Package ‘bisque’

February 6, 2020

Type Package

Title Approximate Bayesian Inference via Sparse Grid Quadrature Evaluation (BISQuE) for Hierarchical Models

Version 1.0.2

Date 2020-02-03

Author Joshua Hewitt

Maintainer Joshua Hewitt <joshua.hewitt@duke.edu>

Description Implementation of the 'bisque' strategy for approximate Bayesian posterior inference. See Hewitt and Hoeting (2019) <arXiv:1904.07270> for complete details. 'bisque' combines conditioning with sparse grid quadrature rules to approximate marginal posterior quantities of hierarchical Bayesian models. The resulting approximations are computationally efficient for many hierarchical Bayesian models. The 'bisque' package allows approximate posterior inference for custom models; users only need to specify the conditional densities required for the approximation.

License GPL-3

RoxygenNote 7.0.2

Suggests testthat, fields

Depends R (>= 3.0.2)

Imports mvQuad, Rcpp, foreach, itertools

LinkingTo Rcpp (>= 0.12.4), RcppArmadillo, RcppEigen (>= 0.3.3.3.1)

SystemRequirements A system with a recent-enough C++11 compiler (such as g++-4.8 or later).

NeedsCompilation yes

Encoding UTF-8

Repository CRAN

Date/Publication 2020-02-06 00:40:03 UTC
R topics documented:

createLocScaleGrid ... 2
dmix ... 3
dmix ... 3
emix ... 4
furseals .. 5
itx .. 6
jac.exp .. 7
jac.invlogit ... 8
jac.log .. 8
jac.logit .. 9
kCompute ... 9
logjac ... 11
mergePars ... 11
sFit ... 12
sKrig .. 13
tx ... 14
wBuild .. 15
wMix .. 18

Index 22

createLocScaleGrid Create a centered and scaled sparse integration grid

Description

Enhances mvQuad::createNIGrid by shifting and scaling a sparse integration grid, and evaluating
the weight function at each of the grid nodes.

Usage

createLocScaleGrid(
 mu = 0,
 prec = 1,
 level = 2,
 quadError = FALSE,
 prec.chol = chol(prec)
)

Arguments

mu location at which grid should be centered
prec "precision matrix" associated with the integration grid. When building a sparse
integration grid for a density, prec is often the negative of the hessian at the
mode.
level accuracy level. This is typically number of grid points for the underlying 1D
quadrature rule. [description from mvQuad::createNIGrid]
quadError provide additional information about the grid points and integration weights for the quadrature rule with level-1. This information can facilitate approximating the quadrature error.

prec.chol Upper-triangular Cholesky decomposition of precision matrix.

See Also
mvQuad::createNIGrid

Examples

g = createLocScaleGrid(mu = c(1,0), prec = diag(c(1,.5)), level = 2)

dmix

Evaluate a mixture density

Description

Evaluates mixture densities of the form

\[f(x) = \sum_{j=1}^{k} f(x|\theta^{(k)})w_k \]

where the \(w_k \) are (possibly negative) weights that sum to 1 and \(f(x|\theta^{(k)}) \) are densities that are specified via parameters \(\theta^{(k)} \), which are passed in the function argument \(\text{params} \). A unique feature of this function is that it is able to evaluate mixture densities in which some of the mixture weights \(w_k \) are negative.

Usage

dmix(x, f, params, wts, log = FALSE, errorNodesWts = NULL, ...)

Arguments

- **x** Points at which the mixture should be evaluated. If the density is multivariate, then each row of \(x \) should contain one set of points at which the mixture should be evaluated.
- **f** Density used in the mixture. The function should be defined so it is can be called via \(f(x, \text{params}, \text{log}, \ldots) \). The density \(f \) is evaluated at the points in \(x \) using one set of parameters \(\text{params} \), i.e., for some specific \(\theta^{(k)} \). If \(\text{log} = \text{TRUE} \), then \(\ln(f) \) is returned. Additional parameters may be passed to \(f \) via \ldots
- **params** Matrix in which each row contains parameters that define \(f \). The number of rows in \(\text{params} \) should match the number of mixture components \(k \).
- **wts** vector of weights for each mixture component
- **log** TRUE to return the log of the mixture density
- **errorNodesWts** list with elements \(\text{inds} \) and \(\text{weights} \) that point out which \(\text{params} \) get used to compute an approximation of the quadrature error.
- **...** additional arguments to be passed to \(f \)
Examples

```r
# evaluate mixture density at these locations
x = seq(0, 1, length.out = 100)

# density will be a mixture of beta distributions
f = function(x, theta, log = FALSE) {
    dbeta(x, shape1 = theta[1], shape2 = theta[2], log = log)
}

# beta parameters are randomly assigned
params = matrix(exp(2*runif(10)), ncol=2)

# mixture components are equally weighted
wts = rep(1/nrow(params), nrow(params))

# evaluate mixture density
fmix = dmix(x = x, f = f, params = params, wts = wts)

# plot mixture density
plot(x, fmix, type='l', ylab = expression(f(x)), ylim = c(0, 4))

# plot component densities
for(i in 1:length(wts)){
    curve(f(x, params[i,]), col = 2, add = TRUE)
}
```

emix

Compute expectations via weighted mixtures

Description

Approximates expectations of the form

\[E[h(\theta)] = \int h(\theta) f(\theta) d\theta \]

using a weighted mixture

\[E[h(\theta)] \approx \sum_{j=1}^{k} h(\theta^{(k)}) w_k \]

Usage

emix(h, params, wts, ncores = 1, errorNodesWts = NULL, ...)
Arguments

- **h**: Function for which the expectation should be taken. The function should be defined so it is can be called via \(f(\text{params},...) \). Additional parameters may be passed to \(h \) via \(... \).
- **params**: Matrix in which each row contains parameters at which \(h \) should be evaluated. The number of rows in \(\text{params} \) should match the number of mixture components \(k \).
- **wts**: Vector of weights for each mixture component.
- **ncores**: Number of cores over which to evaluate mixture. This function assumes a parallel backend is already registered.
- **errorNodesWts**: List with elements \(\text{inds} \) and \(\text{weights} \) that point out which \(\text{params} \) get used to compute an approximation of the quadrature error.
- **...**: Additional arguments to be passed to \(h \).

Examples

```r
# density will be a mixture of betas
params = matrix(exp(2*runif(10)), ncol=2)

# mixture components are equally weighted
wts = rep(1/nrow(params), nrow(params))

# compute mean of distribution by cycling over each mixture component
h = function(p) { p[1] / sum(p) }

# compute mixture mean
mean.mix = emix(h, params, wts)

# (comparison) Monte Carlo estimate of mixture mean
nsamples = 1e4
component = sample(x = 1:length(wts), size = nsamples, prob = wts, replace = TRUE)
x = sapply(component, function(cmp) {
  rbeta(n = 1, shape1 = params[cmp, 1], shape2 = params[cmp, 2])
})
mean.mix.mc = mean(x)

# compare estimates
c(emix = mean.mix, MC = mean.mix.mc)
```

furseals
Data from a capture-recapture study of fur seal pups

Description

These data are used in the book "Computational Statistics" by G.H. Givens and J.A. Hoeting (2013). They are discussed in Chapter 7, Examples 7.2, 7.3, 7.8, and Exercise 7.2.
Usage

```r
data(furseals)
```

Format

A data.frame with variables:

- `i`: The census attempt
- `c`: Number of pups captured in census attempt
- `m`: Number of newly captured pups

Details

As described by the authors:

Source: Richard Barker, University of Otago, New Zealand

Description: Data from a capture-recapture study conducted on the Otago Peninsula, South Island, New Zealand. Fur seal pups were marked and released during 7 census attempts in one season. The population is assumed closed. For each census attempt, the number of pups captured and the number of these captures corresponding to pups never previously caught are recorded.

Source

https://www.stat.colostate.edu/computationalstatistics/
https://www.stat.colostate.edu/computationalstatistics/datasets.zip

Examples

```r
data("furseals")
str(furseals)
```

itx

Named inverse transformation functions

Description

Evaluates the inverse of the named link function at the locations `x`.

Usage

```r
itx(x, link, linkparams)
```
jac.exp

Arguments

- **x**: Values at which to evaluate the inverse link function
- **link**: Character vector specifying link function for which the inverse link function should be evaluated. Supports 'identity', 'log', and 'logit'.
- **linkparams**: Optional list of additional parameters for link functions. For example, the logit function can be extended to allow mappings to any closed interval. There should be one list entry for each link function. Specify NA if defaults should be used.

Examples

```
bisque:::itx(0, 'logit', list(NA))
```

jac.exp
Jacobian for exponential transform

Description

Let \(X = \exp(Y) \) be a transformation of a random variable \(Y \). This function computes the jacobian \(J(x) \) when using the density of \(Y \) to evaluate the density of \(X \) via

\[
f(x) = f_y(ln(x))J(x)
\]

where

\[
J(x) = \frac{d}{dx}ln(x).
\]

Usage

```
jac.exp(x, log = TRUE)
```

Arguments

- **x**: value at which to evaluate \(J(x) \)
- **log**: TRUE to return \(\log(J(x)) \)

Examples

```
jac.exp(1)
```
Description
Let \(X = \log^{-1}(Y) \) be a transformation of a random variable \(Y \). This function computes the jacobian \(J(x) \) when using the density of \(Y \) to evaluate the density of \(X \) via
\[
f(x) = f_y(\logit(x))J(x)
\]
where \(J(x) = d/dx\logit(x) \).

Usage
\[
\text{jac.invlogit}(x, \text{log} = \text{TRUE})
\]

Arguments
- \(x \): value at which to evaluate \(J(x) \)
- \(\text{log} \): TRUE to return \(\log(J(x)) \)

Examples
\[
\text{jac.invlogit}(1)
\]

Description
Let \(X = \log(Y) \) be a transformation of a random variable \(Y \). This function computes the jacobian \(J(x) \) when using the density of \(Y \) to evaluate the density of \(X \) via
\[
f(x) = f_y(\exp(x))J(x)
\]
where \(J(x) = d/dx\exp(x) \).

Usage
\[
\text{jac.log}(x, \text{log} = \text{TRUE})
\]

Arguments
- \(x \): value at which to evaluate \(J(x) \)
- \(\text{log} \): TRUE to return \(\log(J(x)) \)
jac.logit

Examples

jac.logit(1)

jac.logit
Jacobian for logit transform

Description

Let \(X = \text{logit}(Y) \) be a transformation of a random variable \(Y \) that lies in the closed interval \((L,U)\). This function computes the jacobian \(J(x) \) when using the density of \(Y \) to evaluate the density of \(X \) via

\[
f(x) = f_y(\text{logit}^{-1}(x)) * (U - L) + L)J(x)
\]

where

\[
J(x) = (U - L)d/dx \text{logit}^{-1}(x).
\]

Usage

jac.logit(x, log = TRUE, range = c(0, 1))

Arguments

- `x` value at which to evaluate \(J(x) \)
- `log` TRUE to return \(\log(J(x)) \)
- `range` vector specifying min and max range of the closed interval for the logit. While the logit is defined for real numbers in the unit interval, we extend it to real numbers in arbitrary closed intervals \((L,U)\).

Examples

jac.logit(1)

kCompute
Use sparse grid quadrature techniques to integrate (unnormalized) densities

Description

This function integrates (unnormalized) densities and may be used to compute integration constants for unnormalized densities, or to marginalize a joint density, for example.
Usage

kCompute(
 f,
 init,
 method = "BFGS",
 maxit = 10000,
 level = 2,
 log = FALSE,
 link = NULL,
 linkparams = NULL,
 quadError = FALSE,
 ...
)

Arguments

f (Unnormalized) density to integrate. the function f should include an argument log, which returns log(f(x)).
init Initial guess for the density's mode
method method to be used to search for the density's mode
maxit maximum number of iterations optim should use in searching for the density's mode
level accuracy level (typically number of grid points for the underlying 1D quadrature rule) [description from mvQuad:createNIGrid]
log TRUE to return log of integration constant
link character vector that specifies transformations used during optimization and integration of f(theta2 | X). while theta2 may be defined on arbitrary support, wtdMix performs optimization and integration of theta2 on an unconstrained support. the link vector describes the transformations that must be applied to each element of theta2. Jacobian functions for the transformations will automatically be added to the optimization and integration routines. currently supported link functions are 'log', 'logit', and 'identity'.
linkparams Optional list of additional parameters for link functions. For example, the logit function can be extended to allow mappings to any closed interval. There should be one list entry for each link function. Specify NA if no additional arguments are passed.
quadError TRUE if integration nodes and weight should be computed for the level-1 integration grid, so that quadrature approximation error can be estimated.
...
... additional arguments to pass to f

Examples

kCompute(dgamma, init = 1, shape=2, link='log', level = 5)
logjac

Wrapper to abstractly evaluate log-Jacobian functions for transforms

Description

Wrapper to abstractly evaluate log-Jacobian functions for transforms

Usage

logjac(x, link, linkparams)

Arguments

x values at which to evaluate $J(x)$
link Character vector specifying link function for which the inverse link function should be evaluated. Supports 'identity', 'log', and 'logit'.
linkparams Optional list of additional parameters for link functions. For example, the logit function can be extended to allow mappings to any closed interval. There should be one list entry for each link function. Specify NA if defaults should be used.

See Also

jac.log, jac.logit

Examples

bisque:::logjac(1, 'logit', list(NA))

mergePars

Merge pre-computed components of f(theta1 \ theta2, X)

Description

For use in the parallel call in wtdMix()

Usage

mergePars(x, y)

Arguments

x Output from one of the parallel calls in wtdMix()
y Another output from one of the parallel calls in wtdMix()
sFit

Fit a spatially mean-zero spatial Gaussian process model

Description

Uses a Gibbs sampler to estimate the parameters of a Matern covariance function used to model observations from a Gaussian process with mean 0.

Usage

sFit(
 x, # Observation of a spatial Gaussian random field, passed as a vector
 coords, # Spatial coordinates of the observation
 nSamples, # (thinned) number of MCMC samples to generate
 thin = 1, # thinning to be used within the returned MCMC samples
 rw.initsd = 0.1, # initial standard deviation for random walk proposals. this parameter will be adaptively tuned during sampling
 inits = list(), # list of initial parameters for the MCMC chain
 C = 1, # scale factor used during tuning of the random walk proposal s.d.
 alpha = 0.44, # target acceptance rate for which the random walk proposals should optimize
 priors = list(sigmasq = list(a = 2, b = 1), rho = list(L = 0, U = 1), nu = list(L = 0, U = 1))
)

Arguments

x # Observation of a spatial Gaussian random field, passed as a vector
coords # Spatial coordinates of the observation
nSamples # (thinned) number of MCMC samples to generate
thin # thinning to be used within the returned MCMC samples
rw.initsd # initial standard deviation for random walk proposals. this parameter will be adaptively tuned during sampling
inits # list of initial parameters for the MCMC chain
C # scale factor used during tuning of the random walk proposal s.d.
alpha # target acceptance rate for which the random walk proposals should optimize
priors # parameters to specify the prior distributions for the model

Examples

library(fields)
simulate.field = function(n = 100, range = .3, smoothness = .5, phi = 1){
 # Simulates a mean-zero spatial field on the unit square
 #
 # Parameters:
 # n - number of spatial locations
range, smoothness, phi - parameters for Matern covariance function

coords = matrix(runif(2*n), ncol=2)

Sigma = Matern(d = as.matrix(dist(coords)),
 range = range, smoothness = smoothness, phi = phi)

list(coords = coords,
 params = list(n=n, range=range, smoothness=smoothness, phi=phi),
 x = t(chol(Sigma)) %*% rnorm(n))

simulate data
x = simulate.field()

configure gibbs sampler
it = 100

run sampler using default posteriors
post.samples = sFit(x = x$x, coords = x$coords, nSamples = it)

build kriging grid
cseq = seq(0, 1, length.out = 10)
coords.krig = expand.grid(x = cseq, y = cseq)

sample from posterior predictive distribution
burn = 75
samples.krig = sKrig(x$x, post.samples, coords.krig = coords.krig, burn = burn)

`sKrig`

Draw posterior predictive samples from a spatial Gaussian process model

Description

Draw posterior predictive samples from a spatial Gaussian process model

Usage

`sKrig(x, sFit, coords.krig, coords = sFit$coords, burn = 0, ncores = 1)`

Arguments

- **x**: Observation of a spatial Gaussian random field, passed as a vector
- **sFit**: posterior samples of model parameters; output from bisque::sFit
- **coords.krig**: Spatial coordinates at which the field should be interpolated
- **coords**: Spatial coordinates at which observations are available
- **burn**: number of posterior samples to discard from sFit before sampling
ncores

Kriging is done via composition sampling, which may be done in parallel. `ncores` specifies the number of cores over which sampling is done. If `ncores>1`, bisque::sKrig assumes that a parallel backend suitable for use with the foreach package is already registered.

Examples

```r
library(fields)

simulate.field = function(n = 100, range = .3, smoothness = .5, phi = 1){
  # Simulates a mean-zero spatial field on the unit square
  #
  # Parameters:
  #  n - number of spatial locations
  #  range, smoothness, phi - parameters for Matern covariance function
  coords = matrix(runif(2*n), ncol=2)
  Sigma = Matern(d = as.matrix(dist(coords)),
                   range = range, smoothness = smoothness, phi = phi)
  list(coords = coords,
       params = list(n=n, range=range, smoothness=smoothness, phi=phi),
       x = t(chol(Sigma)) %*% rnorm(n))
}

# simulate data
x = simulate.field()

# configure gibbs sampler
it = 100

# run sampler using default posteriors
post.samples = sFit(x = x$x, coords = x$coords, nSamples = it)

# build kriging grid
cseq = seq(0, 1, length.out = 10)
coords.krig = expand.grid(x = cseq, y = cseq)

# sample from posterior predictive distribution
burn = 75
samples.krig = sKrig(x$x, post.samples, coords.krig = coords.krig, burn = burn)
```

Named transformation functions

Description

Evaluates the named link function at the locations `x`.
wBuild

Usage

```r
tx(x, link, linkparams)
```

Arguments

- `x` Values at which to evaluate the link function
- `link` Character vector specifying link function to evaluate. Supports 'identity', 'log', and 'logit'.
- `linkparams` Optional list of additional parameters for link functions. For example, the logit function can be extended to allow mappings to any closed interval. There should be one list entry for each link function. Specify NA if defaults should be used.

Examples

```r
bisque:::tx(0.5, 'logit', list(NA))
```

wBuild

Derive parameters for building integration grids

Description

Note: w is defined on the transformed scale, but for convenience f is defined on the original scale.

Usage

```r
wBuild(
  f,  
  init,  
  dim.theta2 = length(init),  
  approx = "gaussian",  
  link = rep("identity", length(init)),  
  link.params = rep(list(NA), length(init)),  
  optim.control = list(maxit = 5000, method = "BFGS"),  
  ...  
)
```

Arguments

- `f` function used to derive the weight function w. f must be able to be called via $f(par,log,...)$
- `init` initial guess for mode of f.
- `dim.theta2` wBuild assumes par is partitioned such that $par=c(theta1,theta2)$. `dim.theta2` specifies the size of the partition. The default is to assume that f is defined without a theta1 component.
- `approx` Style of approximation (i.e., w) to be created from mode of f.
'gaussian' Gaussian approximation for theta2 at the mode of f. Assumes f is proportional to the marginal posterior density for theta2.

'condgauss' Gaussian approximation for theta2 at the mode of f. The approximation is conditioned on the value of the mode for theta1. Assumes f is proportional to the joint posterior density for theta1, theta2.

'condgauss-laplace' Gaussian approximation for theta2 at the mode of f. The approximation is conditioned on a separate laplace approximation of the marginal posterior mode for theta1. Assumes f is proportional to the joint posterior density for theta1, theta2.

'margauss' Gaussian approximation for theta2 at the mode of f. Assumes f is proportional to the joint posterior density for theta1, theta2, then uses the marginal mean and covariance from the posterior's gaussian approximation.

link character vector that specifies transformations used during optimization and integration of $f(\theta_2|X)$. While θ_2 may be defined on arbitrary support, wtdMix performs optimization and integration of θ_2 on an unconstrained support. The link vector describes the transformations that must be applied to each element of θ_2. Jacobian functions for the transformations will automatically be added to the optimization and integration routines. Currently supported link functions are 'log', 'logit', and 'identity'.

link.params Optional list of additional parameters for link functions. For example, the logit function can be extended to allow mappings to any closed interval. There should be one list entry for each link function. Specify NA if no additional arguments are passed.

optim.control List of arguments to pass to stats::optim when used to find mode of f.

maxit Maximum number of iterations to run optim for.

method Optimization routine to use with optim.

... additional arguments needed for function evaluation.

Examples

Use BISQuE to approximate the marginal posterior distribution for unknown
population f(N|c, r) for the fur seals capture-recapture data example in
Givens and Hoeting (2013), example 7.10.

data('furseals')

define theta transformation and jacobian
tx.theta = function(theta) {
 c(log(theta[1]/theta[2]), log(sum(theta[1:2])))
}

itx.theta = function(u) {
 c(exp(sum(u[1:2])), exp(u[2])) / (1 + exp(u[1]))
}

lJ.tx.theta = function(u) {
 log(exp(u[1] + 2*u[2]) + exp(2*sum(u[1:2]))) - 3 * log(1 + exp(u[1]))
}
compute constants
\[r = \text{sum}(\text{furseeals}\$m) \]
\[nC = \text{nrow}(\text{furseeals}) \]

set basic initialization for parameters
\[\text{init} = \text{list}(U = c(-.7, 5.5)) \]
\[\text{init} = \text{c}(\text{init}, \text{list}(\alpha = \text{rep}(.5, nC), \theta = \text{itx.}\text{theta}(\text{init}\$U), \text{N} = r + 1)) \]

\[\text{post.alpha_theta} = \text{function}(\theta2, \text{log} = \text{TRUE}, ...) \] {
 # Function proportional to \(f(\alpha, U1, U2 | c, r) \)
 \[\alpha = \theta2[1:nC] \]
 \[u = \theta2[-(1:nC)] \]
 \[\theta = \text{itx.}\text{theta}(u) \]
 \[p = 1 - \text{prod}(1-\alpha) \]
 \[\text{res} = -\text{sum}(\theta)/1e3 - r * \log(p) + \text{lJ.}\text{tx.}\text{theta}(u) - nC * \text{lbeta}(\theta[1], \theta[2]) \]
 \[\text{for}(i \text{ in } 1:nC) \] {
 \[\text{res} = \text{res} + (\theta[1] + \text{furseeals}\$c[i] - 1)*\log(\alpha[i]) + (\theta[2] + r - \text{furseeals}\$c[i] - 1)*\log(1-\alpha[i]) \]
 }
 \[\text{if(log) \{ res \} else \{ \exp(\text{res}) \} } \]
}

\[\text{post.N.mixtures} = \text{function}(N, \text{params}, \text{log} = \text{TRUE}, ...) \] {
 # The mixture component of the weighted mixtures for \(f(N | c, r) \)
 \[\text{dnbinom}(x = N-r, \text{size} = r, \text{prob} = \text{params}, \text{log} = \text{log}) \]
}

\[\text{mixparams.N} = \text{function}(\theta2, ...) \] {
 # compute parameters for \text{post.N.mixtures}
 \[1 - \text{prod}(1 - \theta2[1:nC]) \]
}

\[\text{w.N} = \text{wBuild}(f = \text{post.alpha_theta}, \text{init} = \text{c}(\text{init}\$alpha, \text{init}\$U), \text{approx} = \text{’gauss’}, \text{link} = \text{c}(\text{rep}(\text{’logit’, nC), \text{rep}(\text{’identity’, 2}))) \]

\[\text{m.N} = \text{wMix}(f1 = \text{post.N.mixtures}, f1.precompute = \text{mixparams.N}, f2 = \text{post.alpha_theta}, w = \text{w.N}) \]

compute posterior mean
\[\text{m.N}\$\text{expectation}\$\text{Eh.precompute}(h = \text{function}(p) ((1-p)*r/p + r), \quad \text{quadError} = \text{TRUE}) \]
compute posterior density
post.N.dens = data.frame(N = r:105)
post.N.dens$d = m.N$f(post.N.dens$N)

plot posterior density
plot(d~N, post.N.dens, ylab = expression(f(N~'-'bold(c),r)))

wMix

Construct a weighted mixture object

Description

For a Bayesian model

\[X \sim f(X|\theta_1, \theta_2) \]
\[(\theta_1, \theta_2) \sim f(\theta_1, \theta_2), \]

the marginal posterior \(f(\theta_1|X) \) distribution can be approximated via weighted mixtures via

\[f(\theta_1|X) \approx \sum_{j=1}^{K} f(\theta_1|X, \theta_2) w_j \]

where \(w_j \) is based on \(f(\theta_2^{(j)}|X) \) and weights \(\tilde{w}_j \), where \(\theta_2^{(j)} \) and \(\tilde{w}_j \) are nodes and weights for a sparse-grid quadrature integration scheme. The quadrature rule is developed by finding the posterior mode of \(f(\theta_2|X) \), after transforming \(\theta_2 \) to an unconstrained support. For best results, \(\theta_2 \) should be a continuous random variable, or be able to be approximated by one.

Usage

\[
\text{wMix(}
 f1,
 f2,
 w,
 f1.precompute = \text{function(x, ...)} \{ x \},
 \text{spec = "ff"},
 \text{level = 2},
 \text{c.int = NULL},
 \text{c.level = 2},
 \text{c.init = NULL},
 \text{c.link = rep("identity", length(c.init))},
 \text{c.link.params = rep(list(NA), length(c.init))},
 \text{c.optim.control = list(maxit = 5000, method = "BFGS")},
 \text{ncores = 1},
 \text{quadError = TRUE},
 ...
\text{)}
\]
Arguments

f1 evaluates $f(\theta_1|X, \theta_2)$. f1 must be able to be called via $f1(\text{theta1}, \text{params}, \text{log}, \ldots)$.

theta1 a matrix of parameters at which to evaluate $f(\theta_1|X, \theta_2)$. each row should be one set of values at which the density should be evaluated

params a vector of parameters needed to evaluate $f(\theta_1|X, \theta_2)$. In most cases params will equal theta2, but in some cases, $f(\theta_1|X, \theta_2)$ depends on functions of θ_2, which can be pre-evaluated as the weighted mixture approximation is constructed.

log TRUE to return $\ln(f(\theta_1|X, \theta_2))$

... additional arguments needed for function evaluation

f2 evaluates $f(\text{theta2}|X)$. f2 must be able to be called via $f2(\text{theta2}, \text{log}, \ldots)$.

w wBuild object created by wBuild function. w contains posterior mode of $f(\theta_2|X)$ and wrapper functions to generate quadrature grid.

f1.precompute function that pre-computes parameters for evaluating $f(\theta_1|X, \theta_2)$. f1.precompute must be able to be called via $f1.precompute(\text{theta2}, \ldots)$ and return the argument params for the function f1.

spec Specification of whether f1 and f2 are known exactly, or need numerical approximation to determine integration constants. 'ff' if both functions are known, 'gg' if f1 is proportional to the full conditional distribution $f(\theta_1|\theta_2, X)$, but needs the integration constant computed, and if the marginal posterior $f(\text{theta2}|X)$ is equal to f2 times the integration constant that needs to be numerically approximated.

level accuracy level of the numerical approximation (typically number of grid points for the underlying 1D quadrature rule) [description from mvQuad::createNIGrid]

c.int If spec=='gg', then c.int specifies the function that can be integrated in order to yield the missing integration constant.

c.level accuracy level of the numerical approximation for c.int (typically number of grid points for the underlying 1D quadrature rule) [description from mvQuad::createNIGrid]

c.init initial guess for mode of c.int.

c.link character vector that specifies transformations used during optimization and integration of c.int. See corresponding documentation in wBuild function for more details.

c.link.params Optional list of additional parameters for link functions used with c.int. See corresponding documentation in wBuild function for more details.

c.optim.control Arguments used to find mode of c.int. See corresponding documentation in wBuild function for more details.

ncores number of cores used to parallelize computation of parameters for $f(\theta_1|\theta_2, X)$.

quadError TRUE if integration nodes and weight should be computed for the level-1 integration grid, so that quadrature approximation error can be estimated.

... Additional arguments to pass to f1, f1.precompute, f12, and f2.
Value

A list with class wMix, which contains the following items.

f Function for evaluating the posterior density \(f(\theta_1|X) \). \(f \) is callable via \(f(\theta_1, \log, \ldots) \).
mix A matrix containing the pre-computed parameters for evaluating the mixture components \(f(\theta_1|\theta_2, X) \). Each row of the matrix contains parameters for one of the \(K \) mixture components.
wts Integration weights for each of the mixture components. Some of the weights may be negative.

Examples

Use BISQuE to approximate the marginal posterior distribution for unknown
population f(N|c, r) for the fur seals capture-recapture data example in
Givens and Hoeting (2013), example 7.10.
data('furseals')

define theta transformation and jacobian
tx.theta = function(theta) {
 c(log(theta[1]/theta[2]), log(sum(theta[1:2])))
}
itx.theta = function(u) {
 c(exp(sum(u[1:2])), exp(u[2])) / (1 + exp(u[1]))
}
lJ.tx.theta = function(u) {
 log(exp(u[1] + 2*u[2]) + exp(2*sum(u[1:2]))) - 3 * log(1 + exp(u[1]))
}

compute constants
r = sum(furseals$m)
nC = nrow(furseals)

set basic initialization for parameters
init = list(U = c(-.7, 5.5))
init = c(init, list(
 alpha = rep(.5, nC),
...
theta = itx.theta(init$U),
N = r + 1
})

post.alpha_theta = function(theta2, log = TRUE, ...) {
Function proportional to f(alpha, U1, U2 | c, r)
alpha = theta2[1:nC]
u = theta2[-(1:nC)]
theta = itx.theta(u)
p = 1 - prod(1-alpha)
res = - sum(theta)/1e3 - r * log(p) + lJ.tx.theta(u) -
nC * lbeta(theta[1], theta[2])
for(i in 1:nC) {
 res = res + (theta[1] + furseals$c[i] - 1)*log(alpha[i]) +
 (theta[2] + r - furseals$c[i] - 1)*log(1-alpha[i])
}
if(log) { res } else { exp(res) }
}

post.N.mixtures = function(N, params, log = TRUE, ...) {
The mixture component of the weighted mixtures for f(N | c, r)
 dbinom(x = N-r, size = r, prob = params, log = log)
}

mixparams.N = function(theta2, ...) {
compute parameters for post.N.mixtures
 1 - prod(1 - theta2[1:nC])
}

w.N = wBuild(f = post.alpha_theta, init = c(init$alpha, init$U),
approx = 'gauss', link = c(rep('logit', nC), rep('identity', 2)))
m.N = wMix(f1 = post.N.mixtures, f1.precompute = mixparams.N,
f2 = post.alpha_theta, w = w.N)

compute posterior mean
m.N$expectation$Eh.precompute(h = function(p) ((1-p)*r/p + r),
 quadError = TRUE)

compute posterior density
post.N.dens = data.frame(N = r:105)
post.N.dens$d = m.N$f(post.N.dens$N)

plot posterior density
plot(d~N, post.N.dens, ylab = expression(f(N~|c,r)))
Index

*Topic datasets
 furseals, 5

createLocScaleGrid, 2
dmix, 3
emix, 4
furseals, 5
itx, 6
jac.exp, 7
jac.invlogit, 8
jac.log, 8, 11
jac.logit, 9, 11
kCompute, 9
logjac, 11
mergePars, 11
sFit, 12
sKrig, 13
tx, 14
wBuild, 15
wMix, 18