- `flist`: Optional list of objects, which are treated in the same way as objects passed via the `...` argument.

- `nmix`: Optional numeric vector specifying the number of times each family is repeated. If specified, it must have the same length as the number of families passed via `...` and `flist`.

- `order`: Ordering constraint to identify mixture components. If `"mu"` or `TRUE`, population-level intercepts of the mean parameters are ordered in non-ordinal models and fixed to the same value in ordinal models (see details). If `"none"` or `FALSE`, no ordering constraint is applied. If `NULL` (the default), `order` is set to `"mu"` if all families are the same and `"none"` otherwise. Other ordering constraints may be implemented in the future.

**Details**

Most families supported by **brms** can be used to form mixtures. The response variable has to be valid for all components of the mixture family. Currently, the number of mixture components has to be specified by the user. It is not yet possible to estimate the number of mixture components from the data.

Ordering intercepts in mixtures of ordinal families is not possible as each family has itself a set of vector of intercepts (i.e. ordinal thresholds). Instead, **brms** will fix the vector of intercepts across components in ordinal mixtures, if desired, so that users can try to identify the mixture model via selective inclusion of predictors.

For most mixture models, you may want to specify priors on the population-level intercepts via `set_prior` to improve convergence. In addition, it is sometimes necessary to set `inits = 0` in the call to **brm** to allow chains to initialize properly.

For more details on the specification of mixture models, see `brmsformula`. 
mixture

Value

An object of class mixfamily.

Examples

```r
Not run:
simulate some data
set.seed(1234)
dat <- data.frame(
 y = c(rnorm(200), rnorm(100, 6)),
 x = rnorm(300),
 z = sample(0:1, 300, TRUE)
)

fit a simple normal mixture model
mix <- mixture(gaussian, gaussian)
prior <- c(
 prior(normal(0, 7), Intercept, dpar = mu1),
 prior(normal(5, 7), Intercept, dpar = mu2)
)
fit1 <- brm(bf(y ~ x + z), dat, family = mix,
 prior = prior, chains = 2)
summary(fit1)
pp_check(fit1)

use different predictors for the components
fit2 <- brm(bf(y ~ 1, mu1 ~ x, mu2 ~ z), dat, family = mix,
 prior = prior, chains = 2)
summary(fit2)

fix the mixing proportions
fit3 <- brm(bf(y ~ x + z, theta1 = 1, theta2 = 2),
 dat, family = mix, prior = prior,
 inits = 0, chains = 2)
summary(fit3)
pp_check(fit3)

predict the mixing proportions
fit4 <- brm(bf(y ~ x + z, theta2 ~ x),
 dat, family = mix, prior = prior,
 inits = 0, chains = 2)
summary(fit4)
pp_check(fit4)

compare model fit
LOO(fit1, fit2, fit3, fit4)

End(Not run)
```
**mm**

Set up multi-membership grouping terms in **brms**

**Description**

Function to set up a multi-membership grouping term in **brms**. The function does not evaluate its arguments – it exists purely to help set up a model with grouping terms.

**Usage**

```r
mm(
 ...,
 weights = NULL,
 scale = TRUE,
 cor = TRUE,
 id = NA,
 cov = NULL,
 dist = "gaussian"
)
```

**Arguments**

- `...`: One or more terms containing grouping factors.
- `weights`: A matrix specifying the weights of each member. It should have as many columns as grouping terms specified in `...`. If `NULL` (the default), equally weights are used.
- `scale`: Logical; if `TRUE` (the default), weights are standardized in order to sum to one per row. If negative weights are specified, `scale` needs to be set to `FALSE`.
- `cor`: Logical. If `TRUE` (the default), group-level terms will be modelled as correlated.
- `id`: Optional character string. All group-level terms across the model with the same `id` will be modeled as correlated (if `cor` is `TRUE`). See `brmsformula` for more details.
- `cov`: An optional matrix which is proportional to the within-group covariance matrix of the group-level effects. All levels of the grouping factor should appear as row-names of the corresponding matrix. This argument can be used, among others, to model pedigrees and phylogenetic effects. See vignette("brms_phylogenetics") for more details. By default, levels of the same grouping factor are modeled as independent of each other.
- `dist`: Name of the distribution of the group-level effects. Currently "gaussian" is the only option.

**See Also**

`brmsformula`, `mmc`
Examples

```r
Not run:
simulate some data
dat <- data.frame(
 y = rnorm(100), x1 = rnorm(100), x2 = rnorm(100),
 g1 = sample(1:10, 100, TRUE), g2 = sample(1:10, 100, TRUE)
)

multi-membership model with two members per group and equal weights
fit1 <- brm(y ~ x1 + (1|mm(g1, g2)), data = dat)
summary(fit1)

weight the first member two times for than the second member
dat$w1 <- rep(2, 100)
dat$w2 <- rep(1, 100)
fit2 <- brm(y ~ x1 + (1|mm(g1, g2, weights = cbind(w1, w2))), data = dat)
summary(fit2)

multi-membership model with level specific covariate values
dat$xc <- (dat$x1 + dat$x2) / 2
fit3 <- brm(y ~ xc + (1 + mmc(x1, x2) | mm(g1, g2)), data = dat)
summary(fit3)

End(Not run)
```

### mmc

**Multi-Membership Covariates**

**Description**

Specify covariates that vary over different levels of multi-membership grouping factors thus requiring special treatment. This function is almost solely useful, when called in combination with `mm`. Outside of multi-membership terms it will behave very much like `cbind`.

**Usage**

`mmc(...)`

**Arguments**

`...` One or more terms containing covariates corresponding to the grouping levels specified in `mm`.

**Value**

A matrix with covariates as columns.
**Monotonic Predictors in brms Models**

### Description

Specify a monotonic predictor term in brms. The function does not evaluate its arguments – it exists purely to help set up a model.

### Usage

```r
mo(x)
```

### Arguments

- `x` An integer variable or an ordered factor to be modeled as monotonic.

### Details

For detailed documentation see `help(brmsformula)` as well as `vignette("brms_monotonic").`

### References


### See Also

`brmsformula`
Examples

## Not run:
# generate some data
income_options <- c("below_20", "20_to_40", "40_to_100", "greater_100")
income <- factor(sample(income_options, 100, TRUE),
    levels = income_options, ordered = TRUE)
mean_ls <- c(30, 60, 70, 75)
ls <- mean_ls[income] + rnorm(100, sd = 7)
dat <- data.frame(income, ls)

# fit a simple monotonic model
fit1 <- brm(ls ~ mo(income), data = dat)

# summarise the model
summary(fit1)
plot(fit1, N = 6)
plot(conditional_effects(fit1), points = TRUE)

# model interaction with other variables
dat$x <- sample(c("a", "b", "c"), 100, TRUE)
fit2 <- brm(ls ~ mo(income)*x, data = dat)

# summarise the model
summary(fit2)
plot(conditional_effects(fit2), points = TRUE)

## End(Not run)

model_weights.brmsfit  Model Weighting Methods

Description

Compute model weights in various ways, for instance via stacking of predictive distributions, Akaike weights, or marginal likelihoods.

Usage

## S3 method for class 'brmsfit'
model_weights(x, ..., weights = "stacking", model_names = NULL)

model_weights(x, ...)

Arguments

x  A brmsfit object.
More brmsfit objects or further arguments passed to the underlying post-processing functions. In particular, see `prepare_predictions` for further supported arguments.

**weights**

Name of the criterion to compute weights from. Should be one of "loo", "waic", "kfold", "stacking" (current default), or "bma", "pseudobma". For the former three options, Akaike weights will be computed based on the information criterion values returned by the respective methods. For "stacking" and "pseudobma" method `loo_model_weights` will be used to obtain weights. For "bma", method `post_prob` will be used to compute Bayesian model averaging weights based on log marginal likelihood values (make sure to specify reasonable priors in this case). Some method, weights may also be a numeric vector of pre-specified weights.

**model_names**

If NULL (the default) will use model names derived from deparsing the call. Otherwise will use the passed values as model names.

**Value**

A numeric vector of weights for the models.

**Examples**

```r
Not run:
model with 'treat' as predictor
fit1 <- brm(rating ~ treat + period + carry, data = inhaler)
summary(fit1)

model without 'treat' as predictor
fit2 <- brm(rating ~ period + carry, data = inhaler)
summary(fit2)

obtain Akaike weights based on the WAIC
model_weights(fit1, fit2, weights = "waic")

End(Not run)
```

---

### MultiNormal

**The Multivariate Normal Distribution**

**Description**

Density function and random generation for the multivariate normal distribution with mean vector `mu` and covariance matrix `Sigma`.

**Usage**

```r
dmulti_normal(x, mu, Sigma, log = FALSE, check = FALSE)

rmulti_normal(n, mu, Sigma, check = FALSE)
```
MultiStudentT

Arguments

- **x**: Vector or matrix of quantiles. If `x` is a matrix, each row is taken to be a quantile.
- **mu**: Mean vector with length equal to the number of dimensions.
- **Sigma**: Covariance matrix.
- **log**: Logical; If `TRUE`, values are returned on the log scale.
- **check**: Logical; Indicates whether several input checks should be performed. Defaults to `FALSE` to improve efficiency.
- **n**: Number of samples to draw from the distribution.

Details

See the Stan user’s manual [http://mc-stan.org/documentation/](http://mc-stan.org/documentation/) for details on the parameterization.
mvbind

Bind response variables in multivariate models

Description
Can be used to specify a multivariate \texttt{brms} model within a single formula. Outside of \texttt{brmsformula}, it just behaves like \texttt{cbind}.

Usage
\texttt{mvbind(...)}

Arguments
\texttt{...} \hspace{1cm} Same as in \texttt{cbind}

See Also
\texttt{brmsformula, mvbrmsformula}

Examples
\texttt{bf(mvbind(y1, y2) \sim x)}

mvbrmsformula

Set up a multivariate model formula for use in \texttt{brms}

Description
Set up a multivariate model formula for use in the \texttt{brms} package allowing to define (potentially non-linear) additive multilevel models for all parameters of the assumed response distributions.

Usage
\texttt{mvbrmsformula(..., flist = NULL, rescor = NULL)}

Arguments
\texttt{...} \hspace{1cm} Objects of class \texttt{formula} or \texttt{brmsformula}, each specifying a univariate model. See \texttt{brmsformula} for details on how to specify univariate models.
\texttt{flist} \hspace{1cm} Optional list of formulas, which are treated in the same way as formulas passed via the \texttt{...} argument.
\texttt{rescor} \hspace{1cm} Logical; Indicates if residual correlation between the response variables should be modeled. Currently, this is only possible in multivariate \texttt{gaussian} and \texttt{student} models. If \texttt{NULL} (the default), \texttt{rescor} is internally set to \texttt{TRUE} when possible.
ngrps.brmsfit

Details

See vignette("brms_multivariate") for a case study.

Value

An object of class mvbrmsformula, which is essentially a list containing all model formulas as well as some additional information for multivariate models.

See Also

brmsformula, brmsformula-helpers

Examples

```r
bf1 <- bf(y1 ~ x + (1|g))
bf2 <- bf(y2 ~ s(z))
mvbf(bf1, bf2)
```

ngrps.brmsfit

Number of Grouping Factor Levels

Description

Extract the number of levels of one or more grouping factors.

Usage

```r
S3 method for class 'brmsfit'
ngrps(object, ...)
```

Arguments

- `object` An R object.
- `...` Currently ignored.

Value

A named list containing the number of levels per grouping factor.
nsamples.brmsfit  

**Number of Posterior Samples**

**Description**

Extract the number of posterior samples stored in a fitted Bayesian model.

**Usage**

```r
S3 method for class 'brmsfit'
nsamples(object, subset = NULL, incl_warmup = FALSE, ...)
```

**Arguments**

- `object`: An object of class `brmsfit`.
- `subset`: An optional integer vector defining a subset of samples to be considered.
- `incl_warmup`: A flag indicating whether to also count warmup / burn-in samples.
- `...`: Currently ignored.

---

pairs.brmsfit  

**Create a matrix of output plots from a brmsfit object**

**Description**

A `pairs` method that is customized for MCMC output.

**Usage**

```r
S3 method for class 'brmsfit'
pairs(x, pars = NA, fixed = FALSE, exact_match = FALSE, ...)
```

**Arguments**

- `x`: An object of class `brmsfit`.
- `pars`: Names of the parameters to plot, as given by a character vector or a regular expression. By default, all parameters except for group-level and smooth effects are plotted.
- `fixed`: Indicates whether parameter names should be matched exactly (TRUE) or treated as regular expressions (FALSE). Default is FALSE.
- `exact_match`: Deprecated alias of argument `fixed`.
- `...`: Further arguments to be passed to `mcmc_pairs`. 

---
Details

For a detailed description see `mcmc_pairs`.

Examples

```r
Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1|patient) + (1|visit),
 data = epilepsy, family = "poisson")
pairs(fit, pars = parnames(fit)[1:3], fixed = TRUE)
pairs(fit, pars = "^sd_")
End(Not run)
```

---

**parnames**

*Extract Parameter Names*

**Description**

Extract all parameter names of a given model.

**Usage**

```r
parnames(x, ...)
```

**Arguments**

- `x` An R object
- `...` Further arguments passed to or from other methods.

**Value**

A character vector containing the parameter names of the model.

---

**plot.brmsfit**

*Trace and Density Plots for MCMC Samples*

**Description**

Trace and Density Plots for MCMC Samples
Usage

```r
S3 method for class 'brmsfit'
plot(
 x,
 pars = NA,
 combo = c("dens", "trace"),
 N = 5,
 fixed = FALSE,
 exact_match = FALSE,
 theme = NULL,
 plot = TRUE,
 ask = TRUE,
 newpage = TRUE,
 ...)
```

Arguments

- **x**: An object of class `brmsfit`.
- **pars**: Names of the parameters to plot, as given by a character vector or a regular expression. By default, all parameters except for group-level and smooth effects are plotted.
- **combo**: A character vector with at least two elements. Each element of combo corresponds to a column in the resulting graphic and should be the name of one of the available MCMC functions (omitting the `mcmc_` prefix).
- **N**: The number of parameters plotted per page.
- **fixed**: Indicates whether parameter names should be matched exactly (TRUE) or treated as regular expressions (FALSE). Default is FALSE.
- **exact_match**: Deprecated alias of argument `fixed`.
- **theme**: A `theme` object modifying the appearance of the plots. For some basic themes see `ggtheme` and `theme_default`.
- **plot**: Logical; indicates if plots should be plotted directly in the active graphic device. Defaults to TRUE.
- **ask**: Logical; indicates if the user is prompted before a new page is plotted. Only used if `plot` is TRUE.
- **newpage**: Logical; indicates if the first set of plots should be plotted to a new page. Only used if `plot` is TRUE.
- **...**: Further arguments passed to `mcmc_combo`.

Value

An invisible list of `gtable` objects.
Examples

```r
Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1|patient) + (1|visit),
 data = epilepsy, family = "poisson")
plot(fit)
plot population-level effects only
plot(fit, pars = "^b_.")

End(Not run)
```

Description

Extract posterior samples of parameters averaged across models. Weighting can be done in various ways, for instance using Akaike weights based on information criteria or marginal likelihoods.

Usage

```r
S3 method for class 'brmsfit'
posterior_average(
 x,
 ...,
 pars = NULL,
 weights = "stacking",
 nsamples = NULL,
 missing = NULL,
 model_names = NULL,
 control = list(),
 seed = NULL
)
```

Arguments

- **x**: A `brmsfit` object.
- **...**: More `brmsfit` objects or further arguments passed to the underlying post-processing functions. In particular, see `prepare_predictions` for further supported arguments.
- **pars**: Names of parameters for which to average across models. Only those parameters can be averaged that appear in every model. Defaults to all overlapping parameters.
weights

Name of the criterion to compute weights from. Should be one of "loo", "waic", "kfold", "stacking" (current default), or "bma", "pseudobma". For the former three options, Akaike weights will be computed based on the information criterion values returned by the respective methods. For "stacking" and "pseudobma" method `loo_model_weights` will be used to obtain weights. For "bma", method `post_prob` will be used to compute Bayesian model averaging weights based on log marginal likelihood values (make sure to specify reasonable priors in this case). Some method, weights may also be a numeric vector of pre-specified weights.

nsamples

Total number of posterior samples to use.

missing

An optional numeric value or a named list of numeric values to use if a model does not contain a parameter for which posterior samples should be averaged. Defaults to NULL, in which case only those parameters can be averaged that are present in all of the models.

model_names

If NULL (the default) will use model names derived from deparsing the call. Otherwise will use the passed values as model names.

control

Optional list of further arguments passed to the function specified in `weights`.

seed

A single numeric value passed to `set.seed` to make results reproducible.

Details

Weights are computed with the `model_weights` method.

Value

A data.frame of posterior samples. Samples are rows and parameters are columns.

See Also

`model_weights`, `pp_average`

Examples

```r
Not run:
model with 'treat' as predictor
fit1 <- brm(rating ~ treat + period + carry, data = inhaler)
summary(fit1)

model without 'treat' as predictor
fit2 <- brm(rating ~ period + carry, data = inhaler)
summary(fit2)

compute model-averaged posteriors of overlapping parameters
posterior_average(fit1, fit2, weights = "waic")

End(Not run)
```
posterior_epred.brmsfit

Expected Values of the Posterior Predictive Distribution

Description

Compute posterior samples of the expected value/mean of the posterior predictive distribution. Can be performed for the data used to fit the model (posterior predictive checks) or for new data. By definition, these predictions have smaller variance than the posterior predictions performed by the `posterior_predict.brmsfit` method. This is because only the uncertainty in the mean is incorporated in the samples computed by `posterior_epred` while any residual error is ignored. However, the estimated means of both methods averaged across samples should be very similar.

Usage

```r
S3 method for class 'brmsfit'
posterior_epred(
 object,
 newdata = NULL,
 re_formula = NULL,
 re.form = NULL,
 resp = NULL,
 dpar = NULL,
 nlpar = NULL,
 nsamples = NULL,
 subset = NULL,
 sort = FALSE,
 ...
)
```

Arguments

- `object`: An object of class `brmsfit`.
- `newdata`: An optional data.frame for which to evaluate predictions. If `NULL` (default), the original data of the model is used. `NA` values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.
- `re_formula`: formula containing group-level effects to be considered in the prediction. If `NULL` (default), include all group-level effects; if `NA`, include no group-level effects.
- `re.form`: Alias of `re_formula`.
- `resp`: Optional names of response variables. If specified, predictions are performed only for the specified response variables.
posterior_interval.brmsfit

Compute posterior uncertainty intervals

Description

Compute posterior uncertainty intervals for brmsfit objects.
## posterior_linpred.brmsfit

### Posterior Samples of the Linear Predictor

**Description**

Compute posterior samples of the linear predictor, that is samples before applying any link functions or other transformations. Can be performed for the data used to fit the model (posterior predictive checks) or for new data.

**Usage**

```r
S3 method for class 'brmsfit'
posterior_linpred(object = NULL, transform = FALSE, newdata = NULL, re_formula = NULL,
"object")
```

### posterior_interval.brmsfit

#### Usage

```r
S3 method for class 'brmsfit'
posterior_interval(object = NA, pars = na.omit(object), prob = 0.95,
"object", "pars", "prob")
```

#### Arguments

- **object**: An object of class `brmsfit`
- **pars**: Names of parameters for which posterior samples should be returned, as given by a character vector or regular expressions. By default, all posterior samples of all parameters are extracted.
- **prob**: A value between 0 and 1 indicating the desired probability to be covered by the uncertainty intervals. The default is 0.95.
- **...**: More arguments passed to `as.matrix.brmsfit`.

#### Value

A matrix with lower and upper interval bounds as columns and as many rows as selected parameters.

#### Examples

```r
Not run:
fit <- brm(count ~ zAge + zBase * Trt,
data = epilepsy, family = negbinomial())
posterior_interval(fit)
End(Not run)
```
Arguments

object

An object of class `brmsfit`.

transform

(Deprecated) Logical; if FALSE (the default), samples of the linear predictor are returned. If TRUE, samples of transformed linear predictor, that is, the mean of the posterior predictive distribution are returned instead (see `posterior_epred` for details). Only implemented for compatibility with the `posterior_linpred` generic.

newdata

An optional data.frame for which to evaluate predictions. If NULL (default), the original data of the model is used. NA values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.

re_formula

formula containing group-level effects to be considered in the prediction. If NULL (default), include all group-level effects; if NA, include no group-level effects.

re.form

Alias of `re_formula`.

resp

Optional names of response variables. If specified, predictions are performed only for the specified response variables.

dpar

Optional name of a predicted distributional parameter. If specified, expected predictions of this parameters are returned.

nlpar

Optional name of a predicted non-linear parameter. If specified, expected predictions of this parameters are returned.

nsamples

Positive integer indicating how many posterior samples should be used. If NULL (the default) all samples are used. Ignored if subset is not NULL.

subset

A numeric vector specifying the posterior samples to be used. If NULL (the default), all samples are used.

sort

Logical. Only relevant for time series models. Indicating whether to return predicted values in the original order (FALSE; default) or in the order of the time series (TRUE).

...

Further arguments passed to `prepare_predictions` that control several aspects of data validation and prediction.

See Also

`posterior_epred.brmsfit`
Examples

```r
Not run:
fit a model
fit <- brm(rating ~ treat + period + carry + (1|subject),
 data = inhaler)

extract linear predictor values
pl <- posterior_linpred(fit)
str(pl)

End(Not run)
```

### Description

Compute posterior samples of the posterior predictive distribution. Can be performed for the data used to fit the model (posterior predictive checks) or for new data. By definition, these samples have higher variance than samples of the means of the posterior predictive distribution computed by `posterior_epred.brmsfit`. This is because the residual error is incorporated in `posterior_predict`. However, the estimated means of both methods averaged across samples should be very similar.

### Usage

```r
S3 method for class 'brmsfit'
posterior_predict(
 object,
 newdata = NULL,
 re_formula = NULL,
 re.form = NULL,
 transform = NULL,
 resp = NULL,
 negative_rt = FALSE,
 nsamples = NULL,
 subset = NULL,
 sort = FALSE,
 ntrys = 5,
 ...
)
```

### Arguments

- **object**: An object of class `brmsfit`.
newdata
An optional data.frame for which to evaluate predictions. If NULL (default), the
original data of the model is used. NA values within factors are interpreted as if
all dummy variables of this factor are zero. This allows, for instance, to make
predictions of the grand mean when using sum coding.

re_formula
formula containing group-level effects to be considered in the prediction. If
NULL (default), include all group-level effects; if NA, include no group-level ef-
fects.

re.form
Alias of re_formula.

transform
(Deprecated) A function or a character string naming a function to be applied
on the predicted responses before summary statistics are computed.

resp
Optional names of response variables. If specified, predictions are performed
only for the specified response variables.

negative_rt
Only relevant for Wiener diffusion models. A flag indicating whether response
times of responses on the lower boundary should be returned as negative values.
This allows to distinguish responses on the upper and lower boundary. Defaults
to FALSE.

nsamples
Positive integer indicating how many posterior samples should be used. If NULL
(the default) all samples are used. Ignored if subset is not NULL.

subset
A numeric vector specifying the posterior samples to be used. If NULL (the
default), all samples are used.

sort
Logical. Only relevant for time series models. Indicating whether to return
predicted values in the original order (FALSE; default) or in the order of the time
series (TRUE).

ntrys
Parameter used in rejection sampling for truncated discrete models only (de-
defaults to 5). See Details for more information.

... Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

Details

NA values within factors in newdata, are interpreted as if all dummy variables of this factor are zero.
This allows, for instance, to make predictions of the grand mean when using sum coding.

For truncated discrete models only: In the absence of any general algorithm to sample from trunc-
cated discrete distributions, rejection sampling is applied in this special case. This means that values
are sampled until a value lies within the defined truncation boundaries. In practice, this procedure
may be rather slow (especially in R). Thus, we try to do approximate rejection sampling by sam-
pling each value ntrys times and then select a valid value. If all values are invalid, the closest
boundary is used, instead. If there are more than a few of these pathological cases, a warning will
occur suggesting to increase argument ntrys.

Value
An array of predicted response values. If summary = FALSE, the output is as an S x N matrix, where
S is the number of posterior samples and N is the number of observations. In multivariate models,
an additional dimension is added to the output which indexes along the different response variables.
### Examples

```r
Not run:
fit a model
fit <- brm(time | cens(censored) ~ age + sex + (1 + age || patient),
 data = kidney, family = "exponential", inits = "0")

predicted responses
pp <- posterior_predict(fit)
str(pp)

predicted responses excluding the group-level effect of age
pp <- posterior_predict(fit, re_formula = ~ (1 | patient))
str(pp)

predicted responses of patient 1 for new data
newdata <- data.frame(
 sex = factor(c("male", "female"),
 age = c(20, 50),
 patient = c(1, 1)
)
pp <- posterior_predict(fit, newdata = newdata)
str(pp)

End(Not run)
```

---

### Description

Extract posterior samples of specified parameters.

### Usage

```r
S3 method for class 'brmsfit'
posterior_samples(
 x,
 pars = NA,
 fixed = FALSE,
 add_chain = FALSE,
 subset = NULL,
 as.matrix = FALSE,
 as.array = FALSE,
 ...
)
```
posterior_samples(x, pars = NA, ...)

## S3 method for class 'brmsfit'
as.data.frame(x, row.names = NULL, optional = TRUE, ...)

## S3 method for class 'brmsfit'
as.matrix(x, ...)

## S3 method for class 'brmsfit'
as.array(x, ...)

Arguments

x An R object typically of class brmsfit
pars Names of parameters for which posterior samples should be returned, as given by a character vector or regular expressions. By default, all posterior samples of all parameters are extracted.
fixed Indicates whether parameter names should be matched exactly (TRUE) or treated as regular expressions (FALSE). Default is FALSE.
add_chain A flag indicating if the returned data.frame should contain two additional columns. The chain column indicates the chain in which each sample was generated, the iter column indicates the iteration number within each chain.
subset A numeric vector indicating the rows (i.e., posterior samples) to be returned. If NULL (the default), all posterior samples are returned.

Arguments for...

as.matrix Should the output be a matrix instead of a data.frame? Defaults to FALSE.
as.array Should the output be an array instead of a data.frame? Defaults to FALSE.
... Further arguments to be passed to posterior_samples.
row.names, optional

See as.data.frame.

Details

Currently there are methods for brmsfit objects. as.data.frame.brmsfit, as.matrix.brmsfit, and as.array.brmsfit are basically aliases of posterior_samples.brmsfit and differ from each other only in type of the returned object.

Value

A data.frame (matrix or array) containing the posterior samples, with one column per parameter. In case an array is returned, it contains one additional dimension for the chains.

Examples

## Not run:
fit <- brm(rating ~ treat + period + carry + (1|subject),
           data = inhaler, family = "cumulative")
posterior_summary

Summarize Posterior Samples

Description
Summarizes posterior samples based on point estimates (mean or median), estimation errors (SD or MAD) and quantiles.

Usage
posterior_summary(x, ...)

## Default S3 method:
posterior_summary(x, probs = c(0.025, 0.975), robust = FALSE, ...)

## S3 method for class 'brmsfit'
posterior_summary(x, pars = NA, probs = c(0.025, 0.975), robust = FALSE, ...)

Arguments
- **x**: An R object.
- **...**: More arguments passed to or from other methods.
- **probs**: The percentiles to be computed by the quantile function.
- **robust**: If FALSE (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If TRUE, the median and the median absolute deviation (MAD) are applied instead.
- **pars**: Names of parameters for which posterior samples should be returned, as given by a character vector or regular expressions. By default, all posterior samples of all parameters are extracted.

Value
A matrix where rows indicate parameters and columns indicate the summary estimates.
Examples

```r
Not run:
fit <- brm(time ~ age * sex, data = kidney)
posterior_summary(fit)

End(Not run)
```

---

**posterior_table**  
*Table Creation for Posterior Samples*

**Description**
Create a table for unique values of posterior samples. This is usually only useful when summarizing predictions of ordinal models.

**Usage**

```r
posterior_table(x, levels = NULL)
```

**Arguments**

- `x`  
  A matrix of posterior samples where rows indicate samples and columns indicate parameters.

- `levels`  
  Optional values of possible posterior values. Defaults to all unique values in `x`.

**Value**

A matrix where rows indicate parameters and columns indicate the unique values of posterior samples.

**Examples**

```r
Not run:
fit <- brm(rating ~ period + carry + treat,
data = inhaler, family = cumulative())
pr <- predict(fit, summary = FALSE)
posterior_table(pr)

End(Not run)
```
post_prob.brmsfit  Posterior Model Probabilities from Marginal Likelihoods

Description

Compute posterior model probabilities from marginal likelihoods. The brmsfit method is just a thin wrapper around the corresponding method for bridge objects.

Usage

```r
S3 method for class 'brmsfit'
post_prob(x, ..., prior_prob = NULL, model_names = NULL)
```

Arguments

- `x`: A brmsfit object.
- `...`: More brmsfit objects or further arguments passed to the underlying post-processing functions. In particular, see `prepare_predictions` for further supported arguments.
- `prior_prob`: Numeric vector with prior model probabilities. If omitted, a uniform prior is used (i.e., all models are equally likely a priori). The default NULL corresponds to equal prior model weights.
- `model_names`: If NULL (the default) will use model names derived from deparsing the call. Otherwise will use the passed values as model names.

Details

Computing the marginal likelihood requires samples of all variables defined in Stan’s parameters block to be saved. Otherwise post_prob cannot be computed. Thus, please set `save_all_pars = TRUE` in the call to `brm`, if you are planning to apply `post_prob` to your models.

The computation of model probabilities based on bridge sampling requires a lot more posterior samples than usual. A good conservative rule of thumb is perhaps 10-fold more samples (read: the default of 4000 samples may not be enough in many cases). If not enough posterior samples are provided, the bridge sampling algorithm tends to be unstable leading to considerably different results each time it is run. We thus recommend running `post_prob` multiple times to check the stability of the results.

More details are provided under `bridgesampling::post_prob`.

See Also

`bridge_sampler`, `bayes_factor`
Examples

## Not run:
# model with the treatment effect
fit1 <- brm(
  count ~ zAge + zBase + Trt,
  data = epilepsy, family = negbinomial(),
  prior = prior(normal(0, 1), class = b),
  save_all_pars = TRUE
)
summary(fit1)

# model without the treatment effect
fit2 <- brm(
  count ~ zAge + zBase,
  data = epilepsy, family = negbinomial(),
  prior = prior(normal(0, 1), class = b),
  save_all_pars = TRUE
)
summary(fit2)

# compute the posterior model probabilities
post_prob(fit1, fit2)

# specify prior model probabilities
post_prob(fit1, fit2, prior_prob = c(0.8, 0.2))

## End(Not run)

### pp_average.brmsfit

#### Posterior predictive samples averaged across models

**Description**

Compute posterior predictive samples averaged across models. Weighting can be done in various ways, for instance using Akaike weights based on information criteria or marginal likelihoods.

**Usage**

```r
pp_average(x, weights = "stacking", method = "posterior_predict", nsamples = NULL, summary = TRUE, probs = c(0.025, 0.975), robust = FALSE)
```
Arguments

x A brmsfit object.

... More brmsfit objects or further arguments passed to the underlying post-processing functions. In particular, see `prepare_predictions` for further supported arguments.

weights Name of the criterion to compute weights from. Should be one of "loo", "waic", "kfold", "stacking" (current default), or "bma", "pseudobma". For the former three options, Akaike weights will be computed based on the information criterion values returned by the respective methods. For "stacking" and "pseudobma" method `loo_model_weights` will be used to obtain weights. For "bma", method `post_prob` will be used to compute Bayesian model averaging weights based on log marginal likelihood values (make sure to specify reasonable priors in this case). Some method, weights may also be a numeric vector of pre-specified weights.

method Method used to obtain predictions to average over. Should be one of "posterior_predict" (default), "pp_expect", or "predictive_error".

nsamples Total number of posterior samples to use.

summary Should summary statistics (i.e. means, sds, and 95% intervals) be returned instead of the raw values? Default is TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary is TRUE.

robust If FALSE (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If TRUE, the median and the median absolute deviation (MAD) are applied instead. Only used if summary is TRUE.

model_names If NULL (the default) will use model names derived from deparsing the call. Otherwise will use the passed values as model names.

control Optional list of further arguments passed to the function specified in weights.

seed A single numeric value passed to `set.seed` to make results reproducible.

Details

Weights are computed with the `model_weights` method.

Value

Same as the output of the method specified in argument `method`.
See Also

model_weights, posterior_average

Examples

## Not run:
# model with 'treat' as predictor
fit1 <- brm(rating ~ treat + period + carry, data = inhaler)
summary(fit1)

# model without 'treat' as predictor
fit2 <- brm(rating ~ period + carry, data = inhaler)
summary(fit2)

# compute model-averaged predicted values
(df <- unique(inhaler[, c("treat", "period", "carry")]))
pp_average(fit1, fit2, newdata = df)

# compute model-averaged fitted values
pp_average(fit1, fit2, method = "fitted", newdata = df)

## End(Not run)
Arguments

- **object**: An object of class `brmsfit`.
- **type**: Type of the ppc plot as given by a character string. See PPC for an overview of currently supported types. You may also use an invalid type (e.g. `type = "xyz"`) to get a list of supported types in the resulting error message.
- **nsamples**: Positive integer indicating how many posterior samples should be used. If `NULL` all samples are used. If not specified, the number of posterior samples is chosen automatically. Ignored if `subset` is not `NULL`.
- **group**: Optional name of a factor variable in the model by which to stratify the ppc plot. This argument is required for `ppc*_grouped` types and ignored otherwise.
- **x**: Optional name of a variable in the model. Only used for ppc types having an `x` argument and ignored otherwise.
- **newdata**: An optional data.frame for which to evaluate predictions. If `NULL` (default), the original data of the model is used. NA values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.
- **resp**: Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- **subset**: A numeric vector specifying the posterior samples to be used. If `NULL` (the default), all samples are used.
- **...**: Further arguments passed to `predict.brmsfit` as well as to the PPC function specified in `type`.

Details

For a detailed explanation of each of the ppc functions, see the PPC documentation of the `bayesplot` package.

Value

A ggplot object that can be further customized using the `ggplot2` package.

Examples

```r
Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1|patient) + (1|obs),
 data = epilepsy, family = poisson())

pp_check(fit) # shows dens_overlay plot by default
pp_check(fit, type = "error_hist", nsamples = 11)
pp_check(fit, type = "scatter_avg", nsamples = 100)
pp_check(fit, type = "stat_2d")
pp_check(fit, type = "rootogram")
pp_check(fit, type = "loo_pit")

get an overview of all valid types
```
```
pp_check(fit, type = "xyz")
End(Not run)
```

---

**pp_mixture.brmsfit**  
*Posterior Probabilities of Mixture Component Memberships*

**Description**

Compute the posterior probabilities of mixture component memberships for each observation including uncertainty estimates.

**Usage**

```r
S3 method for class 'brmsfit'
pp_mixture(
 x,
 newdata = NULL,
 re_formula = NULL,
 resp = NULL,
 nsamples = NULL,
 subset = NULL,
 log = FALSE,
 summary = TRUE,
 robust = FALSE,
 probs = c(0.025, 0.975),
 ...
)
```

**Arguments**

- **x**: An R object usually of class `brmsfit`.
- **newdata**: An optional data.frame for which to evaluate predictions. If `NULL` (default), the original data of the model is used. NA values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.
- **re_formula**: formula containing group-level effects to be considered in the prediction. If `NULL` (default), include all group-level effects; if `NA`, include no group-level effects.
- **resp**: Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- **nsamples**: Positive integer indicating how many posterior samples should be used. If `NULL` (the default) all samples are used. Ignored if `subset` is not `NULL`. 
subset A numeric vector specifying the posterior samples to be used. If NULL (the default), all samples are used.

log Logical; Indicates whether to return probabilities on the log-scale.

summary Should summary statistics be returned instead of the raw values? Default is TRUE.

robust If FALSE (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If TRUE, the median and the median absolute deviation (MAD) are applied instead. Only used if summary is TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary is TRUE.

... Further arguments passed to prepare_predictions that control several aspects of data validation and prediction.

Details

The returned probabilities can be written as $P(K_n = k|Y_n)$, that is the posterior probability that observation $n$ originates from component $k$. They are computed using Bayes’ Theorem

$$P(K_n = k|Y_n) = P(Y_n|K_n = k)P(K_n = k)/P(Y_n),$$

where $P(Y_n|K_n = k)$ is the (posterior) likelihood of observation $n$ for component $k$, $P(K_n = k)$ is the (posterior) mixing probability of component $k$ (i.e. parameter $\theta_k$), and

$$P(Y_n) = \sum_{k = 1, \ldots, K} P(Y_n|K_n = k)P(K_n = k)$$

is a normalizing constant.

Value

If summary = TRUE, an N x E x K array, where N is the number of observations, K is the number of mixture components, and E is equal to length(probs) + 2. If summary = FALSE, an S x N x K array, where S is the number of posterior samples.

Examples

```r
Not run:
simulate some data
set.seed(1234)
dat <- data.frame(
y = c(rnorm(100), rnorm(50, 2)),
x = rnorm(150)
)
fit a simple normal mixture model
mix <- mixture(gaussian, nmix = 2)
prior <- c(
prior(normal(0, 5), Intercept, nlpar = mu1),
prior(normal(0, 5), Intercept, nlpar = mu2),
prior(dirichlet(2, 2), theta)
```
```r
fit1 <- brm(bf(y ~ x), dat, family = mix,
 prior = prior, chains = 2, inits = 0)
summary(fit1)

compute the membership probabilities
ppm <- pp_mixture(fit1)
str(ppm)

extract point estimates for each observation
head(ppm[, 1,])

classify every observation according to
the most likely component
apply(ppm[, 1,], 1, which.max)

End(Not run)

predict.brmsfit
Samples from the Posterior Predictive Distribution

Description

This method is an alias of `posterior_predict.brmsfit` with additional arguments for obtaining summaries of the computed samples.

Usage

```r
## S3 method for class 'brmsfit'
predict(
    object,
    newdata = NULL,
    re_formula = NULL,
    transform = NULL,
    resp = NULL,
    negative_rt = FALSE,
    nsamples = NULL,
    subset = NULL,
    sort = FALSE,
    ntrys = 5,
    summary = TRUE,
    robust = FALSE,
    probs = c(0.025, 0.975),
    ... )
```
```
**predict.brmsfit**

**Arguments**

- **object**: An object of class `brmsfit`.
- **newdata**: An optional data.frame for which to evaluate predictions. If `NULL` (default), the original data of the model is used. NA values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.
- **re_formula**: Formula containing group-level effects to be considered in the prediction. If `NULL` (default), include all group-level effects; if `NA`, include no group-level effects.
- **transform**: (Deprecated) A function or a character string naming a function to be applied on the predicted responses before summary statistics are computed.
- **resp**: Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- **negative_rt**: Only relevant for Wiener diffusion models. A flag indicating whether response times of responses on the lower boundary should be returned as negative values. This allows to distinguish responses on the upper and lower boundary. Defaults to `FALSE`.
- **nsamples**: Positive integer indicating how many posterior samples should be used. If `NULL` (the default) all samples are used. Ignored if `subset` is not `NULL`.
- **subset**: A numeric vector specifying the posterior samples to be used. If `NULL` (the default), all samples are used.
- **sort**: Logical. Only relevant for time series models. Indicating whether to return predicted values in the original order (`FALSE`; default) or in the order of the time series (`TRUE`).
- **ntrys**: Parameter used in rejection sampling for truncated discrete models only (defaults to 5). See Details for more information.
- **summary**: Should summary statistics be returned instead of the raw values? Default is `TRUE`.
- **robust**: If `FALSE` (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If `TRUE`, the median and the median absolute deviation (MAD) are applied instead. Only used if `summary` is `TRUE`.
- **probs**: The percentiles to be computed by the `quantile` function. Only used if `summary` is `TRUE`.
- **...**: Further arguments passed to `prepare_predictions` that control several aspects of data validation and prediction.

**Value**

An array of predicted response values. If `summary = FALSE` the output resembles those of `posterior_predict.brmsfit`. If `summary = TRUE` the output depends on the family: For categorical and ordinal families, the output is an N x C matrix, where N is the number of observations, C is the number of categories, and the values are predicted category probabilities. For all other families, the output is a N x E matrix where E = 2 + length(probs) is the number of summary statistics: The `Estimate` column contains point
estimates (either mean or median depending on argument `robust`), while the `Est.Error` column contains uncertainty estimates (either standard deviation or median absolute deviation depending on argument `robust`). The remaining columns starting with `Q` contain quantile estimates as specified via argument `probs`.

**See Also**

`predictive_error.brmsfit`

**Examples**

```r
equal
Not run:
fit a model
fit <- brm(time | cens(censored) ~ age + sex + (1 + age || patient),
 data = kidney, family = "exponential", inits = "0")

predicted responses
pp <- predict(fit)
head(pp)

predicted responses excluding the group-level effect of age
pp <- predict(fit, re_formula = ~ (1 | patient))
head(pp)

predicted responses of patient 1 for new data
newdata <- data.frame(
 sex = factor(c("male", "female")),
 age = c(20, 50),
 patient = c(1, 1)
)
predict(fit, newdata = newdata)

End(Not run)
```

`predictive_error.brmsfit`

**Posterior Samples of Predictive Errors**

**Description**

Compute posterior samples of predictive errors, that is, observed minus predicted responses. Can be performed for the data used to fit the model (posterior predictive checks) or for new data.

**Usage**

```r
equal
S3 method for class 'brmsfit'
predictive_error(object,
predictive_error.brmsfit

newdata = NULL,
re_formula = NULL,
re.form = NULL,
resp = NULL,
nsamples = NULL,
subset = NULL,
sort = FALSE,
...
)

Arguments

object
An object of class \texttt{brmsfit}.

newdata
An optional \texttt{data.frame} for which to evaluate predictions. If \texttt{NULL} (default), the original data of the model is used. NA values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.

re_formula
formula containing group-level effects to be considered in the prediction. If \texttt{NULL} (default), include all group-level effects; if \texttt{NA}, include no group-level effects.

re.form
Alias of \texttt{re_formula}.

resp
Optional names of response variables. If specified, predictions are performed only for the specified response variables.

nsamples
Positive integer indicating how many posterior samples should be used. If \texttt{NULL} (the default) all samples are used. Ignored if \texttt{subset} is not \texttt{NULL}.

subset
A numeric vector specifying the posterior samples to be used. If \texttt{NULL} (the default), all samples are used.

sort
Logical. Only relevant for time series models. Indicating whether to return predicted values in the original order (\texttt{FALSE}; default) or in the order of the time series (\texttt{TRUE}).

...
Further arguments passed to \texttt{prepare_predictions} that control several aspects of data validation and prediction.

Value

An S x N array of predictive error samples, where S is the number of posterior samples and N is the number of observations.

Examples

Not run:
fit a model
fit <- \texttt{brm(rating \sim treat + period + carry + (1|subject),}
\hspace{1cm}
data = inhaler, cores = 2)

extract predictive errors
pe <- predictive_error(fit)
predictive_interval.brmsfit

Predictive Intervals

Description

Compute intervals from the posterior predictive distribution.

Usage

```r
## S3 method for class 'brmsfit'
predictive_interval(object, prob = 0.9, ...)
```

Arguments

- `object`: An R object of class `brmsfit`.
- `prob`: A number \(p (0 < p < 1) \) indicating the desired probability mass to include in the intervals. Defaults to 0.9.
- `...`: Further arguments passed to `posterior_predict`.

Value

A matrix with 2 columns for the lower and upper bounds of the intervals, respectively, and as many rows as observations being predicted.

Examples

```r
## Not run:
fit <- brm(count ~ zBase, data = epilepsy, family = poisson())
predictive_interval(fit)

## End(Not run)
```
prepare_predictions.brmsfit

Prepare Predictions

Description

This method helps in preparing \texttt{brms} models for certain post-processing tasks most notably various forms of predictions. Unless you are a package developer, you will rarely need to call \texttt{prepare_predictions} directly.

Usage

```r
## S3 method for class 'brmsfit'
prepare_predictions(
  x,
  newdata = NULL,
  re_formula = NULL,
  allow_new_levels = FALSE,
  sample_new_levels = "uncertainty",
  incl_autocor = TRUE,
  oos = NULL,
  resp = NULL,
  nsamples = NULL,
  subset = NULL,
  nug = NULL,
  smooths_only = FALSE,
  offset = TRUE,
  newdata2 = NULL,
  new_objects = NULL,
  point_estimate = NULL,
  ...
)
```

Arguments

- \texttt{x} \texttt{An \texttt{R} object typically of class 'brmsfit'.}
- \texttt{newdata} \texttt{An optional data.frame for which to evaluate predictions. If NULL (default), the original data of the model is used. NA values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.}
- \texttt{re_formula} \texttt{formula containing group-level effects to be considered in the prediction. If NULL (default), include all group-level effects; if NA, include no group-level effects.}
allow_new_levels
A flag indicating if new levels of group-level effects are allowed (defaults to FALSE). Only relevant if newdata is provided.

sample_new_levels
Indicates how to sample new levels for grouping factors specified in re_formula. This argument is only relevant if newdata is provided and allow_new_levels is set to TRUE. If "uncertainty" (default), include group-level uncertainty in the predictions based on the variation of the existing levels. If "gaussian", sample new levels from the (multivariate) normal distribution implied by the group-level standard deviations and correlations. This options may be useful for conducting Bayesian power analysis. If "old_levels", directly sample new levels from the existing levels.

incl_autocor
A flag indicating if correlation structures originally specified via autocor should be included in the predictions. Defaults to TRUE.

oos
Optional indices of observations for which to compute out-of-sample rather than in-sample predictions. Only required in models that make use of response values to make predictions, that is currently only ARMA models.

resp
Optional names of response variables. If specified, predictions are performed only for the specified response variables.

nsamples
Positive integer indicating how many posterior samples should be used. If NULL (the default) all samples are used. Ignored if subset is not NULL.

subset
A numeric vector specifying the posterior samples to be used. If NULL (the default), all samples are used.

nug
Small positive number for Gaussian process terms only. For numerical reasons, the covariance matrix of a Gaussian process might not be positive definite. Adding a very small number to the matrix’s diagonal often solves this problem. If NULL (the default), nug is chosen internally.

smooths_only
Logical; If TRUE only predictions related to the computation of smooth terms will be prepared.

offset
Logical; Indicates if offsets should be included in the predictions. Defaults to TRUE.

newdata2
A named list of objects containing new data, which cannot be passed via argument newdata. Required for some objects used in autocorrelation structures, or stanvars.

new_objects
Deprecated alias of newdata2.

point_estimate
Shall the returned object contain only point estimates of the parameters instead of their posterior samples? Defaults to NULL in which case no point estimate is computed. Alternatively, may be set to "mean" or "median". This argument is primarily implemented to ensure compatibility with the loo_subsample method.

...
Further arguments passed to validate_newdata.

Value
An object of class 'brmsprep' or 'mvbrmsprep', depending on whether a univariate or multivariate model is passed.
print.brmsfit

Print a summary for a fitted model represented by a brmsfit object

Description

Print a summary for a fitted model represented by a brmsfit object

Usage

```r
## S3 method for class 'brmsfit'
print(x, digits = 2, ...)
```

Arguments

- `x`: An object of class `brmsfit`
- `digits`: The number of significant digits for printing out the summary; defaults to 2. The effective sample size is always rounded to integers.
- `...`: Additional arguments that would be passed to method `summary` of `brmsfit`.

See Also

`summary.brmsfit`

print.brmsprior

Print method for brmsprior objects

Description

Print method for brmsprior objects

Usage

```r
## S3 method for class 'brmsprior'
print(x, show_df, ...)  
```

Arguments

- `x`: An object of class `brmsprior`
- `show_df`: Logical; Print priors as a single `data.frame` (TRUE) or as a sequence of sampling statements (FALSE)?
- `...`: Currently ignored.
prior_samples.brmsfit Extract prior samples

Description
Extract prior samples of specified parameters

Usage
S3 method for class 'brmsfit'
prior_samples(x, pars = NA, ...)

Arguments
x An R object typically of class brmsfit
pars Names of parameters for which prior samples should be returned, as given by a character vector or regular expressions. By default, all prior samples are extracted
...
Currently ignored

Details
To make use of this function, the model must contain samples of prior distributions. This can be ensured by setting sample_prior = TRUE in function brm. Priors of certain parameters cannot be saved for technical reasons. For instance, this is the case for the population-level intercept, which is only computed after fitting the model by default. If you want to treat the intercept as part of all the other regression coefficients, so that sampling from its prior becomes possible, use ... ~ 0 + Intercept + ... in the formulas.

Value
A data frame containing the prior samples.

Examples
Not run:
fit <- brm(rating ~ treat + period + carry + (1|subject),
data = inhaler, family = "cumulative",
prior = set_prior("normal(0,2)", class = "b"),
sample_prior = TRUE)

extract all prior samples
samples1 <- prior_samples(fit)
head(samples1)

extract prior samples for the population-level effects of 'treat'
samples2 <- prior_samples(fit, "b_treat")
head(samples2)

End(Not run)

prior_summary.brmsfit
Extract Priors of a Bayesian Model Fitted with brms

Description

Extract Priors of a Bayesian Model Fitted with **brms**

Usage

```r
## S3 method for class 'brmsfit'
prior_summary(object, all = TRUE, ...)
```

Arguments

- **object**
 A **brmsfit** object

- **all**
 Logical; Show all parameters in the model which may have priors (TRUE) or only those with proper priors (FALSE)?

- **...**
 Further arguments passed to or from other methods.

Value

For **brmsfit** objects, an object of class **brmsprior**.

Examples

```r
## Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1|patient) + (1|obs),
           data = epilepsy, family = poisson(),
           prior = c(prior(student_t(5,0,10), class = b),
                     prior(cauchy(0,2), class = sd)))

prior_summary(fit)
prior_summary(fit, all = FALSE)
print(prior_summary(fit, all = FALSE, show_df = FALSE))

## End(Not run)
```
ranef.brmsfit

Extract Group-Level Estimates

Description

Extract the group-level ('random') effects of each level from a `brmsfit` object.

Usage

```r
## S3 method for class 'brmsfit'
ranef(
  object,
  summary = TRUE,
  robust = FALSE,
  probs = c(0.025, 0.975),
  pars = NULL,
  groups = NULL,
  ...
)
```

Arguments

- `object`: An object of class `brmsfit`.
- `summary`: Should summary statistics be returned instead of the raw values? Default is `TRUE`.
- `robust`: If `FALSE` (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If `TRUE`, the median and the median absolute deviation (MAD) are applied instead. Only used if `summary` is `TRUE`.
- `probs`: The percentiles to be computed by the `quantile` function. Only used if `summary` is `TRUE`.
- `pars`: Optional names of coefficients to extract. By default, all coefficients are extracted.
- `groups`: Optional names of grouping variables for which to extract effects.
- `...`: Currently ignored.

Value

A list of 3D arrays (one per grouping factor). If `summary` is `TRUE`, the 1st dimension contains the factor levels, the 2nd dimension contains the summary statistics (see `posterior_summary`), and the 3rd dimension contains the group-level effects. If `summary` is `FALSE`, the 1st dimension contains the posterior draws, the 2nd dimension contains the factor levels, and the 3rd dimension contains the group-level effects.
Examples

```r
## Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1+Trt|visit),
            data = epilepsy, family = gaussian(), chains = 2)
ranef(fit)
## End(Not run)
```

reloo.brmsfit
Compute exact cross-validation for problematic observations

Description

Compute exact cross-validation for problematic observations for which approximate leave-one-out cross-validation may return incorrect results. Models for problematic observations can be run in parallel using the `future` package.

Usage

```r
## S3 method for class 'brmsfit'
reloo(
  x,
  loo,
  k_threshold = 0.7,
  newdata = NULL,
  resp = NULL,
  check = TRUE,
  ...
)
## S3 method for class 'loo'
reloo(x, fit, ...)
```

Arguments

- `x`
 An R object of class `brmsfit` or `loo` depending on the method.
- `loo`
 An R object of class `loo`.
- `k_threshold`
 The threshold at which pareto k estimates are treated as problematic. Defaults to 0.7. See `pareto_k_ids` for more details.
- `newdata`
 An optional data.frame for which to evaluate predictions. If `NULL` (default), the original data of the model is used. NA values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.
rename_pars

Optional names of response variables. If specified, predictions are performed only for the specified response variables.

Logical; If TRUE (the default), some checks are performed if the loo object was generated from the brmsfit object passed to argument fit.

Further arguments passed to update.brmsfit and log_lik.brmsfit.

An R object of class brmsfit.

Warnings about Pareto k estimates indicate observations for which the approximation to LOO is problematic (this is described in detail in Vehtari, Gelman, and Gabry (2017) and the loo package documentation). If there are J observations with k estimates above $k_{\text{threshold}}$, then reloo will refit the original model J times, each time leaving out one of the J problematic observations. The pointwise contributions of these observations to the total ELPD are then computed directly and substituted for the previous estimates from these J observations that are stored in the original loo object.

An object of the class loo.

See Also

loo, kfold

Examples

```r
## Not run:
fit1 <- brm(count ~ zAge + zBase * Trt + (1|patient),
            data = epilepsy, family = poisson())
# throws warning about some pareto k estimates being too high
(loo1 <- loo(fit1))
(reloo1 <- reloo(fit1, loo = loo1, chains = 1))
## End(Not run)
```

rename_pars

Rename Parameters

Rename parameters within the stanfit object after model fitting to ensure reasonable parameter names. This function is usually called automatically by brm and users will rarely be required to call it themselves.
residuals.brmsfit

Usage
rename_pars(x)

Arguments

x A brmsfit object.

Value
A brmsfit object with adjusted parameter names.

Examples

Not run:
fit a model manually via rstan
scode <- make_stancode(count ~ Trt, data = epilepsy)
sdata <- make_standata(count ~ Trt, data = epilepsy)
stanfit <- rstan::stan(model_code = scode, data = sdata)

feed the Stan model back into brms
fit <- brm(count ~ Trt, data = epilepsy, empty = TRUE)
fit$fit <- stanfit
fit <- rename_pars(fit)
summary(fit)

End(Not run)

residuals.brmsfit Posterior Samples of Residuals/Predictive Errors

Description
This method is an alias of predictive_error.brmsfit with additional arguments for obtaining summaries of the computed samples.

Usage

S3 method for class 'brmsfit'
residuals(
 object,
 newdata = NULL,
 re_formula = NULL,
 method = "pp_expect",
 type = c("ordinary", "pearson"),
 resp = NULL,
 nsamples = NULL,
 subset = NULL,
residuals.brmsfit

\begin{verbatim}
 sort = FALSE,
 summary = TRUE,
 robust = FALSE,
 probs = c(0.025, 0.975),
 ...
)
\end{verbatim}

Arguments

- **object**
 An object of class `brmsfit`.

- **newdata**
 An optional data.frame for which to evaluate predictions. If `NULL` (default), the original data of the model is used. NA values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.

- **re_formula**
 Formula containing group-level effects to be considered in the prediction. If `NULL` (default), include all group-level effects; if `NA`, include no group-level effects.

- **method**
 Method use to obtain predictions. Either "pp_expect" (the default) or "posterior_predict". Using "posterior_predict" is recommended but "pp_expect" is the current default for reasons of backwards compatibility.

- **type**
 The type of the residuals, either "ordinary" or "pearson". More information is provided under 'Details'.

- **resp**
 Optional names of response variables. If specified, predictions are performed only for the specified response variables.

- **nsamples**
 Positive integer indicating how many posterior samples should be used. If `NULL` (the default) all samples are used. Ignored if `subset` is not `NULL`.

- **subset**
 A numeric vector specifying the posterior samples to be used. If `NULL` (the default), all samples are used.

- **sort**
 Logical. Only relevant for time series models. Indicating whether to return predicted values in the original order (FALSE; default) or in the order of the time series (TRUE).

- **summary**
 Should summary statistics be returned instead of the raw values? Default is TRUE..

- **robust**
 If FALSE (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If TRUE, the median and the median absolute deviation (MAD) are applied instead. Only used if summary is TRUE.

- **probs**
 The percentiles to be computed by the quantile function. Only used if summary is TRUE.

... Further arguments passed to `prepare_predictions` that control several aspects of data validation and prediction.

Details

Residuals of type 'ordinary' are of the form \(R = Y - Y_{rep} \), where \(Y \) is the observed and \(Y_{rep} \) is the predicted response. Residuals of type pearson are of the form \(R = (Y - Y_{rep})/SD(Y) \), where \(SD(Y) \) is an estimation of the standard deviation of \(Y \).
Value

An array of predictive error/residual samples. If `summary = FALSE` the output resembles those of `predictive_error.brmsfit`. If `summary = TRUE` the output is an \(N \times E \) matrix, where \(N \) is the number of observations and \(E \) denotes the summary statistics computed from the samples.

Examples

```r
## Not run:
## fit a model
fit <- brm(rating ~ treat + period + carry + (1|subject),
data = inhaler, cores = 2)

## extract residuals/predictive errors
res <- residuals(fit)
head(res)

## End(Not run)
```

restructure

Restructure Old brmsfit Objects

Description

Restructure old `brmsfit` objects to work with the latest `brms` version. This function is called internally when applying post-processing methods. However, in order to avoid unnecessary run time caused by the restructuring, I recommend explicitly calling `restructure` once per model after updating `brms`.

Usage

```r
restructure(x, rstr_summary = FALSE)
```

Arguments

- `x`
an object of class `brmsfit`.
- `rstr_summary`
Logical; If `TRUE`, the cached summary stored by `rstan` is restructured as well.

Value

A `brmsfit` object compatible with the latest version of `brms`.

rows2labels

Convert Rows to Labels

Description
Convert information in rows to labels for each row.

Usage
\[\text{rows2labels}(x, \text{digits} = 2, \text{sep} = " \& ", \text{inclvars} = \text{TRUE}, \ldots) \]

Arguments
- \text{x} A data.frame for which to extract labels.
- \text{digits} Minimal number of decimal places shown in the labels of numeric variables.
- \text{sep} A single character string defining the separator between variables used in the labels.
- \text{inclvars} Indicates if variable names should be part of the labels. Defaults to \text{TRUE}.
- \ldots Currently unused.

Value
A character vector of the same length as the number of rows of \text{x}.

See Also
\text{make_conditions}, \text{conditional_effects}

s
Defining smooths in \text{brms} formulas

Description
Functions used in definition of smooth terms within a model formulas. The function does not evaluate a (spline) smooth - it exists purely to help set up a model using spline based smooths.

Usage
\[\text{s}(...) \]
\[\text{t2}(...) \]

Arguments
- \ldots Arguments passed to \text{mgcv::s} or \text{mgcv::t2}.
The function defined here are just simple wrappers of the respective functions of the mgcv package.

See Also
brmsformula, mgcv::s, mgcv::t2

Examples

```r
## Not run:
# simulate some data
dat <- mgcv::gamSim(1, n = 200, scale = 2)

# fit univariate smooths for all predictors
fit1 <- brm(y ~ s(x0) + s(x1) + s(x2) + s(x3),
            data = dat, chains = 2)
summary(fit1)
plot(conditional_smooths(fit1), ask = FALSE)

# fit a more complicated smooth model
fit2 <- brm(y ~ t2(x0, x1) + s(x2, by = x3),
            data = dat, chains = 2)
summary(fit2)
plot(conditional_smooths(fit2), ask = FALSE)

## End(Not run)
```

Description

Set up an spatial simultaneous autoregressive (SAR) term in brms. The function does not evaluate its arguments – it exists purely to help set up a model with SAR terms.

Usage

```r
sar(M, type = "lag")
```

Arguments

- **M**: An object specifying the spatial weighting matrix. Can be either the spatial weight matrix itself or an object of class listw or nb, from which the spatial weighting matrix can be computed.
- **type**: Type of the SAR structure. Either "lag" (for SAR of the response values) or "error" (for SAR of the residuals). More information is provided in the 'Details' section.
Details

The `lagsar` structure implements SAR of the response values:

\[y = \rho W y + \eta + e \]

The `errorsar` structure implements SAR of the residuals:

\[y = \eta + u, u = \rho W u + e \]

In the above equations, \(\eta \) is the predictor term and \(e \) are independent normally or t-distributed residuals. Currently, only families `gaussian` and `student` support SAR structures.

Value

An object of class `''sar_term''`, which is a list of arguments to be interpreted by the formula parsing functions of `brms`.

See Also

`autocor-terms`

Examples

```r
## Not run:
data(oldcol, package = "spdep")
fit1 <- brm(CRIME ~ INC + HOVAL + sar(COL.nb, type = "lag"),
data = COL.OLD, data2 = list(COL.nb = COL.nb),
chains = 2, cores = 2)
summary(fit1)
plot(fit1)

fit2 <- brm(CRIME ~ INC + HOVAL + sar(COL.nb, type = "error"),
data = COL.OLD, data2 = list(COL.nb = COL.nb),
chains = 2, cores = 2)
summary(fit2)
plot(fit2)

## End(Not run)
```

Prior Definitions for brms Models

Description

Define priors for specific parameters or classes of parameters.
Usage

```r
set_prior(
  prior, 
  class = "b", 
  coef = "", 
  group = "", 
  resp = "", 
  dpar = "", 
  nlpar = "", 
  lb = NA, 
  ub = NA, 
  check = TRUE
)

prior(prior, ...) 

prior_(prior, ...) 

prior_string(prior, ...) 

empty_prior()
```

Arguments

- **prior**: A character string defining a distribution in Stan language.
- **class**: The parameter class. Defaults to "b" (i.e. population-level effects). See 'Details' for other valid parameter classes.
- **coef**: Name of the coefficient within the parameter class.
- **group**: Grouping factor for group-level parameters.
- **resp**: Name of the response variable. Only used in multivariate models.
- **dpar**: Name of a distributional parameter. Only used in distributional models.
- **nlpar**: Name of a non-linear parameter. Only used in non-linear models.
- **lb**: Lower bound for parameter restriction. Currently only allowed for classes "b". Defaults to NULL, that is no restriction.
- **ub**: Upper bound for parameter restriction. Currently only allowed for classes "b". Defaults to NULL, that is no restriction.
- **check**: Logical; Indicates whether priors should be checked for validity (as far as possible). Defaults to TRUE. If FALSE, prior is passed to the Stan code as is, and all other arguments are ignored.
- **...**: Arguments passed to set_prior.

Details

set_prior is used to define prior distributions for parameters in brms models. The functions prior, prior_, and prior_string are aliases of set_prior each allowing for a different kind
of argument specification. `prior` allows specifying arguments as expression without quotation marks using non-standard evaluation. `prior_` allows specifying arguments as one-sided formulas or wrapped in `quote`. `prior_string` allows specifying arguments as strings just as `set_prior` itself.

Below, we explain its usage and list some common prior distributions for parameters. A complete overview on possible prior distributions is given in the Stan Reference Manual available at http://mc-stan.org/.

To combine multiple priors, use `c(...)` or the `+` operator (see 'Examples'). `brms` does not check if the priors are written in correct Stan language. Instead, Stan will check their syntactical correctness when the model is parsed to C++ and returns an error if they are not. This, however, does not imply that priors are always meaningful if they are accepted by Stan. Although `brms` tries to find common problems (e.g., setting bounded priors on unbounded parameters), there is no guarantee that the defined priors are reasonable for the model. Below, we list the types of parameters in `brms` models, for which the user can specify prior distributions.

1. Population-level ('fixed') effects

Every Population-level effect has its own regression parameter represents the name of the corresponding population-level effect. Suppose, for instance, that `y` is predicted by `x1` and `x2` (i.e., `y ~ x1 + x2` in formula syntax). Then, `x1` and `x2` have regression parameters `b_x1` and `b_x2` respectively. The default prior for population-level effects (including monotonic and category specific effects) is an improper flat prior over the reals. Other common options are normal priors or student-t priors. If we want to have a normal prior with mean 0 and standard deviation 5 for `x1`, and a unit student-t prior with 10 degrees of freedom for `x2`, we can specify this via `set_prior("normal(0,5)", class = "b", coef = "x1")` and `set_prior("student_t(10,0,1)", class = "b", coef = "x2")`. To put the same prior on all population-level effects at once, we may write as a shortcut `set_prior("<prior>", class = "b").` This also leads to faster sampling, because priors can be vectorized in this case. Both ways of defining priors can be combined using for instance `set_prior("normal(0,2)", class = "b")` and `set_prior("normal(0,10)", class = "b", coef = "x1")` at the same time. This will set a normal(0,10) prior on the effect of `x1` and a normal(0,2) prior on all other population-level effects. However, this will break vectorization and may slow down the sampling procedure a bit.

In case of the default intercept parameterization (discussed in the 'Details' section of `brmsformula`), general priors on class "b" will not affect the intercept. Instead, the intercept has its own parameter class named "Intercept" and priors can thus be specified via `set_prior("<prior>", class = "Intercept").` Setting a prior on the intercept will not break vectorization of the other population-level effects. Note that technically, this prior is set on an intercept that results when internally centering all population-level predictors around zero to improve sampling efficiency. On this centered intercept, specifying a prior is actually much easier and intuitive than on the original intercept, since the former represents the expected response value when all predictors are at their means. To treat the intercept as an ordinary population-level effect and avoid the centering parameterization, use `0 + intercept` on the right-hand side of the model formula.

A special shrinkage prior to be applied on population-level effects is the (regularized) horseshoe prior and related priors. See `horseshoe` for details. Another shrinkage prior is the so-called lasso prior. See `lasso` for details.

In non-linear models, population-level effects are defined separately for each non-linear parameter. Accordingly, it is necessary to specify the non-linear parameter in `set_prior` so that priors can be assigned correctly. If, for instance, `alpha` is the parameter and `x` the predictor for which
we want to define the prior, we can write `set_prior("<prior>", coef = "x", nlpar = "alpha")`. As a shortcut we can use `set_prior("<prior>", nlpar = "alpha")` to set the same prior on all population-level effects of alpha at once.

If desired, population-level effects can be restricted to fall only within a certain interval using the 1b and ub arguments of `set_prior`. This is often required when defining priors that are not defined everywhere on the real line, such as uniform or gamma priors. When defining a uniform(2,4) prior, you should write `set_prior("uniform(2,4)", lb = 2, ub = 4)`. When using a prior that is defined on the positive reals only (such as a gamma prior) set `lb = 0`. In most situations, it is not useful to restrict population-level parameters through bounded priors (non-linear models are an important exception), but if you really want to this is the way to go.

2. Standard deviations of group-level (‘random’) effects

Each group-level effect of each grouping factor has a standard deviation named `sd_<group>_<coef>`. Consider, for instance, the formula `y ~ x1 + x2 + (1 + x1 | g)`. We see that the intercept as well as `x1` are group-level effects nested in the grouping factor `g`. The corresponding standard deviation parameters are named as `sd_g_Intercept` and `sd_g_x1` respectively. These parameters are restricted to be non-negative and, by default, have a half student-t prior with 3 degrees of freedom and a scale parameter that depends on the standard deviation of the response after applying the link function. Minimally, the scale parameter is 10. This prior is used (a) to be only very weakly informative in order to influence results as few as possible, while (b) providing at least some regularization to considerably improve convergence and sampling efficiency. To define a prior distribution only for standard deviations of a specific grouping factor, use `set_prior("<prior>", class = "sd", group = "<group>")`. To define a prior distribution only for a specific standard deviation of a specific grouping factor, you may write `set_prior("<prior>", class = "sd", group = "<group>", coef = "<coef>")`. Recommendations on useful prior distributions for standard deviations are given in Gelman (2006), but note that he is no longer recommending uniform priors, anymore.

When defining priors on group-level parameters in non-linear models, please make sure to specify the corresponding non-linear parameter through the `nlpar` argument in the same way as for population-level effects.

3. Correlations of group-level (‘random’) effects

If there is more than one group-level effect per grouping factor, the correlations between those effects have to be estimated. The prior `lkj_corr_cholesky(eta)` or in short `lkj(eta)` with `eta > 0` is essentially the only prior for (Cholesky factors) of correlation matrices. If `eta = 1` (the default) all correlations matrices are equally likely a priori. If `eta > 1`, extreme correlations become less likely, whereas `0 < eta < 1` results in higher probabilities for extreme correlations. Correlation matrix parameters in `brms` models are named as `cor_<group>`, (e.g., `cor_g` if `g` is the grouping factor). To set the same prior on every correlation matrix, use for instance `set_prior("lkj(2)", class = "cor")`. Internally, the priors are transformed to be put on the Cholesky factors of the correlation matrices to improve efficiency and numerical stability. The corresponding parameter class of the Cholesky factors is `L`, but it is not recommended to specify priors for this parameter class directly.

4. Splines

Splines are implemented in `brms` using the ‘random effects’ formulation as explained in `gamm`). Thus, each spline has its corresponding standard deviations modeling the variability within this term. In `brms`, this parameter class is called `sds` and priors can be specified via `set_prior("<prior>", class
set_prior = "sds", coef = "<term label>"). The default prior is the same as for standard deviations of group-level effects.

5. Gaussian processes

Gaussian processes as currently implemented in `brms` have two parameters, the standard deviation parameter `sdgp`, and characteristic length-scale parameter `lscale` (see `gp` for more details). The default prior of `sdgp` is the same as for standard deviations of group-level effects. The default prior of `lscale` is an informative inverse-gamma prior specifically tuned to the covariates of the Gaussian process (for more details see https://betanalpha.github.io/assets/case_studies/gp_part3/part3.html). This tuned prior may be overly informative in some cases, so please consider other priors as well to make sure inference is robust to the prior specification. If tuning fails, a half-normal prior is used instead.

6. Autocorrelation parameters

The autocorrelation parameters currently implemented are named `ar` (autoregression), `ma` (moving average), `arr` (autoregression of the response), `car` (spatial conditional autoregression), as well as `lagsar` and `errorsar` (Spatial simultaneous autoregression).

Priors can be defined by `set_prior("<prior>", class = "ar")` for `ar` and similar for other autocorrelation parameters. By default, `ar` and `ma` are bounded between -1 and 1, `car`, `lagsar`, and `errorsar` are bounded between 0, and 1, and `arr` is unbounded (you may change this by using the arguments `lb` and `ub`). The default prior is flat over the definition area.

7. Distance parameters of monotonic effects

As explained in the details section of `brm`, monotonic effects make use of a special parameter vector to estimate the 'normalized distances' between consecutive predictor categories. This is realized in `Stan` using the simplex parameter type. This class is named "simo" (short for simplex monotonic) in `brms`. The only valid prior for simplex parameters is the dirichlet prior, which accepts a vector of length `K - 1` (`K` = number of predictor categories) as input defining the 'concentration' of the distribution. Explaining the dirichlet prior is beyond the scope of this documentation, but we want to describe how to define this prior syntactically correct. If a predictor `x` with `K` categories is modeled as monotonic, we can define a prior on its corresponding simplex via `prior(dirichlet(<vector>), class = simo, coef = mox1)`. The 1 in the end of `coef` indicates that this is the first simplex in this term. If interactions between multiple monotonic variables are modeled, multiple simplexes per term are required. For `<vector>`, we can put in any R expression defining a vector of length `K - 1`. The default is a uniform prior (i.e. `<vector> = rep(1,K-1)`) over all simplexes of the respective dimension.

8. Parameters for specific families

Some families need additional parameters to be estimated. Families `gaussian`, `student`, `skew_normal`, `lognormal`, and `gen_extreme_value` need the parameter `sigma` to account for the residual standard deviation. Further, family `student` needs the parameter `nu` representing the degrees of freedom of students-t distribution. By default, `nu` has prior `gamma(2,0.1)` and a fixed lower bound of 1. Families `gamma`, `weibull`, `inverse.gaussian`, and `negbinomial` need a shape parameter that has a `gamma(0.01,0.01)` prior by default. For families `cumulative`, `cratio`, `sratio`, and `acat`, and only if `threshold = "equidistant"`, the parameter `delta` is used to model the distance between two adjacent thresholds. By default, `delta` has an improper flat prior over the reals. The `von_mises` family needs the parameter `kappa`, representing the concentration parameter. By default, `kappa` has prior `gamma(2,0.01)`.

Every family specific parameter has its own prior class, so that `set_prior("<prior>", class =`
"<parameter>") is the right way to go. All of these priors are chosen to be weakly informative, having only minimal influence on the estimations, while improving convergence and sampling efficiency.

Fixing parameters to constants is possible by using the constant function, for example, constant(1) to fix a parameter to 1. Broadcasting to vectors and matrices is done automatically. A limitation of the current implementation is that the same parameter vector cannot contain estimated and fixed values at the same time, but this will be possible in the future.

Often, it may not be immediately clear, which parameters are present in the model. To get a full list of parameters and parameter classes for which priors can be specified (depending on the model) use function get_prior.

Value

An object of class brmsprior to be used in the prior argument of brm.

Functions

• prior: Alias of set_prior allowing to specify arguments as expressions without quotation marks.
• prior_: Alias of set_prior allowing to specify arguments as as one-sided formulas or wrapped in quote.
• prior_string: Alias of set_prior allowing to specify arguments as strings.
• empty_prior: Create an empty brmsprior object.

References

See Also

get_prior

Examples

use alias functions
(prior1 <- prior(cauchy(0, 1), class = sd))
prior2 <- prior_(~cauchy(0, 1), class = ~sd))
prior3 <- prior_string("cauchy(0, 1)", class = "sd")
identical(prior1, prior2)
identical(prior1, prior3)

check which parameters can have priors
get_prior(rating ~ treat + period + carry + (1|subject),
 data = inhaler, family = cumulative())

define some priors
bprior <- c(prior_string("normal(0,10)", class = "b"),
 prior(normal(1,2), class = b, coef = treat),
 prior(normal(1,2), class = b, coef = treat),
 prior(normal(1,2), class = b, coef = treat))
The Shifted Log Normal Distribution

Description

Density, distribution function, quantile function and random generation for the shifted log normal distribution with mean meanlog, standard deviation sdlog, and shift parameter shift.

Usage

dshifted_lnorm(x, meanlog = 0, sdlog = 1, shift = 0, log = FALSE)

pshifted_lnorm(
 q,
 meanlog = 0,
 sdlog = 1,
 shift = 0,
 lower.tail = TRUE,
 log.p = FALSE
)

qshifted_lnorm(
 p,
 meanlog = 0,
 sdlog = 1,
 shift = 0,
The Skew-Normal Distribution

Description

Density, distribution function, and random generation for the skew-normal distribution with mean \(\mu \), standard deviation \(\sigma \), and skewness \(\alpha \).

Usage

dskew_normal(
 x,
 mu = 0,
 sigma = 1,
 alpha = 0,
 xi = NULL,
 omega = NULL,
 log = FALSE
)

pskew_normal(
q,
mu = 0,
sigma = 1,
alpha = 0,
xi = NULL,
omega = NULL,
lower.tail = TRUE,
log.p = FALSE
)

qskew_normal(
p,
mu = 0,
sigma = 1,
alpha = 0,
xi = NULL,
omega = NULL,
lower.tail = TRUE,
log.p = FALSE,
tol = 1e-08
)

rskew_normal(n, mu = 0, sigma = 1, alpha = 0, xi = NULL, omega = NULL)

Arguments

x, q Vector of quantiles.
mu Vector of mean values.
sigma Vector of standard deviation values.
alpha Vector of skewness values.
xi Optional vector of location values. If NULL (the default), will be computed internally.
omega Optional vector of scale values. If NULL (the default), will be computed internally.
log Logical; If TRUE, values are returned on the log scale.
lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x).
log.p Logical; If TRUE, values are returned on the log scale.
p Vector of probabilities.
tol Tolerance of the approximation used in the computation of quantiles.
n Number of samples to draw from the distribution.

Details

See vignette("brms_families") for details on the parameterization.
stancode.brmsfit

Extract Stan model code

Description

Extract Stan code that was used to specify the model.

Usage

```r
## S3 method for class 'brmsfit'
stancode(object, version = TRUE, ...)
stancode(object, ...)
```

Arguments

- `object`: An object of class `brmsfit`.
- `version`: Logical; indicates if the first line containing the `brms` version number should be included. Defaults to `TRUE`.
- `...`: Currently ignored.

Value

Stan model code for further processing.

standata.brmsfit

Extract data passed to Stan

Description

Extract all data that was used by Stan to fit the model.

Usage

```r
## S3 method for class 'brmsfit'
standata(
  object,
  newdata = NULL,
  re_formula = NULL,
  newdata2 = NULL,
  new_objects = NULL,
  incl_autocor = TRUE,
  ...
)

standata(object, ...)
```
Arguments

- **object**: An object of class `brmsfit`.
- **newdata**: An optional data.frame for which to evaluate predictions. If NULL (default), the original data of the model is used. NA values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.
- **re_formula**: formula containing group-level effects to be considered in the prediction. If NULL (default), include all group-level effects; if NA, include no group-level effects.
- **newdata2**: A named list of objects containing new data, which cannot be passed via argument `newdata`. Required for some objects used in autocorrelation structures, or `stanvars`.
- **new_objects**: Deprecated alias of `newdata2`.
- **incl_autocor**: A flag indicating if correlation structures originally specified via `autocor` should be included in the predictions. Defaults to TRUE.
- **...**: More arguments passed to `make_standata` and `validate_newdata`.

Value

A named list containing the data originally passed to Stan.

stanvar

User-defined variables passed to Stan

Description

Prepare user-defined variables to be passed to one of Stan’s program blocks. This is primarily useful for defining more complex priors, for refitting models without recompilation despite changing priors, or for defining custom Stan functions.

Usage

```r
stanvar(
  x = NULL,
  name = NULL,
  scode = NULL,
  block = "data",
  position = "start"
)
```
Arguments

x
An R object containing data to be passed to Stan. Only required if block = 'data' and ignored otherwise.

name
Optional character string providing the desired variable name of the object in x. If NULL (the default) the variable name is directly inferred from x.

scode
Line of Stan code to define the variable in Stan language. If block = 'data', the Stan code is inferred based on the class of x by default.

block
Name of one of Stan’s program blocks in which the variable should be defined. Can be 'data', 'tdata' (transformed data), 'parameters', 'tparameters' (transformed parameters), 'model', 'genquant' (generated quantities) or 'functions'.

position
Name of the position within the block where the Stan code should be placed. Currently allowed are 'start' (the default) and 'end' of the block.

Value

An object of class stanvars.

Examples

bprior <- prior(normal(mean_intercept, 10), class = "Intercept")
stanvars <- stanvar(5, name = "mean_intercept")
make_stancode(count ~ Trt, epilepsy, prior = bprior,
stanvars = stanvars)

define a multi-normal prior with known covariance matrix
bprior <- prior(multi_normal(M, V), class = "b")
stanvars <- stanvar(rep(0, 2), "M", scode = " vector[K] M;") +
stanvar(diag(2), "V", scode = " matrix[K, K] V;"
make_stancode(count ~ Trt + zBase, epilepsy,
prior = bprior, stanvars = stanvars)

define a hierachical prior on the regression coefficients
bprior <- set_prior("normal(0, tau)", class = "b") +
 set_prior("target += normal_lpdf(tau | 0, 10)", check = FALSE)
stanvars <- stanvar(scode = "real<lower=0> tau;",
 block = "parameters")
make_stancode(count ~ Trt + zBase, epilepsy,
prior = bprior, stanvars = stanvars)

StudentT

The Student-t Distribution

Description

Density, distribution function, quantile function and random generation for the Student-t distribution with location mu, scale sigma, and degrees of freedom df.
Usage

dstudent_t(x, df, mu = 0, sigma = 1, log = FALSE)
pstudent_t(q, df, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qstudent_t(p, df, mu = 0, sigma = 1)
rstudent_t(n, df, mu = 0, sigma = 1)

Arguments

x, q Vector of quantiles.
df Vector of degrees of freedom.
mu Vector of location values.
sigma Vector of scale values.
log, log.p Logical; If TRUE, values are returned on the log scale.
lower.tail Logical; If TRUE (default), return P(X <= x). Else, return P(X > x).
p Vector of probabilities.
n Number of samples to draw from the distribution.

Details

See vignette("brms_families") for details on the parameterization.

See Also

TDist

summary.brmsfit Create a summary of a fitted model represented by a brmsfit object

Description

Create a summary of a fitted model represented by a brmsfit object

Usage

S3 method for class 'brmsfit'
summary(object, priors = FALSE, prob = 0.95, mc_se = FALSE, ...)

Arguments

object An object of class `brmsfit`
priors Logical; Indicating if priors should be included in the summary. Default is FALSE.
prob A value between 0 and 1 indicating the desired probability to be covered by the uncertainty intervals. The default is 0.95.
mc_se Logical; Indicating if the uncertainty caused by the MCMC sampling should be shown in the summary. Defaults to FALSE.
...
Other potential arguments

Details

The convergence diagnostics Rhat, Bulk_ESS, and Tail_ESS are described in detail in Vehtari et al. (2019).

References

theme_black

Black Theme for ggplot2 Graphics

Description

A black theme for ggplot graphics inspired by a blog post of Jon Lefcheck (https://jonlefcheck.net/2013/03/11/black-theme-for-ggplot2-2/).

Usage

```
theme_black(base_size = 12, base_family = "")
```

Arguments

base_size base font size
base_family base font family

Details

When using `theme_black` in plots powered by the `bayesplot` package such as `pp_check` or `stanplot`, I recommend using the "viridisC" color scheme (see examples).

Value

A theme object used in `ggplot2` graphics.
Examples

```r
## Not run:
# change default ggplot theme
ggplot2::theme_set(theme_black())

# change default bayesplot color scheme
bayesplot::color_scheme_set("viridisC")

# fit a simple model
fit <- brm(count ~ zAge + zBase * Trt + (1|patient),
            data = epilepsy, family = poisson(), chains = 2)
summary(fit)

# create various plots
plot(marginal_effects(fit), ask = FALSE)
pp_check(fit)
stanplot(fit, type = "hex", pars = c("b_Intercept", "b_Trt1"))

## End(Not run)
```

theme_default

Default bayesplot Theme for ggplot2 Graphics

Description

This theme is imported from the bayesplot package. See `theme_default` for a complete documentation.

Arguments

- `base_size`: base font size
- `base_family`: base font family

Value

A theme object used in ggplot2 graphics.

update.brmsfit

Update brms models

Description

This method allows to update an existing brmsfit object.
Usage

```r
## S3 method for class 'brmsfit'
update(object, formula., newdata = NULL, recompile = NULL, ...)
```

Arguments

- **object**
 - An object of class `brmsfit`.

- **formula.**
 - Changes to the formula; for details see `update.formula` and `brmsformula`.

- **newdata**
 - Optional `data.frame` to update the model with new data. Data-dependent default priors will not be updated automatically.

- **recompile**
 - Logical, indicating whether the Stan model should be recompiled. If `NULL` (the default), `update` tries to figure out internally, if recompilation is necessary. Setting it to `FALSE` will cause all Stan code changing arguments to be ignored.

- **...**
 - Other arguments passed to `brm`.

Examples

```r
## Not run:
fit1 <- brm(time | cens(censored) ~ age * sex + disease + (1|patient),
            data = kidney, family = gaussian("log"))
summary(fit1)

## remove effects of 'disease'
fit2 <- update(fit1, formula. = ~ . - disease)
summary(fit2)

## remove the group specific term of 'patient' and
## change the data (just take a subset in this example)
fit3 <- update(fit1, formula. = ~ . - (1|patient),
              newdata = kidney[1:38, ])
summary(fit3)

## use another family and add population-level priors
fit4 <- update(fit1, family = weibull(), inits = "0",
              prior = set_prior("normal(0,5)"))
summary(fit4)

## End(Not run)
```

Description

This method allows to update an existing `brmsfit_multiple` object.
Usage

```r
## S3 method for class 'brmsfit_multiple'
update(object, formula., newdata = NULL, ...)
```

Arguments

- **object**: An object of class `brmsfit_multiple`.
- **formula.**: Changes to the formula; for details see `update.formula` and `brmsformula`.
- **newdata**: List of data.frames to update the model with new data. Currently required even if the original data should be used.
- **...**: Other arguments passed to `update.brmsfit` and `brm_multiple`.

Examples

```r
## Not run:
library(mice)
imp <- mice(nhanes2)

# initially fit the model
fit_imp1 <- brm_multiple(bmi ~ age + hyp + chl, data = imp, chains = 1)
summary(fit_imp1)

# update the model using fewer predictors
fit_imp2 <- update(fit_imp1, formula. = . ~ hyp + chl, newdata = imp)
summary(fit_imp2)

## End(Not run)
```

Description

Update additions terms used in formulas of `brms`. See `addition-terms` for details.

Usage

```r
update_adterms(formula, adform, action = c("update", "replace"))
```

Arguments

- **formula**: Two-sided formula to be updated.
- **adform**: One-sided formula containing addition terms to update formula with.
- **action**: Indicates what should happen to the existing addition terms in formula. If "update" (the default), old addition terms that have no corresponding term in adform will be kept. If "replace", all old addition terms will be removed.
validate_newdata

describe the function validate_newdata

validate_newdata

Validate New Data

Description

Validate new data passed to post-processing methods of \texttt{brms}. Unless you are a package developer, you will rarely need to call \texttt{validate_newdata} directly.

Usage

\begin{verbatim}
validate_newdata(
 newdata,
 object,
 re_formula = NULL,
 allow_new_levels = FALSE,
 resp = NULL,
 check_response = TRUE,
 incl_autocor = TRUE,
 all_group_vars = NULL,
 ...
)
\end{verbatim}

Arguments

- \texttt{newdata} A data.frame containing new data to be validated.
- \texttt{object} A \texttt{brmsfit} object.
- \texttt{re_formula} formula containing group-level effects to be considered in the prediction. If \texttt{NULL} (default), include all group-level effects; if \texttt{NA}, include no group-level effects.
- \texttt{allow_new_levels} A flag indicating if new levels of group-level effects are allowed (defaults to \texttt{FALSE}). Only relevant if \texttt{newdata} is provided.
- \texttt{resp} Optional names of response variables. If specified, predictions are performed only for the specified response variables.
VarCorr.brmsfit

check_response Logical; Indicates if response variables should be checked as well. Defaults to TRUE.

incl_autocor A flag indicating if correlation structures originally specified via autocor should be included in the predictions. Defaults to TRUE.

all_group_vars Optional names of grouping variables to be validated. Defaults to all grouping variables in the model.

Value

A validated 'data.frame' based on newdata.

Description

This function calculates the estimated standard deviations, correlations and covariances of the group-level terms in a multilevel model of class brmsfit. For linear models, the residual standard deviations, correlations and covariances are also returned.

Usage

```r
## S3 method for class 'brmsfit'
VarCorr(
  x,
  sigma = 1,
  summary = TRUE,
  robust = FALSE,
  probs = c(0.025, 0.975),
  ...,
)
```

Arguments

- `x`: An object of class brmsfit.
- `sigma`: Ignored (included for compatibility with VarCorr).
- `summary`: Should summary statistics be returned instead of the raw values? Default is TRUE.
- `robust`: If FALSE (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If TRUE, the median and the median absolute deviation (MAD) are applied instead. Only used if summary is TRUE.
- `probs`: The percentiles to be computed by the quantile function. Only used if summary is TRUE.
- `...`: Currently ignored.
vcov.brmsfit

Value

A list of lists (one per grouping factor), each with three elements: a matrix containing the standard deviations, an array containing the correlation matrix, and an array containing the covariance matrix with variances on the diagonal.

Examples

Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1+Trt|visit),
 data = epilepsy, family = gaussian(), chains = 2)
VarCorr(fit)
End(Not run)
Examples

```r
## Not run:
fit <- brm(count ~ zAge + zBase * Trt + (1+Trt|visit),
           data = epilepsy, family = gaussian(), chains = 2)
vcov(fit)
## End(Not run)
```

VonMises

The **Von Mises Distribution**

Description

Density, distribution function, and random generation for the von Mises distribution with location \(\mu \), and precision \(\kappa \).

Usage

```r
dvon_mises(x, mu, kappa, log = FALSE)
pvon_mises(q, mu, kappa, lower.tail = TRUE, log.p = FALSE, acc = 1e-20)
rvon_mises(n, mu, kappa)
```

Arguments

- `x, q` Vector of quantiles.
- `mu` Vector of location values.
- `kappa` Vector of precision values.
- `log` Logical; If `TRUE`, values are returned on the log scale.
- `lower.tail` Logical; If `TRUE` (default), return \(P(X \leq x) \). Else, return \(P(X > x) \).
- `log.p` Logical; If `TRUE`, values are returned on the log scale.
- `acc` Accuracy of numerical approximations.
- `n` Number of samples to draw from the distribution.

Details

See vignette("brms_families") for details on the parameterization.
Widely Applicable Information Criterion (WAIC)

Description

Compute the widely applicable information criterion (WAIC) based on the posterior likelihood using the loo package. For more details see `waic`.

Usage

```r
## S3 method for class 'brmsfit'
waic(
  x,
  ..., compare = TRUE,
  resp = NULL,
  pointwise = FALSE,
  model_names = NULL
)
```

Arguments

- `x` A `brmsfit` object.
- `...` More `brmsfit` objects or further arguments passed to the underlying post-processing functions. In particular, see `prepare_predictions` for further supported arguments.
- `compare` A flag indicating if the information criteria of the models should be compared to each other via `loo_compare`.
- `resp` Optional names of response variables. If specified, predictions are performed only for the specified response variables.
- `pointwise` A flag indicating whether to compute the full log-likelihood matrix at once or separately for each observation. The latter approach is usually considerably slower but requires much less working memory. Accordingly, if one runs into memory issues, `pointwise = TRUE` is the way to go.
- `model_names` If NULL (the default) will use model names derived from deparsing the call. Otherwise will use the passed values as model names.

Details

See `loo_compare` for details on model comparisons. For `brmsfit` objects, WAIC is an alias of `waic`. Use method `add_criterion` to store information criteria in the fitted model object for later usage.

Value

If just one object is provided, an object of class `loo`. If multiple objects are provided, an object of class `loolist`.
Wiener

The Wiener Diffusion Model Distribution

Description

Density function and random generation for the Wiener diffusion model distribution with boundary separation alpha, non-decision time tau, bias beta and drift rate delta.

Usage

dwiener(x, alpha, tau, beta, delta, resp = 1, log = FALSE)

rwiener(n, alpha, tau, beta, delta, types = c("q", "resp"))

Examples

```r
## Not run:
# model with population-level effects only
fit1 <- brm(rating ~ treat + period + carry,
           data = inhaler)
(waic1 <- waic(fit1))

# model with an additional varying intercept for subjects
fit2 <- brm(rating ~ treat + period + carry + (1|subject),
           data = inhaler)
(waic2 <- waic(fit2))

# compare both models
loo_compare(waic1, waic2)

## End(Not run)
```
ZeroInflated

Arguments

- **x**: Vector of quantiles.
- **alpha**: Boundary separation parameter.
- **tau**: Non-decision time parameter.
- **beta**: Bias parameter.
- **delta**: Drift rate parameter.
- **resp**: Response: "upper" or "lower". If no character vector, it is coerced to logical
 where TRUE indicates "upper" and FALSE indicates "lower".
- **log**: Logical; If TRUE, values are returned on the log scale.
- **n**: Number of samples to draw from the distribution.
- **types**: Which types of responses to return? By default, return both the response times
 "q" and the dichotomous responses "resp". If either "q" or "resp", return only
 one of the two types.

Details

These are wrappers around functions of the **RWiener** package. See vignette("brms_families")
for details on the parameterization.

See Also

- **wienerdist**

ZeroInflated

Zero-Inflated Distributions

Description

Density and distribution functions for zero-inflated distributions.

Usage

- \texttt{dzero_inflated_poisson(x, lambda, zi, log = FALSE)}
- \texttt{pzero_inflated_poisson(q, lambda, zi, lower.tail = TRUE, log.p = FALSE)}
- \texttt{dzero_inflated_negbinomial(x, mu, shape, zi, log = FALSE)}
- \texttt{pzero_inflated_negbinomial(q, mu, shape, zi, lower.tail = TRUE, log.p = FALSE)}
- \texttt{dzero_inflated_binomial(x, size, prob, zi, log = FALSE)}
- \texttt{pzero_inflated_binomial(q, size, prob, zi, lower.tail = TRUE, log.p = FALSE)}
- \texttt{dzero_inflated_beta(x, shape1, shape2, zi, log = FALSE)}
- \texttt{pzero_inflated_beta(q, shape1, shape2, zi, lower.tail = TRUE, log.p = FALSE)}
Arguments

- **x**: Vector of quantiles.
- **zi**: zero-inflation propability
- **log**: Logical; If TRUE, values are returned on the log scale.
- **q**: Vector of quantiles.
- **lower.tail**: Logical; If TRUE (default), return P(X <= x). Else, return P(X > x).
- **log.p**: Logical; If TRUE, values are returned on the log scale.
- **mu, lambda**: location parameter
- **shape, shape1, shape2**: shape parameter
- **size**: number of trials
- **prob**: probability of success on each trial

Details

The density of a zero-inflated distribution can be specified as follows. If \(x = 0 \) set \(f(x) = \theta + (1 - \theta) \times g(0) \). Else set \(f(x) = (1 - \theta) \times g(x) \), where \(g(x) \) is the density of the non-zero-inflated part.
Index

Topic datasets
- epilepsy, 78
- inhaler, 99
- kidney, 108

acat (brmsfamily), 27
acformula, 15
acformula (brmsformula-helpers), 43
add_criterion, 9, 10, 55, 114, 116, 201
add_ic, 54
add_ic (add_loo), 10
add_ic<- (add_loo), 10
add_loo, 10
add_waic (add_loo), 10
addition-terms, 6
ar, 11, 13, 15, 63, 121
arma, 11, 12, 15, 64, 121
as.array.brmsfit (posterior_samples.brmsfit), 151
as.data.frame, 152
as.data.frame.brmsfit (posterior_samples.brmsfit), 151
as.matrix.brmsfit, 147
as.matrix.brmsfit (posterior_samples.brmsfit), 151
as.mcmc (as.mcmc.brmsfit), 13
as.mcmc.brmsfit, 13
asym_laplace (brmsfamily), 27
AsymLaplace, 14
autocor (autocor.brmsfit), 16
autocor-terms, 15
autocor.brmsfit, 16
bayes_factor, 6, 20, 155
bayes_factor (bayes_factor.brmsfit), 16
bayes_factor.brmsfit, 16
bayes_R2 (bayes_R2.brmsfit), 17
bayes_R2.brmsfit, 17
bayesplot, 5, 159
bernoulli (brmsfamily), 27
Beta (brmsfamily), 27
bf (brmsformula), 34
bf-helpers (brmsformula-helpers), 43
bridge_sampler, 16, 17, 155
bridge_sampler (bridge_sampler.brmsfit), 19
bridge_sampler.brmsfit, 19
bridge_sampler.stanfit, 19
bridgesampling: bayes_factor, 17
bridgesampling: bridge_sampler, 19
bridgesampling: post_prob, 155
brm, 5, 6, 8, 20, 32–34, 48–50, 70, 94, 130, 174, 184, 185, 195
brm_multiple, 37, 48, 196
brms, 25, 33
brms (brms-package), 5
brms-package, 5
brmsfamily, 6, 22, 24, 25, 27, 33, 40, 49, 72, 73, 88, 123, 125, 130
brmsfit, 6, 25
brmsfit (brmsfit-class), 33
brmsfit-class, 33
brmsformula, 5, 6, 8, 15, 21, 22, 24, 25, 31, 33, 34, 43, 45, 47–49, 71, 88, 89, 91, 92, 123–126, 128–130, 132, 134, 138, 139, 179, 182, 195, 196
brmsformula-helpers, 43
brms_hypothesis, 45, 98
brmsprior, 33
brmsprior (set_prior), 180
brmsprior-class (set_prior), 180
brmstterms, 47, 103, 104
car, 15, 51, 65
cat, 24, 124
categorical (brmsfamily), 27
cbind, 133, 138
coef.brmsfit, 52, 97
combine_models, 50, 53
compare.ic, 54
conditional_effects, 5, 61, 121, 122, 178
conditional_effects
 (conditional_effects.brmsfit), 55
conditional_effects.brmsfit, 55
conditional_smooths
 (conditional_smooths.brmsfit), 60
conditional_smooths.brmsfit, 60
cor_ar, 63, 64, 65
cor_arma, 63, 64, 65, 69
cor_arma-class (cor_arma), 64
cor_brms, 15, 22, 33, 49, 65, 88, 123, 125
cor_brms-class (cor_brms), 65
cor_car, 65, 65
cor_cogy, 67
cor_cogy-class (cor_cogy), 67
cor_errorsar (cor_sar), 69
cor_fixed, 65, 67
cor_icar (cor_car), 65
cor_lagsar (cor_sar), 69
cor_ma, 64, 65, 68
cor_sar, 65, 69
cosy, 15, 67, 70
cov_fixed (cor_fixed), 67
cratio (brmsfamily), 27
cs, 71
cse (cs), 71
cumulative (brmsfamily), 27
custom_family, 28, 72
customFamily, 32
customfamily (custom_family), 72
dasym_laplace (AsymLaplace), 14
ddirichlet (Dirichlet), 76
density, 75
density_ratio, 74
dexgaussian (ExGaussian), 79
dfrechet (Frechet), 86
dgen_extreme_value (GenExtremeValue), 87
dhurdle_gamma (Hurdle), 95
dhurdle_lognormal (Hurdle), 95
dhurdle_negbinomial (Hurdle), 95
dhurdle_poisson (Hurdle), 95
diagnostic-quantities, 75
dinv_gaussian (InvGaussian), 100
Dirichlet, 76
dirichlet (brmsfamily), 27
dmulti_normal (MultiNormal), 136
dmulti_student_t (MultiStudentT), 137
dshifted_lnorm (Shifted_Lognormal), 186
dskew_normal (SkewNormal), 187
dstudent_t (StudentT), 191
dvon_mises (VonMises), 200
dwiener (Wiener), 202
dzero_inflated_beta (ZeroInflated), 203
dzero_inflated_binomial (ZeroInflated), 203
dzero_inflated_negbinomial
 (ZeroInflated), 203
dzero_inflated_poisson (ZeroInflated), 203
E_loo, 117
emmm_brmsfit
 (emmeans-brms_helpers), 77
emmeans-brms_helpers, 77
empty_prior (set_prior), 180
environment, 73
epilepsy, 78
ExGaussian, 79
exgaussian (brmsfamily), 27
exponential (brmsfamily), 27
expose_functions
 (expose_functions.brmsfit), 80
expose_functions.brmsfit, 80
expose_stan_functions, 80
expp1, 81
extract_draws
 (prepare_predictions.brmsfit), 167
facet_wrap, 58
family, 28, 32
family.brmsfit, 81
fcor, 15, 67, 82
fitted.brmsfit, 83
fixef (fixef.brmsfit), 85
fixef.brmsfit, 53, 85
formula, 21, 47, 48, 88, 123, 125
frechet, 86
frechet (brmsfamily), 27
future, 23
INDEX

207

gam, 36
gamm, 22, 36, 49, 88, 124, 126, 183
Gamma, 32
gen_extreme_value (brmsfamily), 27
GenExtremeValue, 87
gem_contour, 58
gem_errorbar, 58
gem_jitter, 58
gem_point, 58
gem_raster, 58
gem_rug, 58
gem_smooth, 58
gemetric (brmsfamily), 27
get_prior, 22, 24, 49, 88, 123, 125, 185
ggplot, 59, 127
ggtheme, 46, 58, 142
gp, 36, 89, 184
gr, 22, 35, 49, 92, 123, 125
gtable, 142
horseshoe, 93, 182
Hurdle, 95
hurdle_gamma (brmsfamily), 27
hurdle_lognormal (brmsfamily), 27
hurdle_negbinomial (brmsfamily), 27
hurdle_poisson (brmsfamily), 27
hypothesis, 22, 45, 46, 49, 123, 125
hypothesis (hypothesis.brmsfit), 96
hypothesis.brmsfit, 96

inhaler, 99
inv_logit_scaled, 101
InvGaussian, 100
is.brmsfit, 101
is.brmsfit_multiple, 102
is.brmsformula, 102
is.brmsprior, 102
is.brmsterms, 103
is.cor arma (is.cor_brms), 103
is.cor_brms, 103
is.cor_car (is.cor_brms), 103
is.cor_cosy (is.cor_brms), 103
is.cor_fixed (is.cor_brms), 103
is.cor_sar (is.cor_brms), 103
is.mvbrmsformula, 104
is.mvbrmsterms, 104

kfold, 107, 108, 174
kfold (kfold.brmsfit), 105

kfold-helpers, 106
kfold.brmsfit, 105
kfold_predict, 107
kidney, 108

lasso, 109, 182
launch_shinystan, 111, 127
launch_shinystan (launch_shinystan.brmsfit), 110

lf (brmsformula-helpers), 43
log_lik, 73, 118, 119
log_lik (log_lik.brmsfit), 112
log_lik.brmsfit, 112, 174
log_posterior (diagnostic-quantities), 75
logit_scaled, 111
logLik.brmsfit (log_lik.brmsfit), 112
logm1, 112
lognormal (brmsfamily), 27
LOO (loo.brmsfit), 113
loo, 5, 6, 54, 55, 107, 113, 174
loo (loo.brmsfit), 113
LOO.brmsfit (loo.brmsfit), 113
loo.brmsfit, 113
loo::kfold_split_grouped, 106
loo::kfold_split_stratified, 106

loo::loo_model_weights, 116
loo_compare, 54, 55, 106, 114, 115, 120, 201
loo_compare (loo_compare.brmsfit), 115
loo_compare.brmsfit, 115
loo_linpred (loo_predict.brmsfit), 117
loo_model_weights, 136, 144, 157
loo_model_weights (loo_model_weights.brmsfit), 116

ma, 11, 13, 15, 68, 120
runApp, 111
rvon_mises (VonMises), 200
rwiener (Wiener), 202
s, 36, 178
sampling, 24
sar, 15, 69, 179
saveRDS, 9, 24, 50
scale_colour_gradient, 59
scale_colour_grey, 59
set.seed, 97, 144, 157
set_mecor (brmsformula.helpers), 43
set_nl (brmsformula.helpers), 43
set_prior, 22, 24, 38, 39, 49, 89, 95, 110, 123–126, 130, 180
set_rescor (brmsformula.helpers), 43
Shifted_Lognormal, 186
shifted_lognormal (brmsfamily), 27
skew_normal (brmsfamily), 27
SkewNormal, 187
sratio (brmsfamily), 27
Stan, 5
stan, 23, 25, 62
stan_model, 24
stancode (stancode.brmsfit), 189
stancode.brmsfit, 189
standata (standata.brmsfit), 189
standata.brmsfit, 189
stanfit, 33
stanplot, 5
stanplot (mcmc_plot.brmsfit), 126
stanvar, 22, 49, 73, 124, 126, 190
stanvars, 33, 168, 190
stanvars (stanvar), 190
student (brmsfamily), 27
StudentT, 191
summary, 5
summary.brmsfit, 169, 192
t2, 36
t2 (s), 178
TDist, 192
theme, 46, 58, 142
theme_black, 193
theme_default, 46, 58, 142, 194, 194
update, 23, 50
update.brmsfit, 174, 194, 196
update.brmsfit_multiple, 195
update.formula, 195, 196
update_adterms, 196
validate_newdata, 168, 190, 197
VarCorr, 198
VarCorr (VarCorr.brmsfit), 198
VarCorr.brmsfit, 198
vb, 24
vcov.brmsfit, 199
Vectorize, 80
von_mises (brmsfamily), 27
VonMises, 200
WAIC (waic.brmsfit), 201
waic, 5, 54, 113, 201
waic (waic.brmsfit), 201
WAIC.brmsfit (waic.brmsfit), 201
waic.brmsfit, 201
weibull (brmsfamily), 27
Wiener, 202
wiener (brmsfamily), 27
wienerdist, 203
zero_inflated_beta (brmsfamily), 27
zero_inflated_binomial (brmsfamily), 27
zero_inflated_negbinomial (brmsfamily), 27
zero_inflated_poisson (brmsfamily), 27
zero_one_inflated_beta (brmsfamily), 27
ZeroInflated, 203