Package ‘betalink’

August 29, 2016

Version 2.2.1
Date 2016-03-26
Title Beta-Diversity of Species Interactions
Author Timothee Poisot <tim@poisotlab.io>
Maintainer Timothee Poisot <tim@poisotlab.io>
Depends R (>= 2.12.0)
Imports plyr, stringr, igraph
Suggests testthat, covr
Description Measures of beta-diversity in networks, and easy visualization of why two networks are different.
License BSD_2_clause + file LICENSE
URL http://poisotlab.io/software
RoxygenNote 5.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2016-03-26 22:02:17

R topics documented:

anemonefish ... 2
B01 ... 2
B02 ... 3
B03 ... 3
B04 ... 3
B05 ... 4
B06 ... 4
B07 ... 4
B08 ... 5
B09 ... 5
B10 ... 5
B11 ... 6
anemonefish Anemone/fish interaction data

Description
From http://mangal.io/data/dataset/2/

Format
16 adjacency matrices with species names

B01 Whittaker

Description
Measure beta-diversity

Usage
B01(pm)
Arguments

\(\text{pm} \) a list with components a, b, and c

B02

Harrison

Description

Measure beta-diversity

Usage

\[\text{B02}(\text{pm}) \]

Arguments

\(\text{pm} \) a list with components a, b, and c

B03

Cody

Description

Measure beta-diversity

Usage

\[\text{B03}(\text{pm}) \]

Arguments

\(\text{pm} \) a list with components a, b, and c

B04

WeiherBoylen

Description

Measure beta-diversity

Usage

\[\text{B04}(\text{pm}) \]

Arguments

\(\text{pm} \) a list with components a, b, and c
B05
Routledge

Description
Measure beta-diversity

Usage
`B05(pm)`

Arguments
`pm`
a list with components a, b, and c

B06
WilsonShmida

Description
Measure beta-diversity

Usage
`B06(pm)`

Arguments
`pm`
a list with components a, b, and c

B07
Routledge2

Description
Measure beta-diversity

Usage
`B07(pm)`

Arguments
`pm`
a list with components a, b, and c
Description

Measure beta-diversity

Usage

B08(pm)

Arguments

pm a list with components a, b, and c

Description

Measure beta-diversity

Usage

B09(pm)

Arguments

pm a list with components a, b, and c

Description

Measure beta-diversity

Usage

B10(pm)

Arguments

pm a list with components a, b, and c
B11 *Sorensen*

Description
Measure beta-diversity

Usage
B11(pm)

Arguments
- **pm**
 a list with components a, b, and c

B12 *Magurran*

Description
Measure beta-diversity

Usage
B12(pm)

Arguments
- **pm**
 a list with components a, b, and c

B13 *Harrison2*

Description
Measure beta-diversity

Usage
B13(pm)

Arguments
- **pm**
 a list with components a, b, and c
B14 Cody2

Description

Measure beta-diversity

Usage

\[B14(pm) \]

Arguments

- \(pm \) a list with components a, b, and c

B15 ColwellCoddington

Description

Measure beta-diversity

Usage

\[B15(pm) \]

Arguments

- \(pm \) a list with components a, b, and c

B16 Gaston

Description

Measure beta-diversity

Usage

\[B16(pm) \]

Arguments

- \(pm \) a list with components a, b, and c
**B17 **
Williams

Description
Measure beta-diversity

Usage
B17(pm)

Arguments

- **pm**
 a list with components a, b, and c

**B18 **
Lande

Description
Measure beta-diversity

Usage
B18(pm)

Arguments

- **pm**
 a list with components a, b, and c

**B19 **
Williams2

Description
Measure beta-diversity

Usage
B19(pm)

Arguments

- **pm**
 a list with components a, b, and c
B20
HarteKinzig

Description
Measure beta-diversity

Usage
\[B20(pm) \]

Arguments
\[pm \] a list with components a, b, and c

B21
Ruggiero

Description
Measure beta-diversity

Usage
\[B21(pm) \]

Arguments
\[pm \] a list with components a, b, and c

B22
Lennon

Description
Measure beta-diversity

Usage
\[B22(pm) \]

Arguments
\[pm \] a list with components a, b, and c
Description
Measure beta-diversity

Usage

B23(pm)

Arguments

- **pm**: a list with components a, b, and c

Description
Measure beta-diversity

Usage

B24(pm)

Arguments

- **pm**: a list with components a, b, and c

betalink
beta-diversity of two networks

Description
measures the beta-diversity between two networks

Usage

betalink(n1, n2, bf = B01)
betapart

Arguments

n1 network 1 (as an igraph object)
n2 network 2 (as an igraph object)
bf any function to measure beta-diversity between two sets

Value

a list with components S, OS, WN, and ST. While interpreting the output, it is important to consider that ST is strongly constrained by the values of S (the species composition dissimilarity). ST is only really meaningful when the values of S are "intermediate"; a good example is when the networks have been sampled along a gradient, and a more or less equal proportion of the species show turnover from one step to the next. In the situations where S is either really high or really low, the values of ST are constrained and should not be given importance. The values of OS and WN, and how they relate to S, have more informative value.

betapart Partition sets A and B

Description

given any two sets (arrays) A and B, return the size of components a, b, and c, used in functions to measure beta-diversity

Usage

betapart(A, B)

Arguments

A any array
B any array

Examples

A = c(1, 2, 3)
B = c(2, 3, 4)
betapart(A, B)
beta_os_prime
Measure the distance between a network and its metaweb

Description
Returns the values of beta OS', i.e., the distance between all realizations, and the relevant subset from the metaweb.

Usage
beta_os_prime(N, ...)

Arguments
- N: a list of networks
- ...: additional arguments to be passed to betalink

Value
An array of the values of Beta OS'

df_from_A
data.frame from adjacency matrix

Description
Transforms an Adjacency matrix into a data frame.

Usage
df_from_A(A)

Arguments
- A: an adjacency matrix
metaweb

Returns a metaweb given a list of networks

Description

Given a list of networks, this function returns the metaweb

Usage

metaweb(n)

Arguments

- **n**: a list of graphs

name_networks

Give names to networks

Description

If the networks (in a list) have no names, give them names

Usage

name_networks(w)

Arguments

- **w**: A list (of networks, but who am I to judge?)

network_betadiversity

Components of beta-diversity for a list of networks

Description

Given a list of networks, returns the pairwise beta-diversity components

Usage

network_betadiversity(N, complete = FALSE, ...)

network_betaplot

Arguments

n a list of networks
complete (boolean) whether all combinations of networks should be tested
... additional arguments to be passed to betalink

Value

A dataframe with the pairwise distances

Description

Plot differences between two networks

Usage

network_betaplot(n1, n2, na = "#2ca02c", nb = "#1f77b4", ns = "grey", ...)

Arguments

n1 a network
n2 a second network
na color of items unique to network 1
nb color of items unique to network 2
ns color of shared items
... additional arguments to be passed to plot

Value

Nothing
Prepare networks

Description
Taking a list of networks as matrices, returns a list of igraph objects

Usage
prepare_networks(w, directed = TRUE)

Arguments

w A list of network matrices
directed whether the edges are directed or not

Examples
data(anemonefish)
networks <- prepare_networks(anemonefish, TRUE)
print(networks$Timur)
Index

*Topic dataset
 anemonefish, 2

anemonefish, 2

B01, 2
B02, 3
B03, 3
B04, 3
B05, 4
B06, 4
B07, 4
B08, 5
B09, 5
B10, 5
B11, 6
B12, 6
B13, 6
B14, 7
B15, 7
B16, 7
B17, 8
B18, 8
B19, 8
B20, 9
B21, 9
B22, 9
B23, 10
B24, 10
beta_os_prime, 12
betalink, 10, 12, 14
betapart, 11
df_from_A, 12
metaweb, 13
name_networks, 13
network_betadiversity, 13
network_betaplot, 14
prepare_networks, 15