Package `belg`

August 31, 2020

Title Boltzmann Entropy of a Landscape Gradient

Version 1.4.1

Description Calculates the Boltzmann entropy of a landscape gradient.

This package uses the analytical method created by Gao, P., Zhang, H. and Li, Z., 2018 (<doi:10.1111/tgis.12315>) and by Gao, P. and Li, Z., 2019 (<doi:10.1007/s10980-019-00854-3>). It also extend the original ideas by allowing calculations on data with missing values.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

ByteCompile true

RoxygenNote 7.1.1

Depends R (>= 3.3.0)

LinkingTo Rcpp, RcppArmadillo

Imports raster, Rcpp

Suggests testthat, sf, sp, stars, covr, knitr, markdown, ggplot2, rasterVis

URL https://r-spatialecology.github.io/belg/

BugReports https://github.com/r-spatialecology/belg/issues

VignetteBuilder knitr

NeedsCompilation yes

Author Jakub Nowosad [aut, cre] (<https://orcid.org/0000-0002-1057-3721>), Space Informatics Lab [cph]

Maintainer Jakub Nowosad <nowosad.jakub@gmail.com>

Repository CRAN

Date/Publication 2020-08-31 07:00:22 UTC
R topics documented:

complex_land .. 2
get_boltzmann ... 2
land_gradient1 ... 5
land_gradient2 ... 5
simple_land .. 6

Index

complex_land Complex landscape (small)

Description

A dataset containing small artificial complex landscape

Usage

complex_land

Format

An object of class RasterLayer of dimension 6 x 8 x 1.

get_boltzmann Boltzmann entropy of a landscape gradient

Description

Calculates the Boltzmann entropy of a landscape gradient

Usage

get_boltzmann(
 x,
 method = "aggregation",
 na_adjust = TRUE,
 base = "log10",
 relative = FALSE
)

Default S3 method:
get_boltzmann(
 x,
 method = "aggregation",
 na_adjust = TRUE,
 base = "log10",
 relative = FALSE
)
get_boltzmann

base = "log10",
relative = FALSE
)

S3 method for class 'matrix'
get_boltzmann(
 x,
 method = "aggregation",
 na_adjust = TRUE,
 base = "log10",
 relative = FALSE
)

S3 method for class 'array'
get_boltzmann(
 x,
 method = "aggregation",
 na_adjust = TRUE,
 base = "log10",
 relative = FALSE
)

S3 method for class 'RasterLayer'
get_boltzmann(
 x,
 method = "aggregation",
 na_adjust = TRUE,
 base = "log10",
 relative = FALSE
)

S3 method for class 'RasterStack'
get_boltzmann(
 x,
 method = "aggregation",
 na_adjust = TRUE,
 base = "log10",
 relative = FALSE
)

S3 method for class 'RasterBrick'
get_boltzmann(
 x,
 method = "aggregation",
 na_adjust = FALSE,
 base = "log10",
 relative = FALSE
)
get_boltzmann

S3 method for class 'stars'
get_boltzmann(
 x,
 method = "aggregation",
 na_adjust = TRUE,
 base = "log10",
 relative = FALSE
)

Arguments

- **x**: stars, RasterLayer, RasterStack, RasterBrick, matrix, or array.
- **method**: A method used. Either "hierarchy" for the hierarchy-based method (Gao et al., 2017) or "aggregation" (default) for the aggregation-based method (Gao et al., 2019).
- **na_adjust**: Should the output value be adjusted to the proportion of not missing cells? Either TRUE (default) or FALSE.
- **base**: A logarithm base ("log", "log2" or "log10").
- **relative**: Should a relative or absolute entropy be calculated? TRUE or FALSE (default).

Details

The method for computing the Boltzmann entropy of a landscape gradient works on integer values that are either positive or equals to zero. This function automatically rounds values to the nearest integer value (rounding halfway cases away from zero) and negative values are shifted to positive values.

Value

a numeric vector

References

Examples

```r
new_c = c(56, 86, 98, 50, 45, 56, 96, 25,
          15, 55, 85, 69, 12, 52, 25, 56,
          32, 25, 68, 98, 58, 66, 56, 58)
```
land_gradient1

```r
lg = matrix(new_c, nrow = 3, ncol = 8, byrow = TRUE)
get_boltzmann(lg, relative = FALSE, method = "hierarchy", base = "log10")
get_boltzmann(lg, relative = TRUE, method = "hierarchy", base = "log2")
get_boltzmann(lg, relative = TRUE, method = "hierarchy", base = "log")
```

land_gradient1 Complex landscape

Description

A dataset containing artificial complex landscape

Usage

land_gradient1

Format

An object of class RasterLayer of dimension 512 x 512 x 1.

land_gradient2 Simple landscape

Description

A dataset containing artificial simple landscape

Usage

land_gradient2

Format

An object of class RasterLayer of dimension 512 x 512 x 1.
simple_land

| simple_land | Simple landscape (small) |

Description
A dataset containing small artificial simple landscape

Usage
simple_land

Format
An object of class RasterLayer of dimension 6 x 8 x 1.
Index

* datasets
 complex_land, 2
 land_gradient1, 5
 land_gradient2, 5
 simple_land, 6

complex_land, 2
get_boltzmann, 2
land_gradient1, 5
land_gradient2, 5
simple_land, 6