Package ‘bikm1’

July 16, 2021

Type Package
Title Co-Clustering Adjusted Rand Index and Bikm1 Procedure for Contingency and Binary Data-Sets
Version 1.1.0
Maintainer Valerie Robert <valerie.robert.math@gmail.com>
Description Co-clustering of the rows and columns of a contingency or binary matrix, or double binary matrices and model selection for the number of row and column clusters. Three models are considered: the Poisson latent block model for contingency matrix, the binary latent block model for binary matrix and a new model we develop: the multiple latent block model for double binary matrices. A new procedure named bikm1 is implemented to investigate more efficiently the grid of numbers of clusters. Then, the studied model selection criteria are the integrated completed likelihood (ICL) and the Bayesian integrated likelihood (BIC). Finally, the co-clustering adjusted Rand index (CARI) to measure agreement between co-clustering partitions is implemented. Robert Valerie, Vasseur Yann, Brault Vincent (2021) <doi:10.1007/s00357-020-09379-w>.
Imports gtools, stats, graphics, grDevices, methods, parallel, ade4, pracma, ggplot2, reshape2, grid, lpSolve
License GPL-2
Encoding UTF-8
RoxygenNote 7.1.1
NeedsCompilation no
Author Valerie Robert [aut, cre]
Repository CRAN
Date/Publication 2021-07-16 07:30:20 UTC

R topics documented:

bikm1-package ... 2
ARI ... 4
BIKM1_LBM_Binary ... 5
BIKM1_LBM_Binary-class .. 7
BIKM1_LBM_Poisson ... 8
bikm1-package

<table>
<thead>
<tr>
<th>Module Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIKM1_LBM_Poisson-class</td>
<td>10</td>
</tr>
<tr>
<td>BIKM1_MLBM_Binary</td>
<td>11</td>
</tr>
<tr>
<td>BIKM1_MLBM_Binary-class</td>
<td>13</td>
</tr>
<tr>
<td>BinBlocICL_LBM</td>
<td>14</td>
</tr>
<tr>
<td>BinBlocICL_MLBM</td>
<td>15</td>
</tr>
<tr>
<td>BinBlocRnd_LBM</td>
<td>16</td>
</tr>
<tr>
<td>BinBlocRnd_MLBM</td>
<td>17</td>
</tr>
<tr>
<td>BinBlocVisuResum_LBM</td>
<td>18</td>
</tr>
<tr>
<td>BinBlocVisuResum_MLBM</td>
<td>19</td>
</tr>
<tr>
<td>BinBlocVisu_LBM</td>
<td>20</td>
</tr>
<tr>
<td>BinBlocVisu_MLBM</td>
<td>20</td>
</tr>
<tr>
<td>CARI</td>
<td>21</td>
</tr>
<tr>
<td>CE_LBM</td>
<td>22</td>
</tr>
<tr>
<td>CE_MLBM</td>
<td>23</td>
</tr>
<tr>
<td>CE_simple</td>
<td>24</td>
</tr>
<tr>
<td>CoNMI</td>
<td>25</td>
</tr>
<tr>
<td>ENMI</td>
<td>26</td>
</tr>
<tr>
<td>ML_simple</td>
<td>27</td>
</tr>
<tr>
<td>NCE_LBM</td>
<td>28</td>
</tr>
<tr>
<td>NCE_simple</td>
<td>28</td>
</tr>
<tr>
<td>plot, BIKM1_LBM_Binary-method</td>
<td>29</td>
</tr>
<tr>
<td>plot, BIKM1_LBM_Poisson-method</td>
<td>30</td>
</tr>
<tr>
<td>plot, BIKM1_MLBM_Binary-method</td>
<td>31</td>
</tr>
<tr>
<td>PoissonBlocBIC</td>
<td>32</td>
</tr>
<tr>
<td>PoissonBlocICL</td>
<td>33</td>
</tr>
<tr>
<td>PoissonBlocRnd</td>
<td>34</td>
</tr>
<tr>
<td>PoissonBlocVisu</td>
<td>35</td>
</tr>
<tr>
<td>PoissonBlocVisuResum</td>
<td>36</td>
</tr>
<tr>
<td>print, BIKM1_LBM_Binary-method</td>
<td>36</td>
</tr>
<tr>
<td>print, BIKM1_LBM_Poisson-method</td>
<td>37</td>
</tr>
<tr>
<td>print, BIKM1_MLBM_Binary-method</td>
<td>38</td>
</tr>
<tr>
<td>show, BIKM1_LBM_Binary-method</td>
<td>39</td>
</tr>
<tr>
<td>show, BIKM1_LBM_Poisson-method</td>
<td>39</td>
</tr>
<tr>
<td>show, BIKM1_MLBM_Binary-method</td>
<td>40</td>
</tr>
<tr>
<td>summary, BIKM1_LBM_Binary-method</td>
<td>41</td>
</tr>
<tr>
<td>summary, BIKM1_LBM_Poisson-method</td>
<td>42</td>
</tr>
<tr>
<td>summary, BIKM1_MLBM_Binary-method</td>
<td>42</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>bikm1-package</th>
<th>bikm1 package</th>
</tr>
</thead>
</table>
Description

This package is designed to co-cluster a contingency (resp. binary) matrix, or double binary matrices in blocks respectively under the (normalized or not) Poisson (resp binary) Latent Block Model and the Multiple Latent Block Model. It enables to automatically select the number of row and column clusters and to compare partition estimations with reference partitions.

Features

Package for the segmentation of the rows and columns inducing a co-clustering and automatically select the number of row and column clusters.

Model 1

BIKM1_LBM_Poisson. This fitting procedure produces a BIKM1_LBM_Poisson object.

Model 2

BIKM1_LBM_Binary. This fitting procedure produces a BIKM1_LBM_Binary object.

Model 3

BIKM1_MLBM_Binary. This fitting procedure produces a BIKM1_MLBM_Binary object.

Technical remarks

Display of the result with plot,BIKM1_LBM_Poisson-method and with show,BIKM1_LBM_Poisson-method, with summary,BIKM1_LBM_Poisson-method and with print,BIKM1_LBM_Poisson-method.

Display of the result with plot,BIKM1_LBM_Binary-method and with show,BIKM1_LBM_Binary-method, with summary,BIKM1_LBM_Binary-method and with print,BIKM1_LBM_Binary-method.

Display of the result with plot,BIKM1_MLBM_Binary-method and with show,BIKM1_MLBM_Binary-method, with summary,BIKM1_MLBM_Binary-method and with print,BIKM1_MLBM_Binary-method.

Author(s)

Valerie Robert <valerie.robert.math@gmail.com>

References

Keribin, Ceulex and Robert, The Latent Block Model: a useful model for high dimensional data. https://hal.inria.fr/hal-01658589/document

ARI

ARI function for agreement between two partitions

Description

Produce a measure of agreement between two partitions. A value of 1 means a perfect match.

Usage

ARI(v, vprime)

Arguments

v numeric vector specifying the class of observations.
vprime numeric vector specifying another partitions of observations.

Value

a list including the arguments:
ari: value of the index.
nv: contingency table which the index is based on.

References

Examples

require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6, 4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,4,4,4,init_choice='random')
mv=ARI(res@model_max$v, data$xrow)
mv$ari
mv$nv
mw=ARI(res@model_max$w, data$xcol)
Description

Produce a blockwise estimation of a contingency matrix of observations.

Usage

BIKM1_LBM_Binary(x,Gmax,Hmax,a=4,b=1,
Gstart=2,Hstart=2,init_choice='smallVBayes',userparam=NULL,
ntry=50,criterion_choice='ICL', mc.cores=1,verbose=TRUE)

Arguments

x binary matrix of observations.
Gmax a positive integer less than number of rows.
Hmax a positive integer less than number of columns. The bikm1 procedure stops while the numbers of rows is higher than Gmax or the number of columns is higher than Hmax.
a hyperparameter used in the VBayes algorithm for priors on the mixing proportions. By default, a=4.
b hyperparameter used in the VBayes algorithm for prior on the Bernoulli parameter. By default, b=1.
Gstart a positive integer to initialize the procedure with number of row clusters. By default, Gstart=2.
Hstart a positive integer to initialize the procedure with number of column clusters. By default, Hstart=2.
init_choice a character string corresponding to the chosen initialization strategy used for the procedure, which can be "random" or "smallVBayes" or "user". By default, init_choice="smallVBayes".
userparam in the case where init_choice is "user", a list containing partitions z and w. By default userparam=NULL.
ntry a positive integer corresponding to the number of times which is launched the small VBayes or random initialization strategy. By default ntry=100.
criterion_choice a character string corresponding to the chosen criterion used for model selection, which can be "ICL" as for now. By default, criterion_choice="ICL".
mc.cores a positive integer corresponding to the available number of cores for parallel computing. By default, mc.cores=1.
verbose logical. To display each step and the result. By default verbose=TRUE.
Value

a BIKM1_LBM_Binary object including

model_max: the selected model by the procedure with free energy W, theta, conditional probabilities (s_{ig}, r_{jh}), iter, empty_cluster, and the selected partitions z and w.

criterion_choice: the chosen criterion

init_choice: the chosen init choice

criterion_tab: the matrix containing the criterion values for each selected number of row and column

W_tab: the matrix containing the free energy values for each selected number of row and column

criterion_max: the maximum of the criterion values

gopt: the selected number of rows

hopt: the selected number of columns

References

Examples

require(bikm1)
set.seed(42)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
res=BIKM1_LBM_Binary(data$x,3,2,Gstart=3,Hstart=2,
init_choice='user',userparam=list(z=data$xrow,v=data$xcol))
BIKM1_LBM_Binary-class

Class "BIKM1_LBM_Binary"

Description

Class of object returned by the BIKM1_LBM_Binary function.

Slots

model_max: The selected model by the procedure with free energy W, theta, conditional probabilities (s_ig, r_jh), iter, empty_cluster, and the selected partitions z and v.

criterion_choice: A character string corresponding to the chosen criterion used for model selection, which can be "ICL" or "BIC".

init_choice: A character string corresponding to the chosen initialization strategy used for the procedure, which can be "random" or "Gibbs" or "smallVBayes".

criterion_tab: The matrix corresponding to the values of the chosen criterion for pairs of numbers of clusters visited by the BIKM1_LBM_Binary function. The matrix rows design the numbers of row clusters. If a pair is not visited, by default, the value is -Inf.

W_tab: The matrix corresponding to the values of the free energy (minimizer of the loglikelihood in the algorithm) for pairs of numbers of clusters visited by the procedure. The matrix rows design the numbers of row clusters. If a pair is not visited, by default, the value is -Inf.

criterion_max: Numeric indicating the maximum of the criterion values, calculated on the pairs of numbers of clusters visited by the BIKM1_LBM_Binary function.

gopt: An integer value indicating the number of row clusters selected by the BIKM1_LBM_Binary function.

hopt: An integer value indicating the number of column clusters selected by the BIKM1_LBM_Binary function.

Examples

require(bikm1)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
res=BIKM1_LBM_Binary(data$x,3,3,a=4,init_choice='smallVBayes')
Description

Produce a blockwise estimation of a contingency matrix of observations.

Usage

BIKM1_LBM_Poisson(x,Hmax,Lmax,a=4,alpha=1,beta=0.01,
Hstart=2,Lstart=2,normalization=FALSE)init_choice='smallVBayes',
userparam=NULL,ntry=50,criterion_choice='ICL', mc.cores=1,verbose=TRUE)

Arguments

x contingency matrix of observations.
Hmax a positive integer less than number of rows.
Lmax a positive integer less than number of columns. The bikm1 procedure stops while
 the numbers of rows is higher than Hmax or the number of columns is higher
 than Lmax.
a hyperparameter used in the VBayes algorithm for priors on the mixing propor-
 tions. By default, a=4.
alpha hyperparameter used in the VBayes algorithm for prior on the Poisson parame-
 ter. By default, alpha=1.
beta hyperparameter used in the VBayes algorithm for prior on the Poisson parame-
 ter. By default, beta=0.01.
Hstart a positive integer to initialize the procedure with number of row clusters. By
 default, Hstart=2.
Lstart a positive integer to initialize the procedure with number of column clusters. By
 default, Lstart=2.
normalization logical. To use the normalized Poisson modelling in the Latent Block Model.
 By default normalization=FALSE.
init_choice character string corresponding to the chosen initialization strategy used for
 the procedure, which can be "random" or "Gibbs" (higher time computation) or
 "smallVBayes" or "user". By default, init_choice="smallVBayes"
userparam In the case where init_choice is "user", a list containing partitions v and w.
ntry a positive integer corresponding to the number of times which is launched the
 small VBayes or random initialization strategy. By default ntry=50.
criterion_choice Character string corresponding to the chosen criterion used for model selection,
 which can be "ICL" or "BIC". By default, criterion_choice="ICL".
mc.cores a positive integer corresponding to the available number of cores for parallel
 computing. By default, mc.cores=1.
verbose logical. To display each step and the result. By default verbose=TRUE.
Value

a BIKM1_LBM_Poisson object including

- `model_max`: the selected model by the procedure with free energy W, theta, conditional probabilities (r_{jh}, t_{kl}), iter, empty_cluster, and the selected partitions v and w.
- `criterion_choice`: the chosen criterion
- `init_choice`: the chosen init choice
- `criterion_tab`: matrix containing the criterion values for each selected number of row and column
- `W_tab`: matrix containing the free energy values for each selected number of row and column
- `criterion_max`: maximum of the criterion values
- `hopt`: the selected number of rows
- `lopt`: the selected number of columns

References

Keribin, Celeux and Robert. The Latent Block Model: a useful model for high dimensional data. https://hal.inria.fr/hal-01658589/document

Examples

```r
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6, 4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,3,2,Hstart=3,Lstart=2,
                       init_choice='user',userparam=list(v=data$xrow,w=data$xcol))
```
Class "BIKM1_LBM_Poisson"

Description
Class of object returned by the BIKM1_LBM_Poisson function.

Slots

model_max: The selected model by the procedure with free energy W, theta, conditional probabilities (r_jh, t_kl), iter, empty_cluster, and the selected partitions v and w.
criterion_choice: A character string corresponding to the chosen criterion used for model selection, which can be "ICL" or "BIC".
init_choice: A character string corresponding to the chosen initialization strategy used for the procedure, which can be "random" or "Gibbs" or "smallVBayes".
criterion_tab: The matrix corresponding to the values of the chosen criterion for pairs of numbers of clusters visited by the BIKM1_LBM_Poisson function. The matrix rows design the numbers of row clusters. If a pair is not visited, by default, the value is -Inf.
W_tab: The matrix corresponding to the values of the free energy (minimizer of the loglikelihood in the algorithm) for pairs of numbers of clusters visited by the procedure. The matrix rows design the numbers of row clusters. If a pair is not visited, by default, the value is -Inf.
criterion_max: Numeric indicating the maximum of the criterion values, calculated on the pairs of numbers of clusters visited by the BIKM1_LBM_Poisson function.
lopt: An Integer value indicating the number of row clusters selected by the BIKM1_LBM_Poisson function.
hopt: An integer value indicating the number of column clusters selected by the BIKM1_LBM_Poisson function.

Examples

```r
require(bikm1)
set.seed(42)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(floor(runif(h*l)*20+1),ncol=l)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,3,3,4,init_choice='smallVBayes')
```
Description

Produce a blockwise estimation of double matrices of observations.

Usage

BIKM1_MLBM_Binary(x,y,Gmax,Hmax,Lmax,a=4,b=1,
Gstart=2,Hstart=2,Lstart=2,init_choice='smallVBayes',userparam=NULL,
ntry=50,criterion_choice='ICL', mc.cores=1,verbose=TRUE)

Arguments

- **x**: matrix of observations (1st matrix).
- **y**: matrix of observations (2nd matrix).
- **Gmax**: a positive integer less than number of rows.
- **Hmax**: a positive integer less than number of columns of the 1st matrix.
- **Lmax**: a positive integer less than number of columns of the 2nd matrix. The bikm1 procedure stops while the numbers of rows is higher than Gmax or the number of columns is higher than Hmax or the numbers of columns of the 2nd matrix is higher than Lmax.
- **a**: hyperparameter used in the VBayes algorithm for priors on the mixing proportions. By default, a=4.
- **b**: hyperparameter used in the VBayes algorithm for prior on the Bernoulli parameter. By default, b=1.
- **Gstart**: a positive integer to initialize the procedure with number of row clusters. By default, Gstart=2.
- **Hstart**: a positive integer to initialize the procedure with number of column clusters. By default, Hstart=2.
- **Lstart**: a positive integer to initialize the procedure with number of column clusters. By default, Lstart=2.
- **init_choice**: character string corresponding to the chosen initialization strategy used for the procedure, which can be "random" or "smallVBayes" or "user". By default, init_choice="smallVBayes".
- **userparam**: In the case where init_choice is "user", a list containing partitions z, v and w.
- **ntry**: a positive integer corresponding to the number of times which is launched the small VBayes initialization strategy. By default ntry=100.
- **criterion_choice**: Character string corresponding to the chosen criterion used for model selection, which can be "ICL" as for now. By default, criterion_choice="ICL".
- **mc.cores**: a positive integer corresponding to the available number of cores for parallel computing. By default, mc.cores=1.
- **verbose**: logical. To display each step and the result. By default verbose=TRUE.
Value

A BIKM1_MLBM_Binary object including

- model_max: the selected model by the procedure including free energy W, theta, conditional probabilities $(s_{ig}, r_{jh,tk})$, iter, empty_cluster, and the selected partitions z,v and w.
- criterion_choice: the chosen criterion
- init_choice: the chosen init_choice
- criterion_tab: matrix containing the criterion values for each selected number of row and column
- W_{tab}: matrix containing the free energy values for each selected number of row and column
- criterion_max: maximum of the criterion values
- gopt: the selected number of rows
- hopt: the selected number of columns (1st matrix)
- lopt: the selected number of columns (2nd matrix)

References

Examples

```r
require(bikm1)
set.seed(42)
n=200
J=120
K=120
g=3
h=2
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gl=matrix(runif(6),ncol=l)
data=BinBlocRnd_MLBM(n,J,K,theta)
res=BIKM1_MLBM_Binary(data$x,data$y,3,2,2,Gstart=3,Hstart=2,Lstart=2)init_choice='user',
userparam=list(z=data$xrow,v=data$xcolx,w=data$xcoly))
```
Description

Class of object returned by the BIKM1_MLBM_Binary function.

Slots

- **model_max**: The selected model by the procedure with free energy W, theta, conditional probabilities (s_{ig}, r_{jh}, t_{kl}), iter, empty_cluster, and the selected partitions z, v and w.
- **criterion_choice**: A character string corresponding to the chosen criterion used for model selection, which can be "ICL" or "BIC".
- **init_choice**: A character string corresponding to the chosen initialization strategy used for the procedure, which can be "random" or "Gibbs" or "smallVBayes".
- **criterion_tab**: The matrix corresponding to the values of the chosen criterion for pairs of numbers of clusters visited by the BIKM1_MLBM_Binary function. The matrix rows design the numbers of row clusters. If a pair is not visited, by default, the value is -Inf.
- **W_tab**: The matrix corresponding to the values of the free energy (minimizer of the loglikelihood in the algorithm) for pairs of numbers of clusters visited by the procedure. The matrix rows design the numbers of row clusters. If a pair is not visited, by default, the value is -Inf.
- **criterion_max**: Numeric indicating the maximum of the criterion values, calculated on the pairs of numbers of clusters visited by the BIKM1_MLBM_Binary function.
- **gopt**: An integer value indicating the number of row clusters selected by the BIKM1_MLBM_Binary function.
- **hopt**: An integer value indicating the number of column clusters for the first matrix selected by the BIKM1_MLBM_Binary function.
- **lopt**: An integer value indicating the number of row clusters for the second matrix selected by the BIKM1_MLBM_Binary function.

Examples

```r
require(bikm1)
n=200
J=120
K=120
g=3
h=2
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
```
BinBlocICL_LBM

BinBlocICL_LBM function for computation of the ICL criterion in the Binary LBM

Description

Produce a value of the ICL criterion in the Binary LBM.

Usage

BinBlocICL_LBM(a, b, x, z1, v1)

Arguments

- **a**: an hyperparameter for priors on the mixing proportions. By default, a=4.
- **b**: an hyperparameter for prior on the Bernoulli parameter. By default, b=1.
- **x**: contingency matrix of observations.
- **z1**: a numeric vector specifying the class of rows.
- **v1**: a numeric vector specifying the class of columns.

Value

a value of the ICL criterion.

Examples

```r
require(bikm1)
set.seed(42)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
BinBlocICL_LBM(a=4,b=1,data$x, data$xrow,data$xcol)
```
BinBlocICL_MLBM

Function for computation of the ICL criterion in the MLBM

Description

Produce a plot object representing the resumed co-clustered data-sets.

Usage

BinBlocICL_MLBM(a, b, x, y, z1, v1, w1)

Arguments

- **a**: an hyperparameter for priors on the mixing proportions. By default, a=4.
- **b**: an hyperparameter for prior on the Bernoulli parameter. By default, b=1.
- **x**: binary matrix of observations (1st matrix).
- **y**: binary matrix of observations (2nd matrix).
- **z1**: a numeric vector specifying the class of rows.
- **v1**: a numeric vector specifying the class of columns (1st matrix).
- **w1**: a numeric vector specifying the class of columns (2nd matrix).

Value

- a value of the ICL criterion.

Examples

```r
require(bikm1)
set.seed(42)
n=200
J=120
K=120
g=2
h=2
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$alpha_gh=matrix(runif(4),ncol=h)
theta$beta_gl=matrix(runif(4),nrow=l)
data=BinBlocRnd_MLBM(n,J,K,theta)
res=BIKM1_MLBM_Binary(data$x,data$y,2,2,2,4,init_choice='smallVBayes')
BinBlocICL_MLBM(a=4,b=1,data$x,data$y, data$xrow,data$xcolx,data$xcoly)
```
BinBlocRnd_LBM function for binary data matrix simulation

Description

Produce a data matrix generated under the Binary Latent Block Model.

Usage

BinBlocRnd_LBM(n,J,theta)

Arguments

n
a positive integer specifying the number of expected rows.

J
a positive integer specifying the number of expected columns.

theta
a list specifying the model parameters:

\pi_g: a vector specifying the row mixing proportions.

\rho_h: a vector specifying the matrix column mixing proportions.

\alpha_{gh}: a matrix specifying the distribution parameter of the matrix.

Value

a list including the arguments:

x: simulated data matrix.

xrow: numeric vector specifying row partition.

xcol: numeric vector specifying column partition.

Examples

require(bikm1)
set.seed(42)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
BinBlocRnd_MLBM function for binary double data matrix simulation

Description

Produce two simulated data matrices generated under the Binary Multiple Latent Block Model.

Usage

BinBlocRnd_MLBM(n, J, K, theta)

Arguments

n
a positive integer specifying the number of expected rows.

J
a positive integer specifying the number of expected columns of the first matrix.

K
a positive integer specifying the number of expected columns of the second matrix.

theta
a list specifying the model parameters:
pi_g: a vector specifying the row mixing proportions.
rho_h: a vector specifying the first matrix column mixing proportions.
tau_l: a vector specifying the second matrix column mixing proportions.
alpha_gh: a matrix specifying the distribution parameter of the first matrix.
beta_gl: a matrix specifying the distribution parameter of the second matrix.

Value

a list including the arguments:
x: simulated first data matrix. y: simulated second data matrix.
xrow: numeric vector specifying row partition.
xcolx: numeric vector specifying first matrix column partition.
xcoly: numeric vector specifying second matrix column partition.

Examples

require(bikm1)
set.seed(42)
n=200
J=120
K=120
g=3
h=2
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gl=matrix(runif(6),ncol=l)
data=BinBlocRnd_MLBM(n,J,K,theta)

BinBlocVisuResum_LBM
BinBlocVisuResum_LBM function for visualization of binary matrix data-sets

Description

Produce a plot object representing the resumed co-clustered data-sets.

Usage

```
BinBlocVisuResum_LBM(x,z,v)
```

Arguments

- **x**
 - binary matrix of observations.

- **z**
 - a numeric vector specifying the class of rows.

- **v**
 - a numeric vector specifying the class of columns.

Value

- a **plot** object.

Examples

```
require(bikm1)
set.seed(42)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
BinBlocVisuResum_LBM(data$x,data$xrow,data$xcol)
```
BinBlocVisuResum_MLBM

BinBlocVisuResum_MLBM function for visualization of double matrix datasets

Description

Produce a plot object representing the resumed co-clustered data-sets.

Usage

BinBlocVisuResum_MLBM(x, y, z, v, w)

Arguments

x
binary matrix of observations.

y
binary second matrix of observations.

z
a numeric vector specifying the class of rows.

v
a numeric vector specifying the class of columns (1st matrix).

w
a numeric vector specifying the class of columns (2nd matrix).

Value

a plot object.

Examples

require(bikm1)
set.seed(42)
n=200
J=120
K=120
g=3
h=2
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gl=matrix(runif(6),ncol=1)
data=BinBlocRnd_MLBM(n,J,K,theta)
BinBlocVisuResum_MLBM(data$x, data$y, data$xrow, data$xcolx, data$xcoly)
BinBlocVisu_LBM
BinBlocVisu_LBM function for visualization of binary matrix datasets

Description

Produce a plot object representing the co-clustered data-sets.

Usage

`BinBlocVisu_LBM(x, z, v)`

Arguments

- `x`
 data matrix of observations.

- `z`
 a numeric vector specifying the class of rows.

- `v`
 a numeric vector specifying the class of columns.

Value

- a plot object

Examples

```r
require(bikml)
set.seed(42)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
BinBlocVisu_LBM(data$x,data$xrow,data$xcol)
```

BinBlocVisu_MLBM
BinBlocVisu_MLBM function for visualization of double matrix datasets

Description

Produce a plot object representing the co-clustered data-sets.
Usage

```R
BinBlocVisu_MLBM(x, y, z, v, w)
```

Arguments

- `x`: first data matrix of observations.
- `y`: second data matrix of observations.
- `z`: a numeric vector specifying the class of rows.
- `v`: a numeric vector specifying the class of columns (1st matrix).
- `w`: a numeric vector specifying the class of columns (2nd matrix).

Value

- a `plot` object

Examples

```R
require(bikm1)
set.seed(42)
n = 200
J = 120
K = 120
g = 3
h = 2
l = 2
theta = list()
theta$pi_g = 1/g * matrix(1, g, 1)
theta$rho_h = 1/h * matrix(1, h, 1)
theta$tau_l = 1/l * matrix(1, l, 1)
theta$alpha_gh = matrix(runif(6), ncol = h)
theta$beta_gl = matrix(runif(6), ncol = l)
data = BinBlocRnd_MLBM(n, J, K, theta)
BinBlocVisu_MLBM(data$x, data$y, data$xrow, data$xcolx, data$xcoly)
```

CARI

CARI function for agreement between co-clustering partitions

Description

Produce a measure of agreement between two pairs of partitions for co-clustering. A value of 1 means a perfect match.

Usage

```R
CARI(v, w, vprime, wprime)
```
CE_LBM

Arguments
v numeric vector specifying the class of rows.
w numeric vector specifying the class of columns.
vprime numeric vector specifying another partition of rows.
wprime numeric vector specifying another partition of columns.

Value
a list including the arguments:
cari: value of the index (between 0 and 1). A value of 1 corresponds to a perfect match.
nvw: contingency table which the index is based on.

References

Examples
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6, 4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,4,4,4,init_choice='smallVBayes')
me=CARI(res@model_max$v,res@model_max$w, data$xrow, data$xcol)
me$cari
me$nvw

CE_LBM

CE_LBM function for agreement between co-clustering partitions

Description
Produce a measure of agreement between two pairs of partitions for co-clustering using CE_simple on columns and rows of a matrix. A value of 1 means a perfect match.

Usage
CE_LBM(v,w,vprime,wprime)
CE_MLBM

Arguments

v numeric vector specifying the class of rows.
w numeric vector specifying the class of columns.
vprime numeric vector specifying another partition of rows.
wprime numeric vector specifying another partition of columns.

Value

ce_vw: the value of the index (between 0 and 1). A value of 0 corresponds to a perfect match.

Examples

require(bikm1)
set.seed(42)
v=floor(runif(4)*2)
vprime=floor(runif(4)*2)
w=floor(runif(4)*3)
wprime=floor(runif(4)*3)
error=CE_LBM(v,w,vprime,wprime)

CE_MLBM

CE_MLBM function for agreement between co-clustering partitions in the MBLM

Description

Produce a measure of agreement between two triplets of partitions for co-clustering. A value of 1 means a perfect match.

Usage

CE_MLBM(z,v,w,zprime,vprime,wprime)

Arguments

z numeric vector specifying the class of rows.
v numeric vector specifying the class of column partitions for the first matrix.
w numeric vector specifying the class of column partitions for the second matrix.
zprime numeric vector specifying another partitions of rows.
vprime numeric vector specifying another partition of columns for the first matrix.
wprime numeric vector specifying another partition of columns for the second matrix.
Value

the value of the index (between 0 and 1). A value of 0 corresponds to a perfect match.

Examples

```r
require(bikm1)
set.seed(42)
n=200
J=120
K=120
g=2
h=2
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$alpha_gh=matrix(runif(4),ncol=h)
theta$beta_gl=matrix(runif(4),ncol=l)
data=BinBlocRnd_MLBM(n,J,K,theta)
res=BIKM1_MLBM_Binary(data$x,data$y,2,2,2,4,init_choice="smallVBayes")
error=CE_MLBM(res@model_max$z,res@model_max$v,res@model_max$w,data$xrow,data$xcolx,data$xcoly)
```

CE_simple

CE_simple function for agreement between clustering partitions

Description

Produce a measure of agreement between two partitions for clustering. A value of 1 means a perfect match.

Usage

```r
CE_simple(v,vprime)
```

Arguments

- **v**: numeric vector specifying the class of rows.
- **vprime**: numeric vector specifying the class of rows.

Value

the value of the index.
Examples

```r
require(bikml)
set.seed(42)
v=floor(runif(4)*3)
vprime=floor(runif(4)*3)
error=CE_simple(v,vprime)
error
```

CoNMI

CoNMI function for agreement between co-clustering partitions

Description

Produce a measure of agreement between two pairs of partitions for co-clustering. A value of 1 means a perfect match.

Usage

```r
CoNMI(v,w,vprime,wprime)
```

Arguments

- `v`: numeric vector specifying the class of rows.
- `w`: numeric vector specifying the class of columns.
- `vprime`: numeric vector specifying another partition of rows.
- `wprime`: numeric vector specifying another partition of columns.

Value

the value of the index.

References

Examples

```r
require(bikml)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,1,l)
```
ENMI

ENMI function for agreement between co-clustering partitions

Description

Produce a measure of agreement between two pairs of partitions for co-clustering. A value of 1 means a perfect match.

Usage

ENMI(v, w, vprime, wprime)

Arguments

v
numeric vector specifying the class of rows.

w
numeric vector specifying the class of columns.

vprime
numeric vector specifying another partition of rows.

wprime
numeric vector specifying another partition of columns.

Value

the value of the index.

References

Examples

```r
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6, 4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,4,4,4,init_choice='smallVBayes')
me=CoNMI(res@model_max$v, res@model_max$w, data$xrow, data$xcol)
me
```
Description

Produce a measure of agreement between two partitions. (between 0 and 1). A value of 1 corresponds to a perfect match.

Usage

\[\text{MI_simple}(v, v') \]

Arguments

- \(v \): numeric vector specifying the class of observations.
- \(v' \): numeric vector specifying another partition of observations.

Value

the value of the index.

References

Examples

```r
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6, 4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,4,4,4,init_choice='random')
mi=MI_simple(res$model_max$v, data$xrow)
mi
mw=MI_simple(res$model_max$w, data$xcol)
```
NCE_LBM

Function for agreement between co-clustering partitions using NCE_simple

Description

Produce a measure of agreement between two pairs of partitions for co-clustering. A value of 1 means a perfect match.

Usage

NCE_LBM(v, w, vprime, wprime)

Arguments

- **v** numeric vector specifying the class of rows.
- **w** numeric vector specifying the class of columns.
- **vprime** numeric vector specifying another partition of rows.
- **wprime** numeric vector specifying another partition of columns.

Value

the value of the index.

Examples

```
require(bikm1)
set.seed(42)
v=floor(runif(4)*2)
vprime=floor(runif(4)*2)
w=floor(runif(4)*3)
wprime=floor(runif(4)*3)
error=NCE_LBM(v,w,vprime,wprime)
```

NCE_simple

Function for agreement between clustering partitions

Description

Produce a measure of agreement between two partitions for clustering. A value of 1 means a perfect match. It’s the normalized version of CE_simple.
Usage

NCE_simple(v,vprime)

Arguments

v numeric vector specifying the class of rows.
vprime numeric vector specifying the class of rows.

Value

the value of the index. A value of 0 means a perfect match.

Examples

require(bikm1)
set.seed(42)
v=floor(runif(4)*3)
vprime=floor(runif(4)*3)
error=NCE_simple(v,vprime)
error

plot,BIKM1_LBM_Binary-method

Plot method for a BIKM1_LBM_Binary object

Description

Produce respectively one plot of two-dimensional segmentation of a BIKM1_LBM_Binary fit, a plot of evolution of the chosen criterion as a function of the number of row and column clusters, and a boxplot of conditional posteriors for each row and column cluster.

Usage

S4 method for signature 'BIKM1_LBM_Binary'
plot(x, y, ...)

Arguments

x an object of class BIKM1_LBM_Binary.
y binary matrix of observations.
... in the plot method, additional parameters (ignored)

Value

One plot (initial and estimated partitions) and three ggplot2 objects (conditional posterior in each cluster for each matrix and the graph of chosen criterion values.)
Examples

```r
require(bikm1)
g=5
h=3
theta=list()
theta$pi_g=t(1/g*rep(1,g))
theta$rho_h=t(1/h*rep(1,h))
eps=0.1
theta$alpha_gh=matrix(c(1-eps,eps,eps,eps,1-eps,eps,eps,eps,1-eps,
1-eps,eps,eps,eps,1-eps,eps,eps,eps),ncol=h,byrow=TRUE)
n=250
J=150
data=BinBlocRnd_LBM(n,J,theta)
BinBlocVisu_LBM(data$x, data$xrow, data$xcol)
res=BIKM1_LBM_Binary(data$x,8,5,4,init_choice='smallVBayes')
BinBlocVisu_LBM(data$x, res$model_max$z, res$model_max$v)
e=CARI(data$xrow, data$xcol, res$model_max$z, res$model_max$v)
plot(res,data)
```

Description

Produce respectively one plot of two-dimensional segmentation of a BIKM1_LBM_Poisson fit, an evolution of the criterion as a function of the numbers of rows and columns, and a boxplot of conditional posteriors for each row and column cluster.

Usage

```r
## S4 method for signature 'BIKM1_LBM_Poisson'
plot(x, y, ...)
```

Arguments

- `x` an object of class BIKM1_LBM_Poisson.
- `y` a list specifying
 - `x` : contingency matrix of observations.
 - `...` in the plot method, additional parameters (ignored)

Value

Two plots (initial matrix and block estimation) and two ggplot2 objects (conditional posterior in each cluster and the graph of chosen criterion values).
Examples

```r
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6, 4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,3,3,4,init_choice='random')
plot(res,data)
```

Description

Produce respectively a plot of two-dimensional segmentation of a BIKM1_MLBM_Binary fit, and a boxplot of conditional posteriors for each row and column cluster.

Usage

```r
## S4 method for signature 'BIKM1_MLBM_Binary'
plot(x, y, ...)
```

Arguments

- `x` an object of class BIKM1_MLBM_Binary.
- `y` a list specifying :
 - `x`: the first matrix of observations
 - `y`: the second matrix of observations.
- `...` in the plot method, additional parameters (ignored)

Value

Two plot and a ggplot2 object.

Examples

```r
require(bikm1)
n=200
J=120
K=120
g=3
h=2
```
PoissonBlocBIC

PoissonBlocBIC function for the computation of the BIC criterion in the Poisson LBM

Description

Produce a value of the BIC criterion for co-clustering partitions

Usage

PoissonBlocBIC(a, alpha, beta, v1, w1, x, res, normalization)

Arguments

- **a**: hyperparameter used in the VBayes algorithm for priors on the mixing proportions. By default, a=4.
- **alpha**: hyperparameter used in the VBayes algorithm for prior on the Poisson parameter. By default, alpha=1.
- **beta**: hyperparameter used in the VBayes algorithm for prior on the Poisson parameter. By default, beta=0.01.
- **v1**: a numeric vector of row partitions
- **w1**: a numeric vector of column partitions
- **x**: contingency matrix of observations.
- **res**: a BIKM1_LBM_Poisson object rho_h mixing row proportions tau_l mixing column proportions gamma_hl Bernoulli parameters
- **normalization**: logical. To use the normalized Poisson modelling in the Latent Block Model. By default normalization=FALSE.

Value

A value of the BIC criterion
Examples

```r
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h*matrix(1,h,1)
theta$tau_l=1/l*matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6, 4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,3,3,4,init_choice='smallVBayes')
bic=PoissonBlocBIC(v1=res$model_max$v,w1=res$model_max$w,x=data$x,res=res,normalization=TRUE)
```

PoissonBlocICL

PoissonBlocICL function for the computation of the ICL criterion in the Poisson LBM

Description

Produce a value of the ICL criterion for co-clustering partitions

Usage

```r
PoissonBlocICL(a,alpha,beta,x,v1,w1,normalization)
```

Arguments

- `a` hyperparameter used in the VBayes algorithm for priors on the mixing proportions. By default, `a`=4.
- `alpha` hyperparameter used in the VBayes algorithm for prior on the Poisson parameter. By default, `alpha`=1.
- `beta` hyperparameter used in the VBayes algorithm for prior on the Poisson parameter. By default, `beta`=0.01.
- `x` contingency matrix of observations.
- `v1` a numeric vector specifying the class of rows.
- `w1` a numeric vector specifying the class of columns.
- `normalization` logical. To use the normalized Poisson modelling in the Latent Block Model. By default `normalization`=FALSE.

Value

a value of the ICL criterion
Examples

```r
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=(1/h)*matrix(1,h,1)
theta$tau_l=(1/l)*matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6, 4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,4,4,4,init_choice='smallVBayes')
icl=PoissonBlocICL(4,1,0.01,data$x,res@model_max$v,res@model_max$w, normalization=FALSE)
```

PoissonBlocRnd

PoissonBlocRnd function for contingency data simulation

Description

Produce a simulated data matrix generated under the Poisson Latent Block Model.

Usage

```r
PoissonBlocRnd(J,K,theta)
```

Arguments

- `J`: a positive integer specifying the number of expected rows.
- `K`: a positive integer specifying the number of expected columns.
- `theta`: a list specifying the model parameters:
 - `rho_h`: a vector specifying the row mixing proportions.
 - `tau_l`: a vector specifying the column mixing proportions.
 - `gamma_hl`: a matrix specifying the distribution parameter.

Value

A list including the arguments:
- `x`: simulated contingency data matrix.
- `xrow`: numeric vector specifying row partition.
- `xcol`: numeric vector specifying column partition.
PoissonBlocVisu

Examples

```r
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6, 4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
PoissonBlocVisu(data$x, data$xrow, data$xcol)
```

Description

Produce a plot object representing the co-clustered data-sets.

Usage

```r
PoissonBlocVisu(x,v,w)
```

Arguments

- `x` contingency matrix of observations.
- `v` a numeric vector specifying the class of rows.
- `w` a numeric vector specifying the class of columns.

Value

a `plot` object

Examples

```r
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6, 4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
PoissonBlocVisu(data$x, data$xrow, data$xcol)
```
PoissonBlocVisuResum function for visualization of contingency datasets

Description

Produce a plot object representing the resumed co-clustered data-sets.

Usage

PoissonBlocVisuResum(x,v,w)

Arguments

x contingency matrix of observations.
v a numeric vector specifying the class of rows.
w a numeric vector specifying the class of columns.

Value

a plot object.

Examples

require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma.hl=matrix(c(1, 6, 4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
PoissonBlocVisuResum(data$x,data$xrow,data$xcol)
S4 method for signature 'BIKM1_LBM_Binary'

print(x, ...)

Arguments

- **x**: in the print method, a BIKM1_LBM_Binary object
- **...**: in the print method, additional parameters (ignored)

Examples

```r
require(bikm1)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
res=BIKM1_LBM_Binary(data$x,3,2,4,init_choice='random')
print(res)
```

Description

Print method for a BIKM1_LBM_Poisson object

Usage

```
## S4 method for signature 'BIKM1_LBM_Poisson'

print(x, ...)
```

Arguments

- **x**: in the print method, a BIKM1_LBM_Poisson object
- **...**: in the print method, additional parameters (ignored)
print.BIKM1_MLBM_Binary-method

Examples

```r
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6, 4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,3,2,4,init_choice='random')
print(res)
```

print.BIKM1_MLBM_Binary-method

Print method for a BIKM1_MLBM_Binary object

Description

Print method for a `BIKM1_MLBM_Binary` object

Usage

```r
## S4 method for signature 'BIKM1_MLBM_Binary'
print(x, ...)
```

Arguments

- `x` in the print method, a `BIKM1_MLBM_Binary` object
- `...` in the print method, additional parameters (ignored)

Examples

```r
require(bikm1)
n=200
J=120
K=120
g=3
h=2
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gi=matrix(runif(6),ncol=l)
data=BinBlocRnd_MLBM(n,J,K,theta)
```
```r
res = BIKM1_MLBM_Binary(data$x, data$y, 3, 3, 3, 4)
print(res)
```

Description

Show method for a `BIKM1_LBM_Binary` object

Usage

```r
## S4 method for signature 'BIKM1_LBM_Binary'
show(object)
```

Arguments

- `object` a `BIKM1_LBM_Binary` object

Examples

```r
require(bikm1)
n = 200
J = 120
g = 3
h = 2
theta = list()
theta$p1_g = 1/g * matrix(1, g, 1)
theta$r1_h = 1/h * matrix(1, h, 1)
theta$alpha_gh = matrix(runif(6), ncol = h)
data = BinBlocRnd_LBM(n, J, theta)
res = BIKM1_LBM_Binary(data$x, 4, 4, init_choice = 'random')
show(res)
```

Description

Show method for a `BIKM1_LBM_Poisson` object

Usage

```r
## S4 method for signature 'BIKM1_LBM_Poisson'
show(object)
```

Arguments

- `object` a `BIKM1_LBM_Poisson` object
show.BIKM1_MLBM_Binary-method

Usage

```r
## S4 method for signature 'BIKM1_LBM_Poisson'
show(object)
```

Arguments

- `object` a BIKM1_LBM_Poisson object

Examples

```r
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,4,4,4,init_choice='random')
show(res)
```

show.BIKM1_MLBM_Binary-method

Show method for a BIKM1_MLBM_Binary object

Description

show method for a BIKM1_MLBM_Binary object

Usage

```r
## S4 method for signature 'BIKM1_MLBM_Binary'
show(object)
```

Arguments

- `object` a BIKM1_MLBM_Binary object

Examples

```r
require(bikm1)
n=200
J=120
K=120
g=3
h=2
```
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gl=matrix(runif(6),ncol=l)
data=BinBlocRnd_MLBM(n,J,K,theta)
res=BIKM1_LBM_Binary(data$x,data$y,3,3,3,4)
show(res)

summary.BIKM1_LBM_Binary-method

Summary method for a BIKM1_LBM_Binary object

Description

Produce a summary of informations of a BIKM1_LBM_Binary object

Usage

S4 method for signature 'BIKM1_LBM_Binary'
summary(object, ...)

Arguments

object in the summary method, a BIKM1_LBM_Binary object

... in the summary method, additional parameters (ignored)

Examples

```r
require(bikm1)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_MLBM(n,J,K,theta)
res=BIKM1_LBM_Binary(data$x,data$y,3,3,3,4)
summary(res)
```
summary, BIKM1_LBM_Poisson-method

Summary method for a BIKM1_LBM_Poisson object

Description

Produce a summary of informations of a BIKM1_LBM_Poisson object

Usage

```r
## S4 method for signature 'BIKM1_LBM_Poisson'
summary(object, ...)
```

Arguments

- `object` in the summary method, a BIKM1_LBM_Poisson object
- `...` in the summary method, additional parameters (ignored)

Examples

```r
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,4,4,4,init_choice='random')
summary(res)
```

summary, BIKM1_MLBM_Binary-method

Summary method for a BIKM1_MLBM_Binary object

Description

Produce a summary of informations of a BIKM1_MLBM_Binary object

Usage

```r
## S4 method for signature 'BIKM1_MLBM_Binary'
summary(object, ...)
```

Arguments

- `object` in the summary method, a BIKM1_MLBM_Binary object
- `...` in the summary method, additional parameters (ignored)

Examples

```r
require(bikm1)
```
summary.BIKM1_MLBM_Binary-method

Arguments

- object: in the summary method, a BIKM1_MLBM_Binary object
- ...: in the summary method, additional parameters (ignored)

Examples

```r
require(bikm1)
n=200
J=120
K=120
g=3
h=2
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gl=matrix(runif(6),ncol=l)
data=BinBlocRnd_MLBM(n,J,K,theta)
res=BIKM1_MLBM_Binary(data$x,data$y,3,3,3,4)
summary(res)
```
Index

* class
 BIKM1_LBM_Binary-class, 7
 BIKM1_LBM_Poisson-class, 10
 BIKM1_MLBM_Binary-class, 13

ARI, 4

bikm1-package, 2
 BIKM1_LBM_Binary, 3, 5, 7, 29, 36, 39
 BIKM1_LBM_Binary-class, 7
 BIKM1_LBM_Poisson, 3, 8, 10, 30, 37, 39
 BIKM1_LBM_Poisson-class, 10
 BIKM1_MLBM_Binary, 3, 11, 13, 31, 38, 40
 BIKM1_MLBM_Binary-class, 13
 BinBlocICL_LBM, 14
 BinBlocICL_MLBM, 15
 BinBlocRnd_LBM, 16
 BinBlocRnd_MLBM, 17
 BinBlocVisu_LBM, 20
 BinBlocVisu_MLBM, 20
 BinBlocVisuResum_LBM, 18
 BinBlocVisuResum_MLBM, 19

CARI, 21
 CE_LBM, 22
 CE_MLBM, 23
 CE_simple, 24
 CoNMI, 25

ENMI, 26

MI_simple, 27

NCE_LBM, 28
 NCE_simple, 28

plot, BIKM1_LBM_Binary-method, 29
plot, BIKM1_LBM_Poisson-method, 30
plot, BIKM1_MLBM_Binary-method, 31
 PoissonBlocBIC, 32
 PoissonBlocICL, 33
 PoissonBlocVisu, 35
 PoissonBlocVisuResum, 36
 print, BIKM1_LBM_Binary-method, 36
 print, BIKM1_LBM_Poisson-method, 37
 print, BIKM1_MLBM_Binary-method, 38
 show, BIKM1_LBM_Binary-method, 39
 show, BIKM1_LBM_Poisson-method, 39
 show, BIKM1_MLBM_Binary-method, 40
 summary, BIKM1_LBM_Binary-method, 41
 summary, BIKM1_LBM_Poisson-method, 42
 summary, BIKM1_MLBM_Binary-method, 42