Package ‘bigstep’

July 26, 2019

Type Package

Title Stepwise Selection for Large Data Sets

Version 1.0.3

Date 2019-7-17

Description Selecting linear and generalized linear models for large data sets using modified stepwise procedure and modern selection criteria (like modifications of Bayesian Information Criterion). Selection can be performed on data which exceed RAM capacity.

License GPL-3

URL http://github.com/pmszulc/bigstep

BugReports http://github.com/pmszulc/bigstep/issues

Depends R (>= 3.5.0)

Imports bigmemory, magrittr, matrixStats, R.utils, RcppEigen, speedglm, stats, utils

Suggests devtools, knitr, rmarkdown, testthat

Encoding UTF-8

RoxygenNote 6.1.1

VignetteBuilder knitr

NeedsCompilation no

Author Piotr Szulc [aut, cre]

Maintainer Piotr Szulc <piotr.michal.szulc@gmail.com>

Repository CRAN

Date/Publication 2019-07-25 23:10:02 UTC

R topics documented:

aic ... 2
backward ... 2
bic ... 3
<table>
<thead>
<tr>
<th>aic</th>
<th>AIC</th>
</tr>
</thead>
</table>

Description

Calculate AIC (Akaike Information Criterion).

Usage

```r
aic(loglik, k)
```

Arguments

- `loglik`: A numeric, the log-likelihood.
- `k`: An integer \(\geq 0 \), the number of selected variables.

Value

A number, a value of AIC.

Examples

```r
aic(10, 5)
```
Description

Remove the worst variable from a model according to the given criterion.

Usage

backward(data, crit = mbic, ...)

Arguments

data: an object of class big.
crit: a function defining the model selection criterion. You can use your own function or one of these: bic, mbic, mbic2, aic, maic, maic2.
...
optional arguments to crit.

Details

Type `browseVignettes("bigstep")` for more details.

Value

An object of class big.

Examples

```r
set.seed(1)
n <- 30
p <- 10
X <- matrix(rnorm(n * p), ncol = p)
d <- prepare_data(y, X)
d %>%
  fast_forward(crit = aic) %>%
  backward() %>%
  backward()
```
bic

Description
Calculate BIC (Bayesian Information Criterion).

Usage
```
bic(loglik, k, n)
```

Arguments
- **loglik**: A numeric, the log-likelihood.
- **k**: An integer >= 0, the number of selected variables.
- **n**: An integer > 0, the number of observations.

Value
A number, a value of BIC.

Examples
```
bic(10, 5, 100)
```

bigstep

Model selection

Description
Model selection using the stepwise procedure and the chosen criterion.

Details
The main goal of the package **bigstep** is to allow you to select a regression model using the stepwise procedure when data is very big, potentially larger than available RAM in your computer. What is more, the package gives you a lot of control over how this procedure should look like. At this moment, you can use one of these functions: `stepwise`, `forward`, `backward`, `fast_forward`, `multi_backward` and combinations of them. They can be treated as blocks from which the whole procedure of finding the best model is built.

When your data is larger than RAM you have in your computer, it is impossible to read it in a normal way. Fortunately, in a process of building a regression model it is not necessary to have access to all predictors at the same time. Instead, you can read only a part of the matrix X, check all variables from that part and then read another one. To do that with this package, you only need to read the matrix X using `read.big.matrix` from bigmemory package. The `prepare_data` function
has a parameter `maxp` which represents the maximum size (that is the number of elements) of one part. If `X` is bigger, it will be splitted. It will be done even if your matrix is big but you have enough RAM to read it in a normal way. It may seem unnecessary, but it is worth to do because R is not very efficient in dealing with big matrices.

Another problem with a large number of predictors is choosing an appropriate criterion. Classical ones like AIC or BIC are bad choice because they will almost certainly select a model with two many variables [1]. You can use modifications of them like mBIC [2], mBIC2 [3], mAIC or mAIC2. In brief, these criteria have much heavier penalty for the number of parameters, so they prefer smaller models than their classic versions.

If you want to read more, type `browseVignettes("bigstep")`

Author(s)

Piotr Szulc

References

Examples

```r
## Not run:
library(bigstep)

### small data
set.seed(1)
n <- 200
p <- 20
X <- matrix(rnorm(n * p), ncol = p)
colnames(X) <- paste0("X", 1:p)
y <- 1 + 0.4 * rowSums(X[, c(5, 10, 15, 20)]) + rnorm(n)
data <- prepare_data(y, X)
results <- stepwise(data, crit = aic)
results$model
summary(results)

### bigger data
set.seed(1)
n <- 1e3
p <- 1e4
X <- matrix(rnorm(p * n), ncol = p)
colnames(X) <- paste0("X", 1:p)
Xadd <- matrix(rnorm(5 * n), n, 5)  # additional variables
```
colnames(Xadd) <- paste0("Xadd", 1:5)
y <- 0.2 * rowSums(X[, 1000 * (1:10)]) + Xadd[, 1] - 0.1 * Xadd[, 3] + rnorm(n)
data <- prepare_data(y, X, Xadd = Xadd)
data %>%
 reduce_matrix(minpv = 0.15) %>%
 stepwise(mbic) -> results
summary(results)

big data
Xbig <- read.big.matrix("X.txt", sep = " ", header = TRUE,
 backingfile = "X.bin", descriptorfile = "X.desc")
Xbig <- attach.big.matrix("X.desc") # much faster
y <- read.table("y.txt")
data <- prepare_data(y, Xbig) # slow because of checking NA
data <- prepare_data(y, Xbig, na = FALSE) # set if you know that you do not have NA
data %>%
 reduce_matrix(minpv = 0.001) %>%
 fast_forward(crit = bic, maxf = 50) %>%
 multi_backward(crit = mbic) %>%
 stepwise(crit = mbic) -> m
summary(m)

more examples: type browseVignettes("bigstep")

End(Not run)

fast_forward

Fast-forward step

Description

Add variables to a model as long as they reduce the given criterion. Variables are searched according to candidates and every one which reduces the criterion is added (not necessarily the best one).

Usage

`fast_forward(data, crit = bic, ..., maxf = 70)`

Arguments

- `data`: an object of class `big`.
- `crit`: a function defining the model selection criterion. You can use your own function or one of these: `bic`, `mbic`, `mbic2`, `aic`, `maic`, `maic2`.
- `...`: optional arguments to `crit`.
- `maxf`: a numeric, a maximal number of variables in the final model.
forward

Details

Type `browseVignettes("bigstep")` for more details.

Value

An object of class `big`.

Examples

```r
set.seed(1)
n <- 30
p <- 10
X <- matrix(rnorm(n * p), ncol = p)
d <- prepare_data(y, X)
fast_forward(d)
```

forward

Forward step

Description

Add the best variable to a model according to the given criterion.

Usage

```r
forward(data, crit = mbic, ...)
```

Arguments

- `data`
 an object of class `big`.

- `crit`
 a function defining the model selection criterion. You can use your own function or one of these: `bic`, `mbic`, `mbic2`, `aic`, `maic`, `maic2`.

- `...`
 optional arguments to `crit`.

Details

Type `browseVignettes("bigstep")` for more details.

Value

An object of class `big`.
Examples

```r
set.seed(1)
n <- 30
p <- 10
X <- matrix(rnorm(n * p), ncol = p)
d <- prepare_data(y, X)
forward(d, crit = bic)
d %>%
  forward() %>%
  forward() %>%
  forward()
```

maic

mAIC

Description

Calculate mAIC (modified Akaike Information Criterion).

Usage

```r
maic(loglik, k, p, const = 0.5)
```

Arguments

- **loglik**: A numeric, the log-likelihood.
- **k**: An integer \(\geq 0 \), the number of selected variables.
- **p**: An integer \(> 0 \), the number of all variables or a weight.
- **const**: A numeric \(> 0 \), the expected number of significant variables.

Value

A number, a value of mAIC.

Examples

```r
maic(10, 5, 100, 50)
```
maic2

Description

Calculate mAIC2 (the second version of modified Akaike Information Criterion).

Usage

```
maic2(loglik, k, n, p, const = 0.5)
```

Arguments

- `loglik`: A numeric, the log-likelihood.
- `k`: An integer >= 0, the number of selected variables.
- `n`: An integer > 0, the number of observations, used only to check if k is not too large.
- `p`: An integer > 0, the number of all variables or a weight.
- `const`: A numeric > 0, the expected number of significant variables.

Value

A number, a value of mAIC2.

Examples

```
maic2(10, 5, 100, 50)
```

mbic

Description

Calculate mBIC (modified Bayesian Information Criterion).

Usage

```
mbic(loglik, k, n, p, const = 4)
```

Arguments

- `loglik`: A numeric, the log-likelihood.
- `k`: An integer >= 0, the number of selected variables.
- `n`: An integer > 0, the number of observations.
- `p`: An integer > 0, the number of all variables or a weight.
- `const`: A numeric > 0, the expected number of significant variables.
Value

A number, a value of mBIC.

Examples

```r
mbic(10, 5, 100, 50)
```

Description

Calculate mBIC2 (the second version of modified Bayesian Information Criterion).

Usage

```r
mbic2(loglik, k, n, p, const = 4)
```

Arguments

- **loglik**: A numeric, the log-likelihood.
- **k**: An integer \(\geq 0 \), the number of selected variables.
- **n**: An integer \(> 0 \), the number of observations.
- **p**: An integer \(> 0 \), the number of all variables or a weight.
- **const**: A numeric \(> 0 \), the expected number of significant variables.

Value

A number, a value of mBIC2.

Examples

```r
mbic2(10, 5, 100, 50)
```
multi_backward

Multi-backward step

Description

Remove the worst variables from a model as long as they reduce the given criterion (backward elimination).

Usage

multi_backward(data, crit = mbic, ...)

Arguments

data an object of class big.
crit a function defining the model selection criterion. You can use your own function or one of these: bic, mbic, mbic2, aic, maic, maic2.
...
optional arguments to crit.

Details

Type browseVignettes("bigstep") for more details.

Value

An object of class big.

Examples

set.seed(1)
n <- 30
p <- 10
X <- matrix(rnorm(n * p), ncol = p)
d <- prepare_data(y, X)
d %>%
 fast_forward(crit = aic) %>%
multi_backward(crit = bic)
prepare_data

Data preparation

Description

Create an object of class big which is needed to perform the selection procedure.

Usage

prepare_data(y, X, type = "linear", candidates = NULL, Xadd = NULL, na = NULL, maxp = 1e+06, verbose = TRUE)

Arguments

- **y**: a numeric vector of dependent (target) variable.
- **X**: a numeric matrix or an object of class big.matrix. The columns of X should contain dependent variables (predictors).
- **type**: a string, type of the regression model you want to fit. You can use one of these: "linear", "logistic", "poisson".
- **candidates**: a numeric vector, columns from X which will be used in the selection procedure. The order is important. If NULL, every column will be used.
- **Xadd**: a numeric matrix, additional variables which will be included in the model selection procedure (they will not be removed in any step). If NULL, Xadd will contain only a column of ones (the intercept). If you specify Xadd, a column of ones will be automatically added (it is impossible to not include the intercept).
- **na**: a logical. There are any missing values in X? If NULL, it will be checked (it can take some time if X is big, so it is reasonable to set it).
- **maxp**: a numeric. The matrix X will be splitted into parts with maxp elements. It will not change results, but it is necessary if your computer does not have enough RAM. Set to a lower value if you still have problems.
- **verbose**: a logical. Set FALSE if you do not want to see any information during the selection procedure.

Details

The function automatically removes observations which have missing values in y. Type browseVignettes("bigstep") for more details.

Value

An object of class big.
Examples

X <- matrix(rnorm(20), ncol = 4)
y <- X[, 2] + rnorm(5)
data <- prepare_data(y, X)

reduce_matrix Reducing number of variables

Description

Perform the Pearson correlation tests between a vector \(y \) and every variable from a matrix \(X \) (separately) and remove uncorrelated variables. The function is much faster when you do not have any missing values (set na = FALSE in prepare_data in that case).

Usage

reduce_matrix(data, minpv = 0.15)

Arguments

data an object of class big.

minpv a numeric. Variables with p-values for the Pearson correlation tests larger than minpv will be removed from candidates.

Details

Type browseVignettes("bigstep") for more details.

Value

An object of class big.

Examples

set.seed(1)
n <- 30
p <- 10
X <- matrix(rnorm(n * p), ncol = p)
d <- prepare_data(y, X)
reduce_matrix(d)
Description

Build a model according to the stepwise procedure (bidirectional) and the given criterion.

Usage

```r
stepwise(data, crit = mbic, ...)  
```

Arguments

- `data`: an object of class `big`.
- `crit`: a function defining the model selection criterion. You can use your own function or one of these: `bic`, `mbic`, `mbic2`, `aic`, `maic`, `maic2`.
- `...`: optional arguments to `crit`.

Details

Type `browseVignettes("bigstep")` for more details.

Value

An object of class `big`.

Examples

```r
set.seed(1)  
n <- 30  
p <- 10  
X <- matrix(rnorm(n * p), ncol = p)  
d <- prepare_data(y, X)  
stepwise(d)  
d %>%  
  fast_forward(crit = aic) %>%  
  stepwise(crit = bic)  
```
summary.big

Summarizing model fit

Description

codesummary method for class `big`.

Usage

```r
## S3 method for class 'big'
summary(object, ...)
```

Arguments

- `object` an object of class `big`.
- `...` Further arguments to be passed to or from other methods. They are ignored in this function.

Value

An object of class `summary.lm` or `summary.glm`.

Examples

```r
set.seed(1)
n <- 30
p <- 10
X <- matrix(rnorm(n * p), ncol = p)
d <- prepare_data(y, X)
m <- stepwise(d)
summary(m)
```