Package ‘biclustermd’

February 18, 2020

Type Package
Title Biclustering with Missing Data
Version 0.2.1
Maintainer John Reisner <johntreisner@gmail.com>
Description Biclustering is a statistical learning technique that simultaneously partitions and clusters rows and columns of a data matrix. Since the solution space of biclustering is in infeasible to completely search with current computational mechanisms, this package uses a greedy heuristic. The algorithm featured in this package is, to the best our knowledge, the first biclustering algorithm to work on data with missing values. Li, J., Reisner, J., Pham, H., Olafsson, S., and Vardeman, S. (2020) Biclustering with Missing Data. Information Sciences, 510, 304–316.
URL http://github.com/jreisner/biclustermd
BugReports http://github.com/jreisner/biclustermd/issues
Depends ggplot2 (>= 3.0.0), R (>= 3.5.0), tidyr (>= 0.8.1)
Imports biclust (>= 2.0.1), clusteval (>= 0.1), doParallel (>= 1.0.14), dplyr (>= 0.7.6), foreach (>= 1.4.4), magrittr (>= 1.5), nycflights13 (>= 1.0.0), phyclus (>= 0.1-24)
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
NeedsCompilation no
Author John Reisner [cre, aut, cph],
 Hieu Pham [ctb, cph],
 Jing Li [ctb, cph]
Repository CRAN
Date/Publication 2020-02-18 05:30:02 UTC
R topics documented:

as.Biclust .. 2
autoplot.biclustermd 3
autoplot.biclustermd_sim 5
autoplot.biclustermd_sse 6
biclustermd .. 6
binary_vector_gen .. 9
cell_heatmap ... 9
cell_mse .. 10
cluster_iteration_sum_sse 11
col.names ... 11
col.names.biclustermd 12
col_cluster_names ... 12
compare_biclusters 13
fill_empties_P ... 14
fill_empties_Q ... 14
format_partition .. 15
gather.biclustermd .. 16
mse_heatmap ... 17
partition_gen .. 17
partition_gen_by_p 18
part_matrix_to_vector 18
position_finder .. 19
print.biclustermd ... 19
reorder_biclust ... 20
rep_biclustermd .. 20
results_heatmap .. 22
row.names.biclustermd 23
row_cluster_names .. 23
runtimes .. 24
synthetic ... 25
tune_biclustermd .. 25

Index 28

as.Biclust

Convert a biclustermd object to a Biclust object

Description

Convert a biclustermd object to a Biclust object

Usage

```r
as.Biclust(object)
```
autoplot.biclustermd

Arguments

object The biclustermd object to convert to a Biclust object

Value

Returns an object of class Biclust.

Examples

data("synthetic")

bc <- biclustermd(synthetic, col_clusters = 3, row_clusters = 2,
miss_val = mean(synthetic, na.rm = TRUE),
miss_val_sd = sd(synthetic, na.rm = TRUE),
col_min_num = 2, row_min_num = 2,
col_num_to_move = 1, row_num_to_move = 1,
max.iter = 10)

bc

as.Biclust(bc)

biclust::drawHeatmap won't work since it doesn't exclude NAs
Not run: biclust::drawHeatmap(synthetic, as.Biclust(bc), 6)

bicluster 6 is in the top right-hand corner here:
autoplot(bc)
compare with bicust::drawHeatmap2:
biclust::drawHeatmap2(synthetic, as.Biclust(bc), 6)

bicluster 3 is in the bottom right-hand corner here:
autoplot(bc)
compare with bicust::drawHeatmap2:
biclust::drawHeatmap2(synthetic, as.Biclust(bc), 3)

autoplot.biclustermd Make a heatmap of sparse biclustering results

Description

Make a heatmap of sparse biclustering results

Usage

S3 method for class 'biclustermd'
autoplot(object, axis.text = NULL,
reorder = FALSE, transform_colors = FALSE, c = 1/6,
cell_alpha = 1/5, col_clusts = NULL, row_clusts = NULL, ...)

autoplot.biclustermd Make a heatmap of sparse biclustering results

Description

Make a heatmap of sparse biclustering results

Usage

S3 method for class 'biclustermd'
autoplot(object, axis.text = NULL,
reorder = FALSE, transform_colors = FALSE, c = 1/6,
cell_alpha = 1/5, col_clusts = NULL, row_clusts = NULL, ...)

Arguments

object: An object of class "biclustermd".

axis.text: A character vector specifying for which axes text should be drawn. Can be any of "x", "col" for columns, "y", "row" for rows, or any combination of the four. By default this is NULL; no axis text is drawn.

reorder: A logical. If TRUE, heatmap will be sorted according to the cell-average matrix, A.

transform_colors: If equals TRUE then the data is scaled by c and run through a standard normal cdf before plotting. If FALSE (default), raw data values are used in the heat map.

c: Value to scale the data by before running it through a standard normal CDF. Default is 1/6.

cell_alpha: A scalar defining the transparency of shading over a cell and by default this equals 1/5. The color corresponds to the cell mean.

col_clusts: A vector of column cluster indices to display. If NULL (default), all are displayed.

row_clusts: A vector of row cluster indices to display. If NULL (default), all are displayed.

...: Arguments to be passed to geom_vline() and geom_hline().

Value

An object of class ggplot.

Examples

data("synthetic")

bc <- biclustermd(synthetic, col_clusters = 3, row_clusters = 2,
miss_val = mean(synthetic, na.rm = TRUE),
miss_val_sd = sd(synthetic, na.rm = TRUE),
col_min_num = 2, row_min_num = 2,
col_num_to_move = 1, row_num_to_move = 1,
max.iter = 10)

bc
autoplot(bc)

autoplot(bc, axis.text = c("x", "row")) +
ggplot2::scale_fill_distiller(palette = "Spectral", na.value = "white")

Complete shading
autoplot(bc, axis.text = c("col", "row"), cell_alpha = 1)

Transformed values and no shading
autoplot(bc, transform_colors = TRUE, c = 1/20, cell_alpha = 0)

Focus on row cluster 1 and column cluster 2
autoplot(bc, col_clusts = 2, row_clusts = 1)
autoplot.biclustermd_sim

Plot similarity measures between two consecutive biclusterings.

Description

Creates a ggplot of the three similarity measures used in biclustermd::bicluster() for both row and column dimensions.

Usage

S3 method for class 'biclustermd_sim'
autoplot(object, similarity = NULL, facet = TRUE, ncol = NULL, ...)

Arguments

object Object of class "biclustermd_sim"
similarity A character vector indicating which similarity measure to plot. Can be any of "Rand", "HA", "Jaccard", or "used". If "used", plot only the measure used as the stopping condition in the algorithm. By default (NULL) all three are plotted. When plotted, the used measure will have an asterisk.
facet If TRUE (default), each similarity measure will be in its own plot. if FALSE, all three similarity measures for rows and columns are given in one plot.
ncol If faceting, the number of columns to arrange the plots in.
... Arguments to pass to ggplot2::geom_point()

Value

A ggplot object.

Examples

data("synthetic")

bc <- biclustermd(synthetic, col_clusters = 3, row_clusters = 2,
miss_val = mean(synthetic, na.rm = TRUE),
mis_val_sd = sd(synthetic, na.rm = TRUE),
col_min_num = 2, row_min_num = 2,
col_num_to_move = 1, row_num_to_move = 1,
max.iter = 10)

bc
autoplot(bc$Similarities, ncol = 1)
autoplot.biclustermd_sse

Plot sums of squared errors (SSEs) consecutive biclustering iterations.

Description

Creates a ggplot of the decrease in SSE recorded in biclustermd::bicluster().

Usage

S3 method for class 'biclustermd_sse'
autoplot(object, ...)

Arguments

object Object of class "biclustermd_sse" with columns "Iteration" and "SSE"
...
Arguments to pass to ggplot2::geom_point()

Value

A ggplot object.

Examples

data("synthetic")

bc <- biclustermd(synthetic, col_clusters = 3, row_clusters = 2,
miss_val = mean(synthetic, na.rm = TRUE),
miss_val_sd = sd(synthetic, na.rm = TRUE),
col_min_num = 2, row_min_num = 2,
col_num_to_move = 1, row_num_to_move = 1,
max.iter = 10)

bc
autoplot(bc$SSE)
biclustermd

Usage

biclustermd(data, row_clusters = floor(sqrt(nrow(data))),
 col_clusters = floor(sqrt(ncol(data))), miss_val = mean(data, na.rm =
 TRUE), miss_val_sd = 1, similarity = "Rand",
 row_min_num = floor(nrow(data)/row_clusters),
 col_min_num = floor(ncol(data)/col_clusters), row_num_to_move = 1,
 col_num_to_move = 1, row_shuffles = 1, col_shuffles = 1,
 max.iter = 100, verbose = FALSE)

Arguments

data Dataset to bicluster. Must to be a data matrix with only numbers and missing
 values in the data set. It should have row names and column names.
row_clusters The number of clusters to partition the rows into. The default is floor(sqrt(nrow(data))).
col_clusters The number of clusters to partition the columns into. The default is floor(sqrt(ncol(data))).
miss_val Value or function to put in empty cells of the prototype matrix. If a value, a random normal variable with sd = miss_val_sd is used each iteration. By default, this equals the mean of data.
miss_val_sd Standard deviation of the normal distribution miss_val follows if miss_val is a number. By default this equals 1.
similarity The metric used to compare two successive clusterings. Can be "Rand" (default), "HA" for the Hubert and Arabie adjusted Rand index or "Jaccard". See RRand and cluster_similarity for details.
row_min_num Minimum row prototype size in order to be eligible to be chosen when filling an empty row prototype. Default is floor(nrow(data) / row_clusters).
col_min_num Minimum column prototype size in order to be eligible to be chosen when filling an empty row prototype. Default is floor(ncol(data) / col_clusters).
row_num_to_move Number of rows to remove from the sampled prototype to put in the empty row prototype. Default is 1.
col_num_to_move Number of columns to remove from the sampled prototype to put in the empty column prototype. Default is 1.
row_shuffles Number of times to shuffle rows in each iteration. Default is 1.
col_shuffles Number of times to shuffle columns in each iteration. Default is 1.
max.iter Maximum number of iterations to let the algorithm run for.
verbose Logical. If TRUE, will report progress.

Value

A list of class biclustermd:

params a list of all arguments passed to the function, including defaults.
data the inputted two way table of data.
the initial column partition matrix.
Q0 the initial row partition matrix.
InitialSSE the SSE of the original partitioning.
P the final column partition matrix.
Q the final row partition matrix.
SSE a matrix of class biclustermd_sse detailing the SSE recorded at the end of each iteration.
Similarities a data frame of class biclustermd_sim detailing the value of row and column similarity measures recorded at the end of each iteration. Contains information for all three similarity measures. This carries an attribute "used" which provides the similarity measure used as the stopping condition for the algorithm.
iteration the number of iterations the algorithm ran for, whether max.iter was reached or convergence was achieved.
A the final prototype matrix which gives the average of each bicluster.

References

See Also

rep_biclustermd, tune_biclustermd

Examples

data("synthetic")
default parameters
bc <- biclustermd(synthetic)
bc
autoplot(bc)

providing the true number of row and column clusters
bc <- biclustermd(synthetic, col_clusters = 3, row_clusters = 2)
bc
autoplot(bc)

an example with the nycflights13::flights dataset
library(nycflights13)
data("flights")

library(dplyr)
flights_bcd <- flights %>%
 select(month, dest, arr_delay)
flights_bcd <- flights_bcd %>%
group_by(month, dest) %>%
s summarise(mean_arr_delay = mean(arr_delay, na.rm = TRUE)) %>%
s spread(dest, mean_arr_delay) %>%
as.data.frame()

rownames(flights_bcd) <- flights_bcd$month
flights_bcd <- as.matrix(flights_bcd[, -1])

flights_bc <- biclustermd(data = flights_bcd, col_clusters = 6, row_clusters = 4,
 row_min_num = 3, col_min_num = 5,
 max.iter = 20, verbose = TRUE)
flights_bc

binary_vector_gen
Make a binary vector with all values equal to zero except for one

Description
Make a binary vector with all values equal to zero except for one

Usage
binary_vector_gen(n, i)

Arguments
n Desired vector length.
i Index whose value is one.

Value
A vector

cell_heatmap
Make a heat map of bicluster cell sizes.

Description
Make a heat map of bicluster cell sizes.

Usage
cell_heatmap(x, ...)

Arguments
x An object of class biclustermd.
... Arguments to pass to geom_tile()
Examples

data("synthetic")

bc <- biclustermd(synthetic, col_clusters = 3, row_clusters = 2,
miss_val = mean(synthetic, na.rm = TRUE),
miss_val_sd = sd(synthetic, na.rm = TRUE),
col_min_num = 2, row_min_num = 2,
col_num_to_move = 1, row_num_to_move = 1,
max.iter = 10)

cell_heatmap(bc)

cell_heatmap(bc) + ggplot2::scale_fill_viridis_c()

cell_mse

Make a data frame containing the MSE for each bicluster cell

Description

Make a data frame containing the MSE for each bicluster cell

Usage

cell_mse(x)

Arguments

x An object of class biclustermd.

Value

A data frame giving the row cluster, column cluster, the number of data points in each row and column cluster, the number of data points missing in the cell, and the cell MSE.

Examples

data("synthetic")
bc <- biclustermd(synthetic, col_clusters = 3, row_clusters = 2,
miss_val = mean(synthetic, na.rm = TRUE),
miss_val_sd = sd(synthetic, na.rm = TRUE),
col_min_num = 2, row_min_num = 2,
col_num_to_move = 1, row_num_to_move = 1,
max.iter = 10)

cell_mse(bc)
cluster_iteration_sum_sse

Calculate the sum cluster SSE in each iteration

Description

Calculate the sum cluster SSE in each iteration

Usage

```r
clusterIterationSumSse(data, P, Q)
```

Arguments

- `data`: The data being biclustered. Must to be a data matrix with only numbers and missing values in the data set. It should have row names and column names.
- `P`: Matrix for column prototypes.
- `Q`: Matrix for row prototypes.

Value

The SSE for the parameters specified.

col.names

A generic to gather column names

Description

A generic to gather column names

Usage

```r
col.names(x)
```

Arguments

- `x`: an object to retrieve column names from
col.names.biclustermd

Get data matrix column names and their corresponding column cluster membership

Description

Get data matrix column names and their corresponding column cluster membership

Usage

S3 method for class 'biclustermd'
col.names(x)

Arguments

x
and object of class biclustermd

Value

a data frame with column names of the shuffled matrix and corresponding column cluster names.

Examples

data("synthetic")
default parameters
bc <- biclustermd(synthetic)
bc
col.names(bc)
this is a simplified version of the output for gather(bc):
library(dplyr)
gather(bc) %>% distinct(col_cluster, col_name)

col_cluster_names

Get column names in each column cluster

Description

Get column names in each column cluster

Usage

col_cluster_names(x, data)

Arguments

x
Biclustering object to extract column cluster designation from

data
Data that contains the column names
Value

A data frame with two columns: cluster corresponds to the column cluster and name gives the column names in each cluster.

Examples

data("synthetic")
rownames(synthetic) <- letters[1:nrow(synthetic)]
colnames(synthetic) <- letters[1:ncol(synthetic)]
bc <- biclustermd(synthetic, col_clusters = 3, row_clusters = 2,
 miss_val = mean(synthetic, na.rm = TRUE),
 miss_val_sd = sd(synthetic, na.rm = TRUE),
 col_min_num = 2, row_min_num = 2,
 col_num_to_move = 1, row_num_to_move = 1,
 max.iter = 10)
bc

compare_biclusters Compare two biclusterings or a pair of partition matrices

Description

Compare two biclusterings or a pair of partition matrices

Usage

compare_biclusters(bc1, bc2)

Arguments

bc1 the first biclustering or partition matrix. Must be either of class biclustermd or matrix.
bc2 the second biclustering or partition matrix. Must be either of class biclustermd or matrix.

Value

If comparing a pair of biclusterings, a list containing the column similarity indices and the row similarity indices, in that order. If a pair of matrices, a vector of similarity indices.

Examples

data("synthetic")
bc <- biclustermd(synthetic, col_clusters = 3, row_clusters = 2)
bc2 <- biclustermd(synthetic, col_clusters = 3, row_clusters = 2)

compare the two biclusterings
compare_biclusters(bc, bc2)
determine the similarity between initial and final row clusterings
compare_biclusters(bc$Q0, bc$Q)

fill_empties_P

Randomly select a column prototype to fill an empty column prototype with

Description

Randomly select a column prototype to fill an empty column prototype with

Usage

`fill_empties_P(data, obj, col_min_num = 10, col_num_to_move = 5)`

Arguments

data: The data being biclustered. Must be a data matrix with only numbers and missing values in the data set. It should have row names and column names.

obj: A matrix for column clusters, typically named P.

col_min_num: Minimum column prototype size in order to be eligible to be chosen when filling an empty column prototype. Default is 10.

col_num_to_move: Number of columns to remove from the sampled prototype to put in the empty column prototype. Default is 5.

Value

A matrix for column clusters, i.e., a P matrix.

fill_empties_Q

Randomly select a row prototype to fill an empty row prototype with

Description

Randomly select a row prototype to fill an empty row prototype with

Usage

`fill_empties_Q(data, obj, row_min_num = 10, row_num_to_move = 5)`

Arguments

data: The data being biclustered. Must be a data matrix with only numbers and missing values in the data set. It should have row names and column names.

obj: A matrix for row clusters, typically named Q.

row_min_num: Minimum row prototype size in order to be eligible to be chosen when filling an empty row prototype. Default is 10.

row_num_to_move: Number of rows to remove from the sampled prototype to put in the empty row prototype. Default is 5.

Value

A matrix for row clusters, i.e., a Q matrix.
format_partition
Format a partition matrix

Arguments

- **data**
 The data being biclustered. Must be a data matrix with only numbers and missing values in the data set. It should have row names and column names.

- **obj**
 A matrix for row clusters, typically named Q

- **row_min_num**
 Minimum row prototype size in order to be eligible to be chosen when filling an empty row prototype. Default is 10.

- **row_num_to_move**
 Number of rows to remove from the sampled prototype to put in the empty row prototype. Default is 5.

Value

A matrix for row clusters, i.e., a Q matrix.

Description

Formats a partition matrix so that subsets in a partition will be ordered by the value of the smallest in each subset

Usage

```r
format_partition(P1)
```

Arguments

- **P1**
 A partition matrix.

Value

A formatted partition matrix.
Description

Gather a biclustermd object

Usage

```r
## S3 method for class 'biclustermd'
gather(data, key = NULL, value = NULL, ..., 
   na.rm = FALSE, convert = FALSE, factor_key = FALSE)
```

Arguments

- `data`: a biclustermd object to gather.
- `key`: unused; included for consistency with `tidyr` generic
- `value`: unused; included for consistency with `tidyr` generic
- `...`: unused; included for consistency with `tidyr` generic
- `na.rm`: unused; included for consistency with `tidyr` generic
- `convert`: unused; included for consistency with `tidyr` generic
- `factor_key`: unused; included for consistency with `tidyr` generic

Value

A data frame containing the row names and column names of both the two-way table of data biclustered and the cell-average matrix.

Examples

```r
data("synthetic")

bc <- biclustermd(synthetic, col_clusters = 3, row_clusters = 2, 
   miss_val = mean(synthetic, na.rm = TRUE),
   miss_val_sd = sd(synthetic, na.rm = TRUE),
   col_min_num = 2, row_min_num = 2,
   col_num_to_move = 1, row_num_to_move = 1,
   max.iter = 10)

gather(bc)

# bicluster 6 is in the top right-hand corner here:
autoplot(bc)

# bicluster 3 is in the bottom right-hand corner here:
autoplot(bc)
```
mse_heatmap

Make a heatmap of cell MSEs

Description

Make a heatmap of cell MSEs

Usage

```r
mse_heatmap(x, ...)
```

Arguments

- `x` An object of class `biclustermd`.
- `...` Arguments to pass to `geom_tile()`

Value

A `ggplot` object.

Examples

```r
data("synthetic")
bc <- biclustermd(synthetic, col_clusters = 3, row_clusters = 2,
      miss_val = mean(synthetic, na.rm = TRUE),
      miss_val_sd = sd(synthetic, na.rm = TRUE),
      col_min_num = 2, row_min_num = 2,
      col_num_to_move = 1, row_num_to_move = 1,
      max.iter = 10)

mse_heatmap(bc)

mse_heatmap(bc) + ggplot2::scale_fill_viridis_c()
```

partition_gen

Generate an initial, random partition matrix with N objects into K subsets/groups.

Description

This function is used to randomly generate a partition matrix and assign rows or columns to prototypes. Must be the case that N > K.

Usage

```r
partition_gen(N, K)
```
part_matrix_to_vector

Arguments

- **N**
 Number of objects/rows in a partition matrix

- **K**
 Desired number of partitions

Value

A partition matrix.

partition_gen_by_p
Create a partition matrix with a partition vector p

Description

Create a partition matrix with a partition vector p

Usage

`partition_gen_by_p(N, K, p)`

Arguments

- **N**
 Rows in a partition matrix

- **K**
 Number of prototypes to create

- **p**
 Integer vector containing the cluster each row in a partition matrix is to be assigned to.

Value

A partition matrix.

part_matrix_to_vector
Convert a partition matrix to a vector

Description

For each row in a partition matrix, this function gets the column index for which the row is equal to one. That is, for row i, this function returns the index of the row entry that is equal to one.

Usage

`part_matrix_to_vector(P0)`

Arguments

- **P0**
 A partition matrix
Value

An integer vector

position_finder

Find the index of the first nonzero value in a vector

Description

Find the index of the first nonzero value in a vector

Usage

position_finder(vec)

Arguments

- **vec**

 A binary vector

Value

Position of the first nonzero value in a vector.

print.biclustermd

Print an object of class biclustermd

Description

Print an object of class biclustermd

Usage

```r
## S3 method for class 'biclustermd'
print(x, ...)
```

Arguments

- **x**

 a biclustermd object.

- **...**

 arguments passed to or from other methods
reorder_biclust
Reorder a bicluster object for making a heat map

Description
Reorder a bicluster object for making a heat map

Usage

reorder_biclust(x)

Arguments

x
A bicluster object.

Value
A list containing the two partition matrices used by gg_bicluster.

rep_biclustermd
Repeat a biclustering to achieve a minimum SSE solution

Description
Repeat a biclustering to achieve a minimum SSE solution

Usage

rep_biclustermd(data, nrep = 10, parallel = FALSE, ncores = 2,
col_clusters = floor(sqrt(ncol(data))),
row_clusters = floor(sqrt(nrow(data))), miss_val = mean(data, na.rm =
TRUE), miss_val_sd = 1, similarity = "Rand", row_min_num = 5,
col_min_num = 5, row_num_to_move = 1, col_num_to_move = 1,
row_shuffles = 1, col_shuffles = 1, max.iter = 100)

Arguments

data
Dataset to bicluster. Must to be a data matrix with only numbers and missing values in the data set. It should have row names and column names.

nrep
The number of times to repeat the biclustering. Default 10.

parallel
Logical indicating if the user would like to utilize the foreach parallel backend. Default is FALSE.

ncores
The number of cores to use if parallel computing. Default 2.

col_clusters
The number of clusters to partition the columns into.
rep_biclustermd

row_clusters The number of clusters to partition the rows into.

miss_val Value or function to put in empty cells of the prototype matrix. If a value, a random normal variable with sd = miss_val_sd is used each iteration.

miss_val_sd Standard deviation of the normal distribution miss_val follows if miss_val is a number. By default this equals 1.

similarity The metric used to compare two successive clusterings. Can be "Rand" (default), "HA" for the Hubert and Arabie adjusted Rand index or "Jaccard". See RRand and cluster_similarity for details.

row_min_num Minimum row prototype size in order to be eligible to be chosen when filling an empty row prototype. Default is 5.

col_min_num Minimum column prototype size in order to be eligible to be chosen when filling an empty row prototype. Default is 5.

row_num_to_move Number of rows to remove from the sampled prototype to put in the empty row prototype. Default is 1.

col_num_to_move Number of columns to remove from the sampled prototype to put in the empty column prototype. Default is 1.

row_shuffles Number of times to shuffle rows in each iteration. Default is 1.

col_shuffles Number of times to shuffle columns in each iteration. Default is 1.

max.iter Maximum number of iterations to let the algorithm run for.

Value

A list of the minimum SSE biclustering, a vector containing the final SSE of each repeat, and the time it took the function to run.

References

See Also

biclustermd, tune_biclustermd

Examples

data("synthetic")

20 repeats without parallelization
repeat_bc <- rep_biclustermd(synthetic, nrep = 20,
 col_clusters = 3, row_clusters = 2,
 miss_val = mean(synthetic, na.rm = TRUE),
 miss_val_sd = sd(synthetic, na.rm = TRUE),
 col_min_num = 2, row_min_num = 2,
 col_num_to_move = 1, row_num_to_move = 1,
repeat_bc <- rep_biclustermd(synthetic, nrep = 20, parallel = TRUE, ncores = 2, col_clusters = 3, row_clusters = 2, miss_val = mean(synthetic, na.rm = TRUE), miss_val_sd = sd(synthetic, na.rm = TRUE), col_min_num = 2, row_min_num = 2, col_num_to_move = 1, row_num_to_move = 1, max.iter = 10)

repeat_bc$runtime

20 repeats with parallelization over 2 cores

Description

Make a heatmap of sparse biclustering results

Usage

results_heatmap(x, reorder = FALSE, transform_colors = FALSE, c = 1/6, cell_alpha = 1/5, col_clusts = NULL, row_clusts = NULL, ...)

Arguments

x A biclustermd object.

reorder A logical. If TRUE, heatmap will be sorted according to the cell-average matrix, A.

transform_colors If equals TRUE then the data is scaled by c and run through a standard normal cdf before plotting. If FALSE (default), raw data values are used in the heat map.

c Value to scale the data by before running it through a standard normal CDF. Default is 1/6.

cell_alpha A scalar defining the transparency of shading over a cell and by default this equals 1/5. The color corresponds to the cell mean.

col_clusts A vector of column cluster indices to display. If NULL (default), all are displayed.

row_clusts A vector of row cluster indices to display. If NULL (default), all are displayed.

... Arguments to be passed to geom_vline() and geom_hline().
row.names.biclustermd

Value

An object of class ggplot.

Description

Get data matrix row names and their corresponding row cluster membership

Usage

```r
## S3 method for class 'biclustermd'
row.names(x)
```

Arguments

- `x` and object of class biclustermd

Value

a data frame with row names of the shuffled matrix and corresponding row cluster names.

Examples

```r
data("synthetic")
# default parameters
bc <- biclustermd(synthetic)
bc
row.names(bc)
# this is a simplified version of the output for gather(bc):
library(dplyr)
gather(bc) %>% distinct(row_cluster, row_name)
```

row_cluster_names

Get row names in each row cluster

Description

Get row names in each row cluster

Usage

```r
row_cluster_names(x, data)
```
Arguments

- `x`: Biclustering object to extract row cluster designation from data
- `data`: Data that contains the row names

Value

A data frame with two columns: `cluster` corresponds to the row cluster and `name` gives the row names in each cluster.

Examples

```r
data("synthetic")
rownames(synthetic) <- letters[1:nrow(synthetic)]
colnames(synthetic) <- letters[1:ncol(synthetic)]
bc <- biclustermd(synthetic, col_clusters = 3, row_clusters = 2,
                 miss_val = mean(synthetic, na.rm = TRUE),
                 miss_val_sd = sd(synthetic, na.rm = TRUE),
                 col_min_num = 2, row_min_num = 2,
                 col_num_to_move = 1, row_num_to_move = 1,
                 max.iter = 10)
bc
```

runtimes

<table>
<thead>
<tr>
<th>Algorithm run time data</th>
</tr>
</thead>
</table>

Description

This dataset stems from the R journal article introducing biclustermd to R users. It describes the data attributes and run time for varying data sizes and structures.

Usage

`runtimes`

Format

An object of class `data.frame` with 2400 rows and 13 columns.

Details

A data frame of 2400 rows and 13 variables (defined range, inclusive):

- `combination_no`: Unique identifier of a combination of parameters.
- `rows`: Number of rows in the data matrix. (50, 1500)
- `cols`: Number of columns in the data matrix. (50, 1500)
- `N`: Product of the dimensions of the data. (2500, 2250000)
- `row_clusts`: Number of clusters to partition the rows into. (4, 300)
col_clusts Number of clusters to partition the columns into. (4, 300)

avg_row_clust_size Average row cluster size. rows / row_clusts

avg_col_clust_size Average column cluster size. cols / col_clusts

sparsity Percent of data values which are missing.

user.self CPU time used executing instructions to calls (from ?proc.time).

sys.self CPU time used executing calls (from ?proc.time).

elapsed Amount of time in seconds it took the algorithm to converge.

iterations Number of iterations to convergence.

synthetic

Synthetic data for examples.

Description

This simple dataset allows users to use data that are easy to understand while learning biclustermd. This is a matrix with 6 rows and 12 columns. 50

Usage

```r
synthetic
```

Format

An object of class `matrix` with 6 rows and 12 columns.

tune_biclustermd

Bicluster data over a grid of tuning parameters

Description

Bicluster data over a grid of tuning parameters

Usage

```r
tune_biclustermd(data, nrep = 10, parallel = FALSE, ncores = 2, 
tune_grid = NULL)
```
Arguments

- **data**: Dataset to bicluster. Must be a data matrix with only numbers and missing values in the data set. It should have row names and column names.
- **nrep**: The number of times to repeat the biclustering for each set of parameters. Default 10.
- **parallel**: Logical indicating if the user would like to utilize the `foreach` parallel backend. Default is FALSE.
- **ncores**: The number of cores to use if parallel computing. Default 2.
- **tune_grid**: A data frame of parameters to tune over. The column names of this must match the arguments passed to `biclustermd()`.

Value

A list of:

- **best_combn**: The best combination of parameters,
- **best_bc**: The minimum SSE biclustering using the parameters in `best_combn`,
- **grid**: `tune_grid` with columns giving the minimum, mean, and standard deviation of the final SSE for each parameter combination, and
- **runtime**: CPU runtime & elapsed time.

References

See Also

`biclustermd`, `rep_biclustermd`

Examples

```r
library(dplyr)
library(ggplot2)
data("synthetic")
tg <- expand.grid(
  miss_val = fivenum(synthetic),
  similarity = c("Rand", "HA", "Jaccard"),
  col_min_num = 2,
  row_min_num = 2,
  col_clusters = 3:5,
  row_clusters = 2
)
tg

# in parallel: two cores:
tbc <- tune_biclustermd(synthetic, nrep = 2, parallel = TRUE, ncores = 2, tune_grid = tg)
tbc
```
```r
tbc$grid %>%
  group_by(miss_val, col_clusters) %>%
  summarise(avg_sd = mean(sd_sse)) %>%
  ggplot(aes(miss_val, avg_sd, color = col_clusters, group = col_clusters)) +
  geom_line() +
  geom_point()

# RUN TIME: approximately 40 seconds across two cores.
flights_tune <- tune_biclustermd(
  flights_bcd,
  nrep = 10,
  parallel = TRUE,
  ncores = 2,
  tune_grid = flights_grid
)
flights_tune
```
Index

*Topic **datasets**
 runtimes, 24
 synthetic, 25

 as.Biclust, 2
 autoplot.biclustermd, 3
 autoplot.biclustermd_sim, 5
 autoplot.biclustermd_sse, 6

 biclustermd, 6, 21, 26
 biclustermd-package (biclustermd), 6
 binary_vector_gen, 9

 cell_heatmap, 9
 cell_mse, 10
 cluster_iteration_sum_sse, 11
 cluster_similarity, 7, 21
 col.names, 11
 col.names.biclustermd, 12
 col_cluster_names, 12
 compare_biclusters, 13

 fill_empties_P, 14
 fill_empties_Q, 14
 format_partition, 15

 gather.biclustermd, 16

 mse_heatmap, 17

 part_matrix_to_vector, 18
 partition_gen, 17
 partition_gen_by_p, 18
 position_finder, 19
 print.biclustermd, 19

 reorder_biclust, 20
 rep_biclustermd, 8, 20, 26
 results_heatmap, 22
 row.names.biclustermd, 23
 row_cluster_names, 23

 RRand, 7, 21
 runtimes, 24
 synthetic, 25
 tune_biclustermd, 8, 21, 25