Package ‘bootcluster’

June 10, 2021

Type Package

Title Bootstrapping Estimates of Clustering Stability

Version 0.2.5

Author Mingmei Tian [aut, cre],
Han Yu [aut]

Maintainer Mingmei Tian <mingmeit@buffalo.edu>

Depends R (>= 3.3.1)

Imports cluster, mclust, flexclust, fpc,
 plyr, dplyr, doParallel, foreach, igraph, compiler, stats, parallel, grid, ggplot2, gridExtra, intergraph, GGally, network, sna

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2021-06-10 08:20:04 UTC

R topics documented:

k.select ... 2
network.stability .. 3
network.stability.output ... 4
stability .. 5
threshold.select .. 7
wine ... 8
Description

Estimate number of clusters by bootstrapping stability

Usage

```r
k.select(x, range = 2:7, B = 20, r = 5, threshold = 0.8, scheme_2 = TRUE)
```

Arguments

- `x`: a `data.frame` of the data set
- `range`: a vector of integer values, of the possible numbers of clusters k
- `B`: number of bootstrap re-samplings
- `r`: number of runs of k-means
- `threshold`: the threshold for determining k
- `scheme_2`: logical TRUE if scheme 2 is used, FALSE if scheme 1 is used

Details

This function estimates the number of clusters through a bootstrapping approach, and a measure Smin, which is based on an observation-wise similarity among clusterings. The number of clusters k is selected as the largest number of clusters, for which the Smin is greater than a threshold. The threshold is often selected between 0.8 ~ 0.9. Two schemes are provided. Scheme 1 uses the clustering of the original data as the reference for stability calculations. Scheme 2 searches across the clustering samples that gives the most stable clustering.

Value

- `profile`: a vector of Smin measures for determining k
- `k`: integer estimated number of clusters

Author(s)

Han Yu

References

Bootstrapping estimates of stability for clusters, observations and model selection. Han Yu, Brian Chapman, Arianna DiFlorio, Ellen Eischen, David Gotz, Matthews Jacob and Rachael Hageman Blair.
Examples

```r
set.seed(1)
data(wine)
x0 <- wine[,2:14]
x <- scale(x0)
k.select(x, range = 2:10, B=20, r=5, scheme_2 = TRUE)
```

network.stability
Estimate of detect module stability

Description
Estimate of detect module stability

Usage

```r
network.stability(data.input, threshold, B = 20, cor.method, large.size, PermuNo, scheme_2 = FALSE)
```

Arguments

- `data.input`: a data.frame of the data set where the rows are observations and columns are covariates
- `threshold`: a numeric number of threshold for correlation matrix
- `B`: number of bootstrap re-samplings
- `cor.method`: the correlation method applied to the data set. three method are available: "pearson", "kendall", "spearman".
- `large.size`: the smallest set of modules, the `large.size=0` is recommended to use right now.
- `PermuNo`: number of random graphs for null
- `scheme_2`: logical TRUE if scheme 2 is used, FASLE if scheme 1 is used. Right now, only FASLE is recommended.

Details

This function estimates the modules’ stability through bootstrapping approach for the given threshold. The approach to stability estimation is to compare the module composition of the reference correlation graph to the various bootstrapped correlation graphs, and to assess the stability at the (1) node-level, (2) module-level, and (3) overall.
Value

stabilityresult a list of result for nodes-wise stability
modularityresult list of modularity information with the given threshold
jaccardresult list estimated unconditional observed stability and the estimates of expected sta-
bility under the null
originalinformation list information for original data, igraph object and adjacency matrix
constructed with the given threshold

Author(s)

Mingmei Tian

References

A framework for stability-based module detection in correlation graphs. Mingmei Tian, Rachael
Hageman Blair, Lina Mu, Matthew Bonner, Richard Browne and Han Yu.

Examples

```r
set.seed(1)
data(wine)
x0 <- wine[1:50,]

mytest <- network.stability(data.input=x0, threshold=0.7, B=20,
cor.method="pearson", large.size=0,
PermuNo = 10,
scheme_2 = FALSE)
```

network.stability.output

Plot method for objects from threshold.select

Description

Plot method for objects from threshold.select

Usage

network.stability.output(input, optimal.only = FALSE)

Arguments

input a list of results from function threshold.select
optimal.only a logical value indicating whether only plot the network with optimal threshold
or not. The default is False, generating all network figures with a large number
of nodes could take some time.
details

network.stability.output is used to generate a series of network plots based on the given threshold.seq, where the nodes are colored by the level of stability. The network with optimal threshold value selected by function threshold.select is colored as red.

value

plot of network figures

author(s)

Mingmei Tian

references

examples

```r
set.seed(1)
data(wine)
x0 <- wine[1:50,]

mytest <- threshold.select(data.input=x0, threshold.seq=seq(0.1,0.5,by=0.05), B=20, cor.method='pearson',large.size=0, PermuNo = 10, no_cores=1, scheme_2 = FALSE)
network.stability.output(mytest)
```

stability

estimate clustering stability of k-means

description

estimate of k-means bootstrapping stability

usage

```r
stability(x, k = 20, r = 5, scheme_2 = TRUE)
```
stability

Arguments

x a data.frame of the data set
k a integer number of clusters
B number of bootstrap re-samplings
r number of runs of k-means
scheme_2 logical TRUE if scheme 2 is used, FASLE if scheme 1 is used

Details

This function estimates the clustering stability through bootstrapping approach. Two schemes are provided. Scheme 1 uses the clustering of the original data as the reference for stability calculations. Scheme 2 searches across the clustering samples that gives the most stable clustering.

Value

membership a vector of membership for each observation from the reference clustering
obs_wise vector of estimated observation-wise stability
overall numeric estimated overall stability

Author(s)

Han Yu

References

Bootstrapping estimates of stability for clusters, observations and model selection. Han Yu, Brian Chapman, Arianna DiFlorio, Ellen Eischen, David Gotz, Matthews Jacob and Rachael Hageman Blair.

Examples

```
set.seed(1)
data(wine)
x0 <- wine[,2:14]
x <- scale(x0)
stability(x, k = 3, B=20, r=5, scheme_2 = TRUE)
```
threshold.select

$threshold.select$

$Estimate$ of the overall Jaccard stability

Description

Estimate of the overall Jaccard stability

Arguments

- `data.input`: a data.frame of the data set where the rows are observations and columns are covariates
- `threshold.seq`: a numeric sequence of candidate threshold
- `B`: number of bootstrap re-samplings
- `cor.method`: the correlation method applied to the data set. Three methods are available: "pearson", "kendall", "spearman".
- `large.size`: the smallest set of modules, the `large.size=0` is recommended to use right now.
- `PermuNo`: number of random graphs for the estimation of expected stability
- `no_cores`: an integer number of CPU cores on the current host (This function can’t not be used yet).

Details

`threshold.select` is used to estimate of the overall Jaccard stability from a sequence of given threshold candidates, `threshold.seq`.

Value

- `stability.result`: a list of result for nodes-wise stability
- `modularity.result`: a list of modularity information with each candidate threshold
- `jaccard.result`: a list of estimated unconditional observed stability and the estimates of expected stability under the null
- `original.information`: a list information for original data, igraph object and adjacency matrix constructed with each candidate threshold
- `threshold.seq`: a list of candidate threshold given to the function

Author(s)

Mingmei Tian

References

Examples

```r
set.seed(1)
data(wine)
x0 <- wine[1:50,]

mytest<-threshold.select(data.input=x0,threshold.seq=seq(0.5,0.8,by=0.05), B=20, cor.method='pearson',large.size=0, PermuNo = 10, no_cores=1, scheme_2 = FALSE)
```

Description

These data are the results of a chemical analysis of wines grown in the same region in Italy but derived from three different cultivars. The analysis determined the quantities of 13 constituents found in each of the three types of wines.

Usage

data(wine)

Format

The data set `wine` contains a `data.frame` of 14 variables. The first variable is the types of wines. The other 13 variables are quantities of the constituents.

References

https://archive.ics.uci.edu/ml/datasets/wine
Index

k.select, 2

network.stability, 3
network.stability.output, 4

stability, 5

threshold.select, 7

wine, 8