Block Detection Using Singular Vectors (BD-SVD).

Description
Performs BD-SVD iteratively to reveal the block structure. Splits the data matrix into one (i.e., no split) or two submatrices, depending on the structure of the first sparse loading \(v \) (which is a sparse approximation of the first right singular vector, i.e., a vector with many zero values) that mirrors the shape of the covariance matrix. This procedure is continued iteratively until the block diagonal structure has been revealed.

The data matrix ordered according to this revealed block diagonal structure can be obtained by `bdsvd.structure`.

Usage
`bdsvd(X, dof.lim, standardize = TRUE, max.iter, trace = FALSE)`

Arguments
- `X`: Data matrix of dimension \(n \times p \) with possibly \(p >> n \).
- `dof.lim`: Interval limits for the number of non-zero components in the sparse loading (degrees of freedom). If \(S \) denotes the support of \(v \), then the cardinality of the support, \(|S| \), corresponds to the degrees of freedom. Default is `dof.lim <- c(0, p-1)` which is highly recommended to check for all levels of sparsity.
- `standardize`: Standardize the data to have unit variance. Default is `TRUE`.
- `max.iter`: How many iterations should be performed for computing the sparse loading. Default is `200`.
- `trace`: Print out progress as iterations are performed. Default is `TRUE`.

Details
The sparse loadings are computed using the method by Shen & Huang (2008), implemented in the `irlba` package.

Value
A list containing the feature names of the submatrices of \(X \). The length of the list equals the number of submatrices.

References

See Also
`bdsvd.structure, bdsvd.ht, single.bdsvd`
Examples

```r
# Replicate simulation study (c) from Bauer (202Xa) with different values for b:

p <- 500  # Number of variables
n <- 250  # Number of observations
b <- 2    # Number of blocks (b <- 10 in Bauer (202Xa))
design <- "c"  # Simulation design "a", "b", "c", or "d".

# Simulate data matrix X
set.seed(1)
Sigma <- bdsvd.cov.sim(p = p, b = b, design = design)
X <- mvtnorm::rmvnorm(n, mean = rep(0, p), sigma = Sigma)
colnames(X) <- 1:p

bdsvd(X, standardize = FALSE)
```

bdsvd.cov.sim

Covariance Matrix Simulation for BD-SVD

Description

This function generates covariance matrices based on the simulation studies described in Bauer (202Xa).

Usage

`bdsvd.cov.sim(p = p, b, design = design)`

Arguments

- **p**: Number of variables.
- **b**: Number of blocks. Only required for simulation design "c" and "d".
- **design**: Simulation design "a", "b", "c", or "d".

Value

A covariance matrix according to the chosen simulation design.

References

Examples

```r
# The covariance matrix for simulation design (a) is given by
Sigma <- bdsvd.cov.sim(p = 500, b = 500, design = "a")
```
Description

Finds the number of non-zero elements of the sparse loading according to the high-dimensional Bayesian information criterion (HBIC).

Usage

bdsvd.ht(X, dof.lim, standardize = TRUE, max.iter)

Arguments

X Data matrix of dimension \(nxp \) with possibly \(p \gg n \).

\text{dof.lim} Interval limits for the number of non-zero components in the sparse loading (degrees of freedom). If \(S \) denotes the support of \(v \), then the cardinality of the support, \(|S|\), corresponds to the degrees of freedom. Default is \(\text{dof.lim} = c(0, p-1) \) which is highly recommended to check for all levels of sparsity.

\text{standardize} Standardize the data to have unit variance. Default is TRUE.

\text{max.iter} How many iterations should be performed for computing the sparse loading. Default is 200.

Details

The sparse loadings are computed using the method by Shen & Huang (2008), implemented in the \texttt{irlba} package. The computation of the HBIC is outlined in Bauer (202Xa).

Value

\text{dof} The optimal number of nonzero components (degrees of freedom) according to the HBIC.

\text{BIC} The HBIC for the different numbers of nonzero components.

References

See Also

bdsvd, single.bdsvd
Examples

Replicate the illustrative example from Bauer (202Xa) with different values for p:

```r
p <- 300  # Number of variables (p <- 3000 in Bauer (202Xa))
n <- 500  # Number of observations
b <- 3    # Number of blocks
design <- "c"

# Simulate data matrix X
set.seed(1)
Sigma <- bdsvd.cov.sim(p = p, b = b, design = design)
X <- mvtnorm::rmvnorm(n, mean = rep(0, p), sigma = Sigma)
colnames(X) <- 1:p

ht <- bdsvd.ht(X)
plot(0:(p-1), ht$BIC[,1], xlab = "|S|", ylab = "HBIC", main = "", type = "l")
single.bdsvd(X, dof = ht$dof, standardize = FALSE)
```

bdsvd.structure
Data Matrix Structure According to the Detected Block Structure.

Description

Either sorts the data matrix X according to the detected block structure $X_1, ..., X_b$, ordered by the number of variables that the blocks contain. Or returns the detected submatrices each individually in a list object.

Usage

```r
bdsvd.structure(X, block.structure, output = "matrix", block.order)
```

Arguments

- **X**: Data matrix of dimension $n \times p$ with possibly $p >> n$.
- **block.structure**: A user supplied block structure based on bdsvd() or single.bdsvd().
- **output**: Should the output be the data matrix ordered according to the blocks ("matrix"), or a list containing the submatrices ("submatrices"). Default is "matrix".
- **block.order**: A vector that contains the order of the blocks detected by bdsvd() or single.bdsvd(). The vector must contain the index of each blocks exactly once. Default is 1:b where b is the total number of blocks.

Value

Either the data matrix X with columns sorted according to the detected blocks, or a list containing the detected submatrices.
References

See Also

`bdsvd`, `single.bdsvd`

Examples

```r
# Toying with the illustrative example from Bauer (202Xa).

p <- 300  # Number of variables. In Bauer (202Xa), p = 3000.
N <- 500  # Number of observations
b <- 3    # Number of blocks
design <- "c"

# Simulate data matrix X
set.seed(1)
Sigma <- bdsvd.cov.sim(p = p, b = b, design = design)
X <- mvtnorm::rmvnorm(N, mean = rep(0, p), sigma = Sigma)
colnames(X) <- 1:p

# Compute iterative BD-SVD
bdsvd.obj <- bdsvd(X, standardize = FALSE)

# Obtain the data matrix X, sorted by the detected blocks
colnames(bdsvd.structure(X, bdsvd.obj, output = "matrix")
colnames(bdsvd.structure(X, bdsvd.obj, output = "matrix", block.order = c(2, 1, 3))

# Obtain the detected submatrices X_1, X_2, and X_3
colnames(bdsvd.structure(X, bdsvd.obj, output = "submatrices")[[1]]
colnames(bdsvd.structure(X, bdsvd.obj, output = "submatrices")[[2]]
colnames(bdsvd.structure(X, bdsvd.obj, output = "submatrices")[[3]]
```

block-class

Description

Class used within the package to store the structure and information about the detected blocks.

Slots

- **features** numeric vector that contains the variables corresponding to this block.
- **block.columns** numeric vector that contains the indices of the singular vectors corresponding to this block.
Description

This function returns the block structure of a matrix.

Usage

detect.blocks(V, threshold = 0)

Arguments

- **V**: Numeric matrix which either contains the loadings or is a covariance matrix.
- **threshold**: All absolute values of \(V \) below the threshold are set to zero.

Value

An object of class `Block` containing the features and columns indices corresponding to each detected block.

References

See Also

bdsvd, single.bdsvd

Examples

#In the first example, we replicate the simulation study for the ad hoc procedure Est_0.1 from Bauer (202Xa). In the second example, we manually compute the first step of BD-SVD, which can be done using the bdsvd() and/or single.bdsvd(), for constructed sparse loadings

#Example 1: Replicate the simulation study (a) from Bauer (202Xa) for the ad hoc procedure Est_0.1.

p <- 500 #Number of variables
n <- 125 #Number of observations
b <- 500 #Number of blocks
design <- "a"

#Simulate data matrix X
set.seed(1)
Sigma <- bdsvd.cov.sim(p = p, b = b, design = design)
X <- mvtnorm::rmvnorm(n, mean = rep(0, p), sigma = Sigma)
colnames(X) <- 1:p

#Perform the ad hoc procedure
detect.blocks(cvCovEst::scadEst(dat = X, lambda = 0.2), threshold = 0)

#Example 2: Manually compute the first step of BD-SVD
#if some loadings V that mirror the two blocks
#("A", "B") and c("C", "D").
V <- matrix(c(1,0,
 1,0,
 0,1,
 0,1), 4, 2, byrow = TRUE)
rownames(V) <- c("A", "B", "C", "D")
detected.blocks <- detect.blocks(V)

#Variables in block one with corresponding column index:
detected.blocks[[1]]@features
detected.blocks[[1]]@block.columns

#Variables in block two with corresponding column index:
detected.blocks[[2]]@features
detected.blocks[[2]]@block.columns

hcsvd

Hierarchical Variable Clustering Using Singular Vectors (HC-SVD).

Description

Performs HC-SVD to reveal the hierarchical variable structure as described in Bauer (202Xb). For this divisive approach, each cluster is split into two clusters iteratively. Potential splits are identified by the first sparse loadings (which are sparse approximations of the first right singular vectors, i.e., vectors with many zero values) that mirror the masked shape of the correlation matrix. This procedure is continued until each variable lies in a single cluster.

Usage

```r
hcsvd(X, k = "all", linkage = "single", reliability, R, max.iter, trace = TRUE)
```

Arguments

- **X**
 Data matrix of dimension *n* x *p*. The data matrix is standardized during the analysis by hcsvd.

- **k**
 Number of sparse loadings to be used. This should be "all" for all sparse loadings, or "Kaiser" for as many sparse loadings as there are eigenvalues larger or equal to one (see Bauer (202Xb) for details). Selecting "Kaiser" reduces computation time.
linkage: The linkage function to be used. This should be one of "average", "single", or "RV" (for RV-coefficient).

reliability: By default, the value of each cluster equals the distance calculated by the chosen linkage function. If preferred, the value of each cluster can be assigned by its reliability. When reliability = spectral, the reliability is calculated by the averaged spectral norm.

R: Sample correlation matrix of X. By default, R <- cov(X).

max.iter: How many iterations should be performed for computing the sparse loadings. Default is 200.

trace: Print out progress as p−1 iterations for divisive hierarchical clustering are performed. Default is TRUE.

Details
The sparse loadings are computed using the method by Shen & Huang (2008), implemented in the irlba package.

Value
A list with two components:

dist.matrix: The ultrametric distance matrix (cophenetic matrix) of the HC-SVD structure as an object of class dist.

u.cor: The ultrametric correlation matrix of X obtained by HC-SVD as an object of class matrix.

References

Examples
#Replicate simulation study (a) from Bauer (202Xb) with different values for p and b:

p <- 60 #Number of variables (p <- 10 in Bauer (202Xb))
n <- 300 #Number of observations
b <- 3 #Number of blocks (b <- 5 in Bauer (202Xb))
design <- "a"

Rho <- hcsvd.cor.sim(p = p, b = b, design = design)
X <- scale(mvtnorm::rmvnorm(n, mean = rep(0, p), sigma = Rho, checkSymmetry = FALSE))
colnames(X) = 1:ncol(X)
hcsvd.obj <- hcsvd(X, k = "Kaiser")

#The dendrogram can be obtained from the ultrametric distance matrix:
plot(hclust(hcsvd.obj$dist.matrix))
hcsvd.cor.sim
Correlation Matrix Simulation for HC-SVD

Description

This function generates correlation matrices based on the simulation studies described in Bauer (202Xb).

Usage

```r
hcsvd.cor.sim(p = p, b = b, design = design)
```

Arguments

- `p`: Number of variables.
- `b`: Number of blocks.
- `design`: Simulation design "a" or "b".

Value

A correlation matrix according to the chosen simulation design.

References

Examples

```r
# The correlation matrix for simulation design (a) is given by
# R <- hcsvd.cov.sim(p = 100, b = 5, design = "a")
```

single.bdsvd
Single Iteration of Block Detection Using Singular Vectors (BD-SVD).

Description

Performs a single iteration of BD-SVD: splits the data matrix into one (i.e., no split) or two sub-matrices, depending on the structure of the first sparse loading \(v \) (which is a sparse approximation of the first right singular vector, i.e., a vector with many zero values) that mirrors the shape of the covariance matrix.

Usage

```r
single.bdsvd(X, dof, standardize = TRUE, max.iter)
```
Arguments

- **X**: Data matrix of dimension \(nxp\) with possibly \(p \gg n\).
- **dof**: Number of non-zero components in the sparse loading (degrees of freedom). If \(S\) denotes the support of \(v\), then the cardinality of the support, \(|S|\), corresponds to the degrees of freedom.
- **standardize**: Standardize the data to have unit variance. Default is `TRUE`.
- **max.iter**: How many iterations should be performed for computing the sparse loading. Default is 200.

Details

The sparse loadings are computed using the method by Shen & Huang (2008), implemented in the `irlba` package.

Value

A list containing the feature names of the submatrices of \(X\). It is either of length one (no split) or length two (split into two submatrices).

References

See Also

- `bdsvd`, `bdsvd.ht`

Examples

```r
# Replicate the illustrative example from Bauer (202Xa).

p <- 300  # Number of variables. In Bauer (202Xa), p = 3000.
n <- 500  # Number of observations
b <- 3    # Number of blocks
design <- "c"

# Simulate data matrix X
set.seed(1)
Sigma <- bdsvd.cov.sim(p = p, b = b, design = design)
X <- mvtnorm::rmvnorm(n, mean = rep(0, p), sigma = Sigma)
colnames(X) <- 1:p

ht <- bdsvd.ht(X)
plot(0:(p-1), ht$BIC[, 1], xlab = "|S|", ylab = "HBIC", main = "", type = "l")
single.bdsvd(X, dof = ht$dof, standardize = FALSE)
```
Index

bdsvd, 2, 4, 6, 7, 11
bdsvd.cov.sim, 3
bdsvd.ht, 2, 4, 11
bdsvd.structure, 2, 5
block-class, 6

detect.blocks, 7

hcsvd, 8
hcsvd.cor.sim, 10

single.bdsvd, 2, 4, 6, 7, 10