Package ‘bayesmodels’

June 28, 2021

Title The 'Tidymodels' Extension for Bayesian Models

Version 0.1.1

Description Bayesian framework for use with the 'tidymodels' ecosystem. Includes the following models: Sarima, Garch,
Random walk (naive), Additive Linear State Space Models, Stochastic Volatility Models from 'bayesforecast' package,
Adaptive Splines Surfaces from 'BASS' package and ETS from 'Rlgt' package.

URL https://github.com/AlbertoAlmuinha/bayesmodels

BugReports https://github.com/AlbertoAlmuinha/bayesmodels/issues

License MIT + file LICENSE

Encoding UTF-8

Depends R (>= 4.0.0), parsnip, bayesforecast, bsts

Imports rlang (>= 0.1.2), brms, BASS, Rlgt, rstan, magrittr, purrr,
dplyr, tibble, dials, workflows, modeltime, timetk, cli,
crayon, rstudioapi

Suggests tidymodels, tidyverse, lubridate, knitr, rmarkdown, roxygen2,
testthat (>= 3.0.0), covr

RoxygenNote 7.1.1

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Alberto Almuiña [aut, cre]

Maintainer Alberto Almuiña <albertogonzalezalmuinha@gmail.com>

Repository CRAN

Date/Publication 2021-06-28 21:30:02 UTC
adaptive_spline

Description

adaptive_spline() is a way to generate a specification of an Adaptive Spline Surface model before fitting and allows the model to be created using different packages. Currently the only package is BASS.
adaptive_spline

Usage

adaptive_spline(
 mode = "regression",
 splines_degree = NULL,
 max_degree = NULL,
 max_categorical_degree = NULL,
 min_basis_points = NULL
)

Arguments

mode A single character string for the type of model. The only possible value for this model is "regression".
splines_degree degree of splines. Stability should be examined for anything other than 1.
max_degree integer for maximum degree of interaction in spline basis functions. Defaults to the number of predictors, which could result in overfitting.
max_categorical_degree (categorical input only) integer for maximum degree of interaction of categorical inputs.
min_basis_points minimum number of non-zero points in a basis function. If the response is functional, this refers only to the portion of the basis function coming from the non-functional predictors. Defaults to 20 or 0.1 times the number of observations, whichever is smaller.

Details

The data given to the function are not saved and are only used to determine the mode of the model. For adaptive_spline(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

- "stan" (default) - Connects to BASS::bass()

Main Arguments

The main arguments (tuning parameters) for the model are:

- splines_degree
- max_degree
- max_categorical_degree
- min_basis_points

These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from scratch.
Value

A model spec

Engine Details

Other options can be set using set_engine().

stan (default engine)

The engine uses `BASS::bass()`.

Parameter Notes:

- `xreg` - This is supplied via the parsnip / bayesmodels `fit()` interface (so don’t provide this manually). See Fit Details (below).

Fit Details

Date and Date-Time Variable

It’s a requirement to have a date or date-time variable as a predictor. The `fit()` interface accepts date and date-time features and handles them internally.

- `fit(y ~ date)`

Univariate (No xregs, Exogenous Regressors):

This algorithm only accepts multivariate: you need to pass xregs (read next section).

Multivariate (xregs, Exogenous Regressors)

The `xreg` parameter is populated using the `fit()` function:

- Only factor, ordered factor, and numeric data will be used as xregs.
- Date and Date-time variables are not used as xregs
- character data should be converted to factor.

Xreg Example: Suppose you have 3 features:

1. `y` (target)
2. `date` (time stamp),
3. `month.lbl` (labeled month as a ordered factor).

The `month.lbl` is an exogenous regressor that can be passed to the `sarima_reg()` using `fit()`:

- `fit(y ~ date + month.lbl)` will pass `month.lbl` on as an exogenous regressor.

Note that date or date-time class values are excluded from `xreg`.

See Also

`fit.model_spec()`, `set_engine()`
Examples

```r
## Not run:
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)
library(bayesmodels)
library(lubridate)

# Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

# Split Data 80/20
splits <- rsample::initial_time_split(m750, prop = 0.8)

# ---- Adaptive Spline ----

# Model Spec
model_spec <- adaptive_spline() %>%
  set_engine("stan")

# Fit Spec
model_fit <- model_spec %>%
  fit(log(value) ~ date + month(date), data = training(splits))
model_fit

## End(Not run)
```

adaptive_splines_params

Tuning Parameters for Adaptive Splines Surface Models

Description

Tuning Parameters for Adaptive Splines Surface Models

Usage

- `splines_degree(range = c(0L, 5L), trans = NULL)`
- `max_degree(range = c(0L, 5L), trans = NULL)`
- `max_categorical_degree(range = c(0L, 5L), trans = NULL)`
- `min_basis_points(range = c(0L, 1000L), trans = NULL)`
Arguments

range A two-element vector holding the defaults for the smallest and largest possible values, respectively.

trans A trans object from the scales package, such as scales::log10_trans() or scales::reciprocal_trans(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

The main parameters for Adaptive Splines Surface models are:

- splines_degree: degree of splines. Stability should be examined for anything other than 1.
- max_degree: integer for maximum degree of interaction in spline basis functions.
- max_categorical_degree: (categorical input only) integer for maximum degree of interaction of categorical inputs.
- min_basis_points: minimum number of non-zero points in a basis function

Value

A parameter
A parameter
A parameter
A parameter

Examples

splines_degree()
max_degree()
min_basis_points()
Usage

adaptive_spline_stan_fit_impl(
 x,
 y,
 degree = 1,
 maxInt = 3,
 maxInt.cat = 3,
 npart = NULL,
 ...
)

Arguments

x A dataframe of xreg (exogenous regressors)
y A numeric vector of values to fit
degree degree of splines
maxInt integer for maximum degree of interaction in spline basis functions
maxInt.cat (categorical input only) integer for maximum degree of interaction of categorical inputs
npart minimum number of non-zero points in a basis function
... Extra arguments

Value

A modeltime model

Description

Bridge prediction function for ARIMA models

Usage

adaptive_spline_stan_predict_impl(object, new_data, ...)

Arguments

object An object of class model_fit
new_data A rectangular data object, such as a data frame.
... Additional arguments passed to forecast::Arima()

Value

A prediction
additive_state_space

General Interface for Additive Linear State Space Regression Models

Description

additive_state_space() is a way to generate a specification of a Additive Linear State Space Regression Model before fitting and allows the model to be created using different packages. Currently the only package is bayesforecast.

Usage

additive_state_space(
 mode = "regression",
 trend_model = NULL,
 damped_model = NULL,
 seasonal_model = NULL,
 seasonal_period = NULL,
 garch_t_student = NULL,
 markov_chains = NULL,
 chain_iter = NULL,
 warmup_iter = NULL,
 adapt_delta = NULL,
 tree_depth = NULL,
 pred_seed = NULL
)

Arguments

mode A single character string for the type of model. The only possible value for this model is "regression".
trend_model a boolean value to specify a trend local level model. By default is FALSE.damped_model a boolean value to specify a damped trend local level model. By default is FALSE.seasonal_model a boolean value to specify a seasonal local level model. By default is FALSE.seasonal_period an integer specifying the periodicity of the time series by default the value frequency(ts) is used garch_t_student a boolean value to specify for a generalized t-student SSM model.markov_chains An integer of the number of Markov Chains chains to be run, by default 4 chains are run.chain_iter An integer of total iterations per chain including the warm-up, by default the number of iterations are 2000.
warmup_iter A positive integer specifying number of warm-up (aka burn-in) iterations. This also specifies the number of iterations used for step-size adaptation, so warm-up samples should not be used for inference. The number of warmup should not be larger than iter and the default is iter/2.

adapt_delta An optional real value between 0 and 1, the thin of the jumps in a HMC method. By default is 0.9

tree_depth An integer of the maximum depth of the trees evaluated during each iteration. By default is 10.

pred_seed An integer with the seed for using when predicting with the model.

Details
The data given to the function are not saved and are only used to determine the mode of the model. For additive_state_space(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

- "stan" (default) - Connects to bayesforecast::stan_ssm()

Main Arguments
The main arguments (tuning parameters) for the model are:

- trend_model: a boolean value to specify a trend local level model. By default is FALSE.
- damped_model: a boolean value to specify a damped trend local level model. By default is FALSE.
- seasonal_model: a boolean value to specify a seasonal local level model. By default is FALSE.
- markov_chains: An integer of the number of Markov Chains chains to be run.
- adapt_delta: The thin of the jumps in a HMC method.
- tree_depth: The maximum depth of the trees evaluated during each iteration.

These arguments are converted to their specific names at the time that the model is fit.

If parameters need to be modified, update() can be used in lieu of recreating the object from scratch.

Value
A model spec

Engine Details
The standardized parameter names in bayesmodels can be mapped to their original names in each engine:

<table>
<thead>
<tr>
<th>bayesmodels</th>
<th>bayesforecast::stan_ssm</th>
</tr>
</thead>
<tbody>
<tr>
<td>trend_model</td>
<td>trend</td>
</tr>
<tr>
<td>damped_model</td>
<td>damped</td>
</tr>
</tbody>
</table>
Other options can be set using set_engine().

stan (default engine)
The engine uses `bayesforecast::stan_ssm()`.

Parameter Notes:

- xreg - This is supplied via the parsnip / modeltime `fit()` interface (so don’t provide this manually). See Fit Details (below).

Fit Details

Date and Date-Time Variable
It’s a requirement to have a date or date-time variable as a predictor. The `fit()` interface accepts date and date-time features and handles them internally.

- `fit(y ~ date)`

Seasonal Period Specification
The period can be non-seasonal (`seasonal_period = 1` or "none") or yearly seasonal (e.g., For monthly time stamps, `seasonal_period = 12`, `seasonal_period = "12 months"`, or `seasonal_period = "yearly"`). There are 3 ways to specify:

1. `seasonal_period = "auto"`: A seasonal period is selected based on the periodicity of the data (e.g., 12 if monthly)
2. `seasonal_period = 12`: A numeric frequency. For example, 12 is common for monthly data
3. `seasonal_period = "1 year"`: A time-based phrase. For example, "1 year" would convert to 12 for monthly data.

Univariate (No xregs, Exogenous Regressors):
For univariate analysis, you must include a date or date-time feature. Simply use:

- Formula Interface (recommended): `fit(y ~ date)` will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)
The xreg parameter is populated using the `fit()` or `fit_xy()` function:

- Only factor, ordered factor, and numeric data will be used as xregs.
- Date and Date-time variables are not used as xregs
- character data should be converted to factor.

Xreg Example: Suppose you have 3 features:
1. `y` (target)
2. `date` (time stamp).
3. `month.lbl` (labeled month as an ordered factor).

The `month.lbl` is an exogenous regressor that can be passed to the `arima_reg()` using `fit()`:

- `fit(y ~ date + month.lbl)` will pass `month.lbl` on as an exogenous regressor.

Note that `date` or `date-time` class values are excluded from `xreg`.

See Also

`fit.model_spec()`, `set_engine()`

Examples

```r
## Not run:
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)
library(bayesmodels)

# Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

# Split Data 80/20
splits <- rsample::initial_time_split(m750, prop = 0.8)

# ---- AUTO ARIMA ----

# Model Spec
model_spec <- additive_state_space() %>%
  set_engine("stan")

# Fit Spec
model_fit <- model_spec %>%
  fit(log(value) ~ date, data = training(splits))
model_fit

predict(model_fit, testing(splits))

### End(Not run)
```
bayesian_structural_reg

General Interface for Bayesian Structural Time Series Models

Description

bayesian_structural_reg() is a way to generate a specification of a Bayesian Structural Time Series Model before fitting and allows the model to be created using different packages. Currently the only package is bsts.

Usage

bayesian_structural_reg(mode = "regression", distribution = NULL)

Arguments

mode
A single character string for the type of model. The only possible value for this model is "regression".
distribution
The model family for the observation equation. Non-Gaussian model families use data augmentation to recover a conditionally Gaussian model.

Details

The data given to the function are not saved and are only used to determine the mode of the model. For bayesian_structural_reg(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

• "stan" (default) - Connects to bsts::bsts()

Main Arguments

Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from scratch.

stan (default engine)

The engine uses bsts::bsts().

Parameter Notes:

• xreg - This is supplied via the parsnip / modeltime fit() interface (so don’t provide this manually). See Fit Details (below).

Value

A model spec
Fit Details

Date and Date-Time Variable
It’s a requirement to have a date or date-time variable as a predictor. The `fit()` interface accepts date and date-time features and handles them internally.

- `fit(y ~ date)`

Univariate (No xregs, Exogenous Regressors):
For univariate analysis, you must include a date or date-time feature. Simply use:

- Formula Interface (recommended): `fit(y ~ date)` will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)
The `xreg` parameter is populated using the `fit()` or `fit_xy()` function:

- Only factor, ordered factor, and numeric data will be used as xregs.
- Date and Date-time variables are not used as xregs
- Character data should be converted to factor.

Xreg Example: Suppose you have 3 features:

1. y (target)
2. date (time stamp),
3. month.lbl (labeled month as an ordered factor).

The `month.lbl` is an exogenous regressor that can be passed to the `arima_reg()` using `fit()`:

- `fit(y ~ date + month.lbl)` will pass `month.lbl` on as an exogenous regressor.

Note that date or date-time class values are excluded from `xreg`.

See Also

- `fit.model_spec()`, `set_engine()`

Examples

```r
## Not run:
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)
library(bayesmodels)

# Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

# Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)
```
ss <- AddLocalLinearTrend(list(), training(splits)$value)

Model Spec
model_spec <- bayesian_structural_reg() %>%
 set_engine("stan", state.specification = ss)

Fit Spec
model_fit <- model_spec %>%
 fit(log(value) ~ date, data = training(splits))

model_fit

End(Not run)

bayesian_structural_stan_fit_impl

Low-Level ARIMA function for translating modetime to forecast

Description

Low-Level ARIMA function for translating modetime to forecast

Usage

```r
bayesian_structural_stan_fit_impl(formula, data, family = "gaussian", ...)
```

Arguments

- `formula`: A dataframe of xreg (exogenous regressors)
- `data`: A numeric vector of values to fit
- `family`: The model family for the observation equation. Non-Gaussian model families use data augmentation to recover a conditionally Gaussian model.
- `...`: Additional arguments passed to `forecast::Arima`

Value

A modetime model
Bayesian Structural Stan Predict Impl

Address

Description

Bridge prediction function for ARIMA models

Usage

bayesian_structural_stan_predict_impl(object, new_data, ...)

Arguments

object
An object of class model.fit

new_data
A rectangular data object, such as a data frame.

... Additional arguments passed to forecast::Arima()

Value

A prediction

Exponential Smoothing

Description

exponential_smoothing() is a way to generate a specification of an ETS model before fitting and allows the model to be created using different packages. Currently the only package is Rlgt.

Usage

exponential_smoothing(
 mode = "regression",
 seasonality = NULL,
 second_seasonality = NULL,
 seasonality_type = NULL,
 method = NULL,
 error_method = NULL
)
Arguments

mode A single character string for the type of model. The only possible value for this model is "regression".

seasonality This specification of seasonality will be overridden by frequency of y, if y is of ts or msts class. 1 by default, i.e. no seasonality.

second_seasonality Second seasonality.

seasonality_type Either "multiplicative" (default) or "generalized". The latter seasonality generalizes additive and multiplicative seasonality types.

method "HW", "seasAvg", "HW_sAvg". Here, "HW" follows Holt-Winters approach. "seasAvg" calculates level as a smoothed average of the last seasonality number of points (or seasonality2 of them for the dual seasonality model), and HW_sAvg is an weighted average of HW and seasAvg methods.

error_method Function providing size of the error. Either "std" (monotonically, but slower than proportionally, growing with the series values) or "innov" (proportional to a smoothed abs size of innovations, i.e. surprises)

Details

The data given to the function are not saved and are only used to determine the mode of the model. For exponential_smoothing(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

- "stan" (default) - Connects to Rlgt::rlgt()

Main Arguments

The main arguments (tuning parameters) for the model are:

- seasonality: Seasonality.
- second_seasonality: Second seasonality.
- seasonality_type: Either "multiplicative" (default) or "generalized".
- method: "HW", "seasAvg", "HW_sAvg"
- error_method: Either "std" or "innov"

These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using set_engine(). If parameters need to be modified, update() can be used in lieu of recreating the object from scratch.

stan (default engine)

The engine uses Rlgt::rlgt().

Parameter Notes:

- xreg - This is supplied via the parsnip / bayesmodels fit() interface (so don’t provide this manually). See Fit Details (below).
Value
A model spec

Fit Details

Date and Date-Time Variable
It’s a requirement to have a date or date-time variable as a predictor. The \texttt{fit()} interface accepts date and date-time features and handles them internally.

\begin{itemize}
\item \texttt{fit(y \sim date)}
\end{itemize}

Univariate (No \texttt{xregs}, Exogenous Regressors):
For univariate analysis, you must include a date or date-time feature. Simply use:

\begin{itemize}
\item Formula Interface: \texttt{fit(y \sim date)} will ignore \texttt{xreg’s}.
\end{itemize}

Multivariate (\texttt{xregs}, Exogenous Regressors)
The \texttt{xreg} parameter is populated using the \texttt{fit()} function:

\begin{itemize}
\item Only factor, ordered factor, and numeric data will be used as \texttt{xregs}.
\item Date and Date-time variables are not used as \texttt{xregs}
\item character data should be converted to factor.
\end{itemize}

\textbf{Xreg Example:} Suppose you have 3 features:

1. \texttt{y} (target)
2. \texttt{date} (time stamp).
3. \texttt{month.lbl} (labeled month as a ordered factor).

The \texttt{month.lbl} is an exogenous regressor that can be passed to the \texttt{expotential_smoothing()} using \texttt{fit()}:

\begin{itemize}
\item \texttt{fit(y \sim date + month.lbl)} will pass \texttt{month.lbl} on as an exogenous regressor.
\end{itemize}

Note that date or date-time class values are excluded from \texttt{xreg}.

See Also
\texttt{fit.model_spec()}, \texttt{set_engine()}

Examples

\begin{verbatim}
Not run:
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)
library(bayesmodels)

Data
\end{verbatim}
m750 <- m4_monthly %>% filter(id == "M750")
m750

Split Data 80/20
splits <- rsample::initial_time_split(m750, prop = 0.8)

---- ARIMA ----
Model Spec
model_spec <- exponential_smoothing() %>%
 set_engine("stan")

Fit Spec
model_fit <- model_spec %>%
 fit(log(value) ~ date + month(date), data = training(splits))
model_fit

End(Not run)

exponential_smoothing_params

Description

Tuning Parameters for Exponential Smoothing Models

Usage

seasonality_type()

method()

error_method()

Details

The main parameters for Exponential Smoothing models are:

- garch_order: Integer with the garch order.
- arch_order: Integer with the arch_order.
- mgarch_order: Integer with the mgarch order.
- garch_t_student: A boolean value to specify for a generalized t-student garch model.
- asymmetry: a string value for the asymmetric function for an asymmetric GARCH process. By default the value "none" for standard GARCH process. If "logit" a logistic function is used for asymmetry, and if "exp" an exponential function is used.
- non_seasonal_ar: The order of the non-seasonal auto-regressive (AR) terms.
• non_seasonal_ma: The order of the non-seasonal moving average (MA) terms.
• markov_chains: The number of markov chains.
• adapt_delta: The thin of the jumps in a HMC method
• tree_depth: Maximum depth of the trees

Value
A parameter
A parameter
A parameter

Examples
non_seasonal_ar()
non_seasonal_differences()
non_seasonal_ma()

exp_smoothing_stan_fit_impl

Description
Low-Level ARIMA function for translating modeltime to forecast

Usage
exp_smoothing_stan_fit_impl(
x,
y,
seasonality = 1,
seasonality2 = 1,
seasonality.type = "multiplicative",
error.size.method = "std",
level.method = "HW",
...)

exp_smoothing_stan_predict_impl

Bridge prediction function for ARIMA models

Description

Bridge prediction function for ARIMA models

Usage

exp_smoothing_stan_predict_impl(object, new_data, ...)

Arguments

object An object of class model_fit
new_data A rectangular data object, such as a data frame.
... Additional arguments passed to forecast::Arima()

Value

A prediction
garch_params

GARCHA Models Tuning Parameters

Description

Tuning Parameters for GARCHA Models

Usage

- `garch_order(range = c(0L, 3L), trans = NULL)`
- `arch_order(range = c(0L, 3L), trans = NULL)`
- `mgarch_order(range = c(0L, 3L), trans = NULL)`
- `garch_t_student()`
- `asymmetry()`

Arguments

- **range**: A two-element vector holding the `defaults` for the smallest and largest possible values, respectively.
- **trans**: A `trans` object from the `scales` package, such as `scales::log10_trans()` or `scales::reciprocal_trans()`. If not provided, the default is used which matches the units used in `range`. If no transformation, `NULL`.

Details

The main parameters for GARCHA models are:

- `garch_order`: Integer with the garch order.
- `arch_order`: Integer with the arch_order.
- `mgarch_order`: Integer with the mgarch order.
- `garch_t_student`: A boolean value to specify for a generalized t-student garch model.
- `asymmetry`: A string value for the asymmetric function for an asymmetric GARCH process. By default the value "none" for standard GARCH process. If "logit" a logistic function is used for asymmetry, and if "exp" an exponential function is used.
- `non_seasonal_ar`: The order of the non-seasonal auto-regressive (AR) terms.
- `non_seasonal_ma`: The order of the non-seasonal moving average (MA) terms.
- `markov_chains`: The number of markov chains.
- `adapt_delta`: The thin of the jumps in a HMC method
- `tree_depth`: Maximum depth of the trees
Value
A parameter
A parameter
A parameter
A parameter
A parameter

Examples
non_seasonal_ar()
non_seasonal_differences()
non_seasonal_ma()

garch_reg

Description
garch_reg() is a way to generate a specification of a GARCH model before fitting and allows the model to be created using different packages. Currently the only package is bayesforecast.

Usage
garch_reg(
 mode = "regression",
 garch_order = NULL,
 arch_order = NULL,
 mgarch_order = NULL,
 non_seasonal_ar = NULL,
 non_seasonal_ma = NULL,
 garch_t_student = NULL,
 asymmetry = NULL,
 markov_chains = NULL,
 chain_iter = NULL,
 warmup_iter = NULL,
 adapt_delta = NULL,
 tree_depth = NULL,
 pred_seed = NULL
)
Arguments

mode
A single character string for the type of model. The only possible value for this model is "regression".

garch_order
Integer with the garch order.

arch_order
Integer with the arch_order.

mgarch_order
Integer with the mgarch order.

non_seasonal_ar
The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in pdq-notation.

non_seasonal_ma
The order of the non-seasonal moving average (MA) terms. Often denoted "q" in pdq-notation.

garch_t_student
A boolean value to specify for a generalized t-student garch model.

asymmetry
a string value for the asymmetric function for an asymmetric GARCH process. By default the value "none" for standard GARCH process. If "logit" a logistic function is used for asymmetry, and if "exp" an exponential function is used.

markov_chains
An integer of the number of Markov Chains chains to be run, by default 4 chains are run.

chain_iter
An integer of total iterations per chain including the warm-up, by default the number of iterations are 2000.

warmup_iter
A positive integer specifying number of warm-up (aka burn-in) iterations. This also specifies the number of iterations used for step-size adaptation, so warm-up samples should not be used for inference. The number of warmup should not be larger than iter and the default is iter/2.

adapt_delta
An optional real value between 0 and 1, the thin of the jumps in a HMC method. By default is 0.9

tree_depth
An integer of the maximum depth of the trees evaluated during each iteration. By default is 10.

pred_seed
An integer with the seed for using when predicting with the model.

Details

The data given to the function are not saved and are only used to determine the mode of the model. For garch_reg(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

- "stan" (default) - Connects to bayesforecast::stan_garch()

Main Arguments

The main arguments (tuning parameters) for the model are:

- arch_order: Integer with the arch_order.
- garch_order: Integer with the garch_order.
• mgarch_order: Integer with the mgarch_order.
• garch_t_student: A boolean value to specify for a generalized t-student garch model.
• asymmetry: a string value for the asymmetric function for an asymmetric GARCH process.
• non_seasonal_ar: The order of the non-seasonal auto-regressive (AR) terms.
• non_seasonal_ma: The order of the non-seasonal moving average (MA)
• markov_chains: An integer of the number of Markov Chains chains to be run.
• adapt_delta: The thin of the jumps in a HMC method.
• tree_depth: The maximum depth of the trees evaluated during each iteration.

These arguments are converted to their specific names at the time that the model is fit. Other options and argument can be set using set_engine() (See Engine Details below). If parameters need to be modified, update() can be used in lieu of recreating the object from scratch.

Value
A model spec

Engine Details
The standardized parameter names in bayesforecast can be mapped to their original names in each engine:

<table>
<thead>
<tr>
<th>bayesmodels</th>
<th>bayesforecast::stan_garch</th>
</tr>
</thead>
<tbody>
<tr>
<td>arch_order, garch_order, mgarch_order</td>
<td>order = c(s(1), k(1), h(0))</td>
</tr>
<tr>
<td>non_seasonal_ar, non_seasonal_ma</td>
<td>arma = c(p(1), q(0))</td>
</tr>
<tr>
<td>garch_t_student</td>
<td>genT(FALSE)</td>
</tr>
<tr>
<td>asymmetry</td>
<td>asym('none')</td>
</tr>
<tr>
<td>markov_chains</td>
<td>chains(4)</td>
</tr>
<tr>
<td>adapt_delta</td>
<td>adapt.delta(0.9)</td>
</tr>
<tr>
<td>tree_depth</td>
<td>tree.depth(10)</td>
</tr>
</tbody>
</table>

Other options can be set using set_engine().

stan (default engine)
The engine uses bayesforecast::stan_garch().

Parameter Notes:
• xreg - This is supplied via the parsnip / modeltime fit() interface (so don’t provide this manually). See Fit Details (below).

Fit Details

Date and Date-Time Variable
It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts date and date-time features and handles them internally.
Seasonal Period Specification

The period can be non-seasonal (seasonal_period = 1 or "none") or yearly seasonal (e.g. For monthly time stamps, seasonal_period = 12, seasonal_period = "12 months", or seasonal_period = "yearly"). There are 3 ways to specify:

1. seasonal_period = "auto": A seasonal period is selected based on the periodicity of the data (e.g. 12 if monthly)
2. seasonal_period = 12: A numeric frequency. For example, 12 is common for monthly data
3. seasonal_period = "1 year": A time-based phrase. For example, "1 year" would convert to 12 for monthly data.

Univariate (No xregs, Exogenous Regressors):
For univariate analysis, you must include a date or date-time feature. Simply use:

- Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)

The xreg parameter is populated using the fit() or fit_xy() function:

- Only factor, ordered factor, and numeric data will be used as xregs.
- Date and Date-time variables are not used as xregs
- character data should be converted to factor.

Xreg Example: Suppose you have 3 features:

1. y (target)
2. date (time stamp),
3. month.lbl (labeled month as a ordered factor).

The month.lbl is an exogenous regressor that can be passed to the garch_reg() using fit():

- fit(y ~ date + month.lbl) will pass month.lbl on as an exogenous regressor.

Note that date or date-time class values are excluded from xreg.

See Also

fit.model_spec(), set_engine()

Examples

Not run:
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)
library(bayesmodels)
Data
m750 <- m4_monthly %>% filter(id == "M750")

Split Data 80/20
splits <- rsample::initial_time_split(m750, prop = 0.8)

---- AUTO ARIMA ----

Model Spec
model_spec <- garch_reg() %>%
 set_engine("stan")

Fit Spec
model_fit <- model_spec %>%
 fit(log(value) ~ date, data = training(splits))
model_fit

Model Spec
model_spec <- garch_reg(
 arch_order = 2,
 garch_order = 2,
 mgarch_order = 1,
 non_seasonal_ar = 1,
 non_seasonal_ma = 1
) %>%
 set_engine("stan")

Fit Spec
model_fit <- model_spec %>%
 fit(log(value) ~ date, data = training(splits))
model_fit

End(Not run)

garch_stan_fit_impl

Low-Level ARIMA function for translating modeltime to forecast

description

Low-Level ARIMA function for translating modeltime to forecast

usage

garch_stan_fit_impl(
 x,
y,
s = 1,
k = 1,
h = 1,
p = 0,
q = 0,
genT = FALSE,
asym = "none",
chains = 4,
iter = 2000,
warmup = iter/2,
adapt.delta = 0.9,
tree.depth = 10,
seed = NULL,
...
)

Arguments

x
A dataframe of xreg (exogenous regressors)
y
A numeric vector of values to fit
s
garch_order
k
arch_order
h
mgarch_order
p
The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in pdq-notation.
q
The order of the non-seasonal moving average (MA) terms. Often denoted "q" in pdq-notation.
genT
a boolean value to specify for a generalized t-student garch model.
asym
a string value for the asymmetric function for an asymmetric GARCH process.
chains
An integer of the number of Markov Chains chains to be run, by default 4 chains are run.
iter
An integer of total iterations per chain including the warm-up, by default the number of iterations are 2000.
warmup
A positive integer specifying number of warm-up (aka burn-in) iterations. This also specifies the number of iterations used for step-size adaptation, so warm-up samples should not be used for inference. The number of warmup should not be larger than iter and the default is iter/2.
adapt.delta
An optional real value between 0 and 1, the thin of the jumps in a HMC method. By default is 0.9
tree.depth
An integer of the maximum depth of the trees evaluated during each iteration. By default is 10.
seed
An integer with the seed for using when predicting with the model.
...
Additional arguments passed to forecast::Arima

Value

A modeltime model
garch_stan_predict_impl

Bridge prediction function for ARIMA models

Description

Bridge prediction function for ARIMA models

Usage

```r
garch_stan_predict_impl(object, new_data, ...)
```

Arguments

- `object` An object of class `model_fit`
- `new_data` A rectangular data object, such as a data frame.
- `...` Additional arguments passed to `forecast::Arima()`

Value

A prediction

gen_additive_reg

Interface for Generalized Additive Models (GAM)

Description

Interface for Generalized Additive Models (GAM)

Usage

```r
gen_additive_reg(  
  mode = "regression",  
  markov_chains = NULL,  
  chain_iter = NULL,  
  warmup_iter = NULL,  
  adapt_delta = NULL  
)
```
Arguments

mode A single character string for the type of model.
markov_chains Number of Markov chains (defaults to 4).
chain_iter Number of total iterations per chain (including warmup; defaults to 2000).
warmup_iter A positive integer specifying number of warmup (aka burnin) iterations. This also specifies the number of iterations used for stepsize adaptation, so warmup samples should not be used for inference. The number of warmup should not be larger than iter and the default is iter/2.
adapt_delta The thin of the jumps in a HMC method.

Details

Available Engines:

- **stan**: Connects to `brms::brm()`

Value

A `parsnip` model specification
A model spec

Engine Details

stan
This engine uses `brms::brm()` and has the following parameters, which can be modified through the `parsnip::set_engine()` function.

```r
## function (formula, data, family = gaussian(), prior = NULL, autocor = NULL,
## data2 = NULL, cov_ranef = NULL, sample_prior = "no", sparse = NULL,
## knots = NULL, stanvars = NULL, stan_funs = NULL, fit = NA, save_pars = NULL,
## save_ranef = NULL, save_mevars = NULL, save_all_pars = NULL, inits = "random",
## chains = 4, iter = 2000, warmup = floor(iter/2), thin = 1, cores = getOption("mc.cores",
## 1), threads = NULL, normalize = getOption("brms.normalize", TRUE),
## control = NULL, algorithm = getOption("brms.algorithm", "sampling"),
## backend = getOption("brms.backend", "rstan"), future = getOption("future",
## FALSE), silent = 1, seed = NA, save_model = NULL, stan_model_args = list(),
## file = NULL, file_refit = "never", empty = FALSE, rename = TRUE, ...)
```

Fit Details

BRMS Formula Interface

Fitting GAMs is accomplished using parameters including:

- `brms::s()`: GAM spline smooths
- `brms::t2()`: GAM tensor product smooths

These are applied in the `fit()` function:

```r
fit(value ~ s(date_mon, k = 12) + s(date_num), data = df)
```
Examples

```r
## Not run:
library(tidymodels)
library(bayesmodels)
library(modeltime)
library(tidyverse)
library(timetk)
library(lubridate)

m750_extended <- m750 %>%
  group_by(id) %>%
  future_frame(.length_out = 24, .bind_data = TRUE) %>%
  mutate(lag_24 = lag(value, 24)) %>%
  ungroup() %>%
  mutate(date_num = as.numeric(date)) %>%
  mutate(date_month = month(date))

m750_train <- m750_extended %>% drop_na()
m750_future <- m750_extended %>% filter(is.na(value))

model_fit_gam <- gen_additive_reg(mode = "regression", markov_chains = 2) %>%
  set_engine("stan", family=Gamma(link="log")) %>%
  fit(value ~ date + s(date_month, k = 12)
  + s(lag_24),
  data = m750_train)

## End(Not run)
```

gen_additive_stan_fit_impl

Low-Level ARIMA function for translating modeltime to forecast

Description

Low-Level ARIMA function for translating modeltime to forecast

Usage

```r
gen_additive_stan_fit_impl(
  formula,
  data,
  chains = 4,
  iter = 2000,
  warmup = 1000,
  ...
)
```
gen_additive_stan_predict_impl

Arguments

- **formula**: A dataframe of xreg (exogenous regressors)
- **data**: A numeric vector of values to fit
- **chains**: An integer of the number of Markov Chains chains to be run, by default 4 chains are run.
- **iter**: An integer of total iterations per chain including the warm-up, by default the number of iterations are 2000.
- **warmup**: A positive integer specifying number of warm-up (aka burn-in) iterations. This also specifies the number of iterations used for step-size adaptation, so warm-up samples should not be used for inference. The number of warmup should not be larger than iter and the default is iter/2.
- ... Additional arguments passed to forecast::Arima

Value

A modeltime model

Bridge prediction function for ARIMA models

Description

Bridge prediction function for ARIMA models

Usage

```r
gen_additive_stan_predict_impl(object, new_data, ...)
```

Arguments

- **object**: An object of class model_fit
- **new_data**: A rectangular data object, such as a data frame.
- ... Additional arguments passed to forecast::Arima()

Value

A prediction
naive_params

Tuning Parameters for Random Walk Models

Description

Tuning Parameters for Random Walk Models

Usage

```r
seasonal_random_walk()
```

Details

The main parameters for Random Walk Models are:

- `seasonal_random_walk`: A boolean value for select a seasonal random walk instead.
- `markov_chains`: The number of markov chains.
- `adapt_delta`: The thin of the jumps in a HMC method
- `tree_depth`: Maximum depth of the trees

Value

A parameter

random_walk_reg

General Interface for Naive and Random Walk models Regression Models

Description

`random_walk_reg()` is a way to generate a specification of Naive and Random Walk models before fitting and allows the model to be created using different packages. Currently the only package is bayesforecast.

Usage

```r
random_walk_reg(
    mode = "regression",
    seasonal_random_walk = NULL,
    seasonal_period = NULL,
    markov_chains = NULL,
    chain_iter = NULL,
    warmup_iter = NULL,
    adapt_delta = NULL,
    tree_depth = NULL,
    pred_seed = NULL
)
```
random_walk_reg

Arguments

mode A single character string for the type of model. The only possible value for this model is "regression".

seasonal_random_walk a Boolean value for select a seasonal random walk instead.

seasonal_period an optional integer value for the seasonal period.

markov_chains An integer of the number of Markov Chains chains to be run, by default 4 chains are run.

chain_iter An integer of total iterations per chain including the warm-up, by default the number of iterations are 2000.

warmup_iter A positive integer specifying number of warm-up (aka burn-in) iterations. This also specifies the number of iterations used for step-size adaptation, so warm-up samples should not be used for inference. The number of warmup should not be larger than iter and the default is iter/2.

adapt_delta An optional real value between 0 and 1, the thin of the jumps in a HMC method. By default is 0.9

tree_depth An integer of the maximum depth of the trees evaluated during each iteration. By default is 10.

pred_seed An integer with the seed for using when predicting with the model.

Details

The data given to the function are not saved and are only used to determine the mode of the model. For random_walk_reg(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

• "stan" (default) - Connects to bayesforecast::stan_naive()

Main Arguments

The main arguments (tuning parameters) for the model are:

• seasonal_random_walk: a Boolean value for select a seasonal random walk instead.
• markov_chains: An integer of the number of Markov Chains chains to be run.
• adapt_delta: The thin of the jumps in a HMC method.
• tree_depth: The maximum depth of the trees evaluated during each iteration.

These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from scratch.

Value

A model spec
Engine Details

The standardized parameter names in bayesmodels can be mapped to their original names in each engine:

<table>
<thead>
<tr>
<th>bayesmodels</th>
<th>bayesforecast::stan_naive</th>
</tr>
</thead>
<tbody>
<tr>
<td>seasonal_random_walk</td>
<td>seasonal</td>
</tr>
<tr>
<td>markov_chains</td>
<td>chains(4)</td>
</tr>
<tr>
<td>adapt_delta</td>
<td>adapt.delta(0.9)</td>
</tr>
<tr>
<td>tree_depth</td>
<td>tree.depth(10)</td>
</tr>
</tbody>
</table>

Other options can be set using set_engine().

stam (default engine)

The engine uses bayesforecast::stan_naive().

Fit Details

Date and Date-Time Variable

It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts date and date-time features and handles them internally.

- fit(y ~ date)

Seasonal Period Specification

The period can be non-seasonal (seasonal_period = 1 or "none") or yearly seasonal (e.g. For monthly time stamps, seasonal_period = 12, seasonal_period = "12 months", or seasonal_period = "yearly"). There are 3 ways to specify:

1. seasonal_period = "auto": A seasonal period is selected based on the periodicity of the data (e.g. 12 if monthly)
2. seasonal_period = 12: A numeric frequency. For example, 12 is common for monthly data
3. seasonal_period = "1 year": A time-based phrase. For example, "1 year" would convert to 12 for monthly data.

Univariate (No xregs, Exogenous Regressors):

For univariate analysis, you must include a date or date-time feature. Simply use:

- Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.

See Also

fit.model_spec(), set_engine()
Examples

```r
## Not run:
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)
library(bayesmodels)

# Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

# Split Data 80/20
splits <- rsample::initial_time_split(m750, prop = 0.8)

# Model Spec
model_spec <- random_walk_reg() %>%
  set_engine("stan")

# Fit Spec
model_fit <- model_spec %>%
  fit(log(value) ~ date, data = training(splits))
model_fit

## End(Not run)
```

random_walk_stan_fit_impl

Low-Level ARIMA function for translating modeltime to forecast

Description

Low-Level ARIMA function for translating modeltime to forecast

Usage

```r
random_walk_stan_fit_impl(
  x,
  y,
  seasonal = FALSE,
  m = 0,
  chains = 4,
  iter = 2000,
  warmup = iter/2,
  adapt.delta = 0.9,
  tree.depth = 10,
  ...)
```
seed = NULL,
...
)

Arguments

x A dataframe of xreg (exogenous regressors)
y A numeric vector of values to fit
seasonal a Boolean value for select a seasonal random walk instead
m an optional integer value for the seasonal period.
chains An integer of the number of Markov Chains chains to be run, by default 4 chains are run.
iter An integer of total iterations per chain including the warm-up, by default the number of iterations are 2000.
warmup A positive integer specifying number of warm-up (aka burn-in) iterations. This also specifies the number of iterations used for step-size adaptation, so warm-up samples should not be used for inference. The number of warmup should not be larger than iter and the default is iter/2.
adapt.delta An optional real value between 0 and 1, the thin of the jumps in a HMC method. By default is 0.9
tree.depth An integer of the maximum depth of the trees evaluated during each iteration. By default is 10.
seed An integer with the seed for using when predicting with the model.
... Additional arguments passed to forecast::Arima

Value

A modelt ime model

random_walk_stan_predict_impl

Bridge prediction function for ARIMA models

Description

Bridge prediction function for ARIMA models

Usage

random_walk_stan_predict_impl(object, new_data, ...)

Arguments

object An object of class model_fit
new_data A rectangular data object, such as a data frame.
... Additional arguments passed to forecast::Arima()
sarima_params

Value

A prediction

sarima_params Tuning Parameters for SARIMA Models

Description

Tuning Parameters for SARIMA Models

Usage

non_seasonal_ar(range = c(0L, 5L), trans = NULL)
non_seasonal_differences(range = c(0L, 2L), trans = NULL)
non_seasonal_ma(range = c(0L, 5L), trans = NULL)
seasonal_ar(range = c(0L, 2L), trans = NULL)
seasonal_differences(range = c(0L, 1L), trans = NULL)
seasonal_ma(range = c(0L, 2L), trans = NULL)
markov_chains(range = c(0L, 8L), trans = NULL)
adapt_delta(range = c(0, 1), trans = NULL)
tree_depth(range = c(0L, 100L), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible values, respectively.
trans A trans object from the scales package, such as scales::log10_trans() or scales::reciprocal_trans(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

The main parameters for SARIMA models are:

- non_seasonal_ar: The order of the non-seasonal auto-regressive (AR) terms.
- non_seasonal_differences: The order of integration for non-seasonal differencing.
- non_seasonal_ma: The order of the non-seasonal moving average (MA) terms.
- seasonal_ar: The order of the seasonal auto-regressive (SAR) terms.
- **seasonal_differences**: The order of integration for seasonal differencing.
- **seasonal_ma**: The order of the seasonal moving average (SMA) terms.
- **markov_chains**: The number of markov chains.
- **adapt_delta**: The thin of the jumps in a HMC method
- **tree_depth**: Maximum depth of the trees

Value

A parameter

Examples

```r
non_seasonal_ar()
non_seasonal_differences()
non_seasonal_ma()
```

Description

`sarima_reg()` is a way to generate a specification of an ARIMA model before fitting and allows the model to be created using different packages. Currently the only package is `bayesforecast`.

Usage

```r
sarima_reg(
  mode = "regression",
  seasonal_period = NULL,
  non_seasonal_ar = NULL,
  non_seasonal_differences = NULL,
  non_seasonal_ma = NULL,
)```
sarima_reg

seasonal_ar = NULL,
seasonal_differences = NULL,
seasonal_ma = NULL,
markov_chains = NULL,
chain_iter = NULL,
warmup_iter = NULL,
adapt_delta = NULL,
tree_depth = NULL,
pred_seed = NULL
}

Arguments

mode A single character string for the type of model. The only possible value for this model is "regression".

seasonal_period A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided. See Fit Details below.

non_seasonal_ar The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in pdq-notation.

non_seasonal_differences The order of integration for non-seasonal differencing. Often denoted "d" in pdq-notation.

non_seasonal_ma The order of the non-seasonal moving average (MA) terms. Often denoted "q" in pdq-notation.

seasonal_ar The order of the seasonal auto-regressive (SAR) terms. Often denoted "P" in PDQ-notation.

seasonal_differences The order of integration for seasonal differencing. Often denoted "D" in PDQ-notation.

seasonal_ma The order of the seasonal moving average (SMA) terms. Often denoted "Q" in PDQ-notation.

markov_chains An integer of the number of Markov Chains chains to be run, by default 4 chains are run.

chain_iter An integer of total iterations per chain including the warm-up, by default the number of iterations are 2000.

warmup_iter A positive integer specifying number of warm-up (aka burn-in) iterations. This also specifies the number of iterations used for step-size adaptation, so warm-up samples should not be used for inference. The number of warmup should not be larger than iter and the default is iter/2.

adapt_delta An optional real value between 0 and 1, the thin of the jumps in a HMC method. By default is 0.9
**Details**

The data given to the function are not saved and are only used to determine the mode of the model. For `sarima_reg()`, the mode will always be "regression".

The model can be created using the `fit()` function using the following engines:

- "stan" (default) - Connects to `bayesforecast::stan_sarima()`

**Main Arguments**

The main arguments (tuning parameters) for the model are:

- `non_seasonal_ar`: The order of the non-seasonal auto-regressive (AR) terms.
- `non_seasonal_differences`: The order of integration for non-seasonal differencing.
- `non_seasonal_ma`: The order of the non-seasonal moving average (MA) terms.
- `seasonal_ar`: The order of the seasonal auto-regressive (SAR) terms.
- `seasonal_differences`: The order of integration for seasonal differencing.
- `seasonal_ma`: The order of the seasonal moving average (SMA) terms.
- `markov_chains`: An integer of the number of Markov Chains chains to be run.
- `adapt_delta`: The thin of the jumps in a HMC method.
- `tree_depth`: The maximum depth of the trees evaluated during each iteration

These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using `set_engine()` (See Engine Details below).

If parameters need to be modified, `update()` can be used in lieu of recreating the object from scratch.

**Value**

A model spec

**Engine Details**

The standardized parameter names in `bayesmodels` can be mapped to their original names in the engine:

- `bayesmodels`
- `non_seasonal_ar, non_seasonal_differences, non_seasonal_ma`
- `seasonal_ar, seasonal_differences, seasonal_ma`
- `markov_chains`
- `adapt_delta`
- `tree_depth`

- `bayesforecast::stan_sarima`
- `order = c(p(1), d(0), q(0))`
- `seasonal = c(P(0), D(0), Q(0))`
- `chains(4)`
- `adapt.delta(0.9)`
- `tree.depth(10)`
Other options can be set using `set_engine()`.

**stan (default engine)**

The engine uses `bayesforecast::stan_sarima()`.

Parameter Notes:

- `xreg` - This is supplied via the parsnip / bayesmodels `fit()` interface (so don’t provide this manually). See Fit Details (below).

**Fit Details**

**Date and Date-Time Variable**

It’s a requirement to have a date or date-time variable as a predictor. The `fit()` interface accepts date and date-time features and handles them internally.

- `fit(y ~ date)`

**Seasonal Period Specification**

The period can be non-seasonal (`seasonal_period = 1` or "none") or yearly seasonal (e.g. For monthly time stamps, `seasonal_period = 12`, `seasonal_period = "12 months"`, or `seasonal_period = "yearly"`). There are 3 ways to specify:

1. `seasonal_period = "auto"`: A seasonal period is selected based on the periodicity of the data (e.g. 12 if monthly)
2. `seasonal_period = 12`: A numeric frequency. For example, 12 is common for monthly data
3. `seasonal_period = "1 year"`: A time-based phrase. For example, "1 year" would convert to 12 for monthly data.

**Univariate (No xregs, Exogenous Regressors):**

For univariate analysis, you must include a date or date-time feature. Simply use:

- Formula Interface: `fit(y ~ date)` will ignore xreg’s.

**Multivariate (xregs, Exogenous Regressors)**

The `xreg` parameter is populated using the `fit()` function:

- Only factor, ordered factor, and numeric data will be used as xregs.
- Date and Date-time variables are not used as xregs
- Character data should be converted to factor.

**Xreg Example:** Suppose you have 3 features:

1. `y` (target)
2. `date` (time stamp),
3. `month.lbl` (labeled month as a ordered factor).

The `month.lbl` is an exogenous regressor that can be passed to the `sarima_reg()` using `fit()`:

- `fit(y ~ date + month.lbl)` will pass `month.lbl` on as an exogenous regressor.

Note that date or date-time class values are excluded from `xreg`. 
See Also

\texttt{fit.model_spec()}, \texttt{set_engine()}

Examples

```
Not run:
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)
library(bayesmodels)

Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

Split Data 80/20
splits <- rsample::initial_time_split(m750, prop = 0.8)

---- ARIMA ----
Model Spec
model_spec <- sarima_reg() %>%
 set_engine("stan")

Fit Spec
model_fit <- model_spec %>%
 fit(log(value) ~ date, data = training(splits))
model_fit

Model Spec
model_spec <- sarima_reg(
 seasonal_period = 12,
 non_seasonal_ar = 3,
 non_seasonal_differences = 1,
 non_seasonal_ma = 3,
 seasonal_ar = 1,
 seasonal_differences = 0,
 seasonal_ma = 1
) %>%
 set_engine("stan")

Fit Spec
model_fit <- model_spec %>%
 fit(log(value) ~ date, data = training(splits))
model_fit

End(Not run)
```
Sarima_stan_fit_impl  

Low-Level ARIMA function for translating modeltime to forecast

Description

Low-Level ARIMA function for translating modeltime to forecast

Usage

Sarima_stan_fit_impl(
  x,
  y,
  period = "auto",
  p = 0,
  d = 0,
  q = 0,
  P = 0,
  D = 0,
  Q = 0,
  chains = 4,
  iter = 2000,
  warmup = iter/2,
  adapt.delta = 0.9,
  tree.depth = 10,
  seed = NULL,
  ...
)

Arguments

x  |  A dataframe of xreg (exogenous regressors)
y  |  A numeric vector of values to fit
period |  A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or time-based phrase of "2 weeks" can be used if a date or date-time variable is provided.
p  |  The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in pdq-notation.
d  |  The order of integration for non-seasonal differencing. Often denoted "d" in pdq-notation.
q  |  The order of the non-seasonal moving average (MA) terms. Often denoted "q" in pdq-notation.
P  |  The order of the seasonal auto-regressive (SAR) terms. Often denoted "P" in PDQ-notation.
D  |  The order of integration for seasonal differencing. Often denoted "D" in PDQ-notation.
The order of the seasonal moving average (SMA) terms. Often denoted "Q" in PDQ-notation.

An integer of the number of Markov Chains chains to be run, by default 4 chains are run.

An integer of total iterations per chain including the warm-up, by default the number of iterations are 2000.

A positive integer specifying number of warm-up (aka burn-in) iterations. This also specifies the number of iterations used for step-size adaptation, so warm-up samples should not be used for inference. The number of warmup should not be larger than iter and the default is iter/2.

An optional real value between 0 and 1, the thin of the jumps in a HMC method. By default is 0.9

An integer of the maximum depth of the trees evaluated during each iteration. By default is 10.

An integer with the seed for using when predicting with the model.

Additional arguments passed to forecast::Arima

Value

A modeltime model

Sarima_stan_predict_impl

Bridge prediction function for ARIMA models

Description

Bridge prediction function for ARIMA models

Usage

Sarima_stan_predict_impl(object, new_data, ...)

Arguments

object An object of class model_fit
new_data A rectangular data object, such as a data frame.
... Additional arguments passed to forecast::Arima()

Value

A prediction
Tuning Parameters for Additive Linear State Space Regression Models

**Description**
Tuning Parameters for Additive Linear State Space Regression Models

**Usage**
trend_model()
damped_model()
seasonal_model()

**Details**
The main parameters for Additive Linear State Space Regression Models are:

- `trend_model`: A boolean value to specify a trend local level model.
- `damped_model`: A boolean value to specify a damped trend local level model.
- `seasonal_model`: A boolean value to specify a seasonal trend local level model.
- `markov_chains`: The number of markov chains.
- `adapt_delta`: The thin of the jumps in a HMC method
- `tree_depth`: Maximum depth of the trees

**Value**
A parameter
A parameter
A parameter

**Examples**
damped_model()
seasonal_model()
ssm_stan_fit_impl  
*Low-Level ARIMA function for translating modeltime to forecast*

Description

Low-Level ARIMA function for translating modeltime to forecast

Usage

```r
ssm_stan_fit_impl(
 x,
 y,
 trend = FALSE,
 damped = FALSE,
 seasonal = FALSE,
 period = 0,
 genT = FALSE,
 chains = 4,
 iter = 2000,
 warmup = iter/2,
 adapt.delta = 0.9,
 tree.depth = 10,
 seed = NULL,
 ...
)
```

Arguments

- **x**  
  A dataframe of xreg (exogenous regressors)
- **y**  
  A numeric vector of values to fit
- **trend**  
  A boolean value to specify a trend local level model. By default is FALSE.
- **damped**  
  A boolean value to specify a damped trend local level model. By default is FALSE.
- **seasonal**  
  A boolean value to specify a seasonal local level model.
- **period**  
  An integer specifying the periodicity of the time series.
- **genT**  
  A boolean value to specify for a generalized t-student SSM model.
- **chains**  
  An integer of the number of Markov Chains chains to be run, by default 4 chains are run.
- **iter**  
  An integer of total iterations per chain including the warm-up, by default the number of iterations are 2000.
- **warmup**  
  A positive integer specifying number of warm-up (aka burn-in) iterations. This also specifies the number of iterations used for step-size adaptation, so warm-up samples should not be used for inference. The number of warmup should not be larger than iter and the default is iter/2.
### ssm_stan_predict_impl

Bridge prediction function for ARIMA models

#### Description

Bridge prediction function for ARIMA models

#### Usage

```r
ssm_stan_predict_impl(object, new_data, ...)
```

#### Arguments

- **object**: An object of class `model_fit`
- **new_data**: A rectangular data object, such as a data frame.
- **...**: Additional arguments passed to `forecast::Arima()`

#### Value

A prediction

---

### svm_reg

General Interface for Stochastic Volatility Regression Models

#### Description

`svm_reg()` is a way to generate a `specification` of a Stochastic volatility model before fitting and allows the model to be created using different packages. Currently the only package is `bayesforecast`.

---

### Parameters

- **adapt.delta**: An optional real value between 0 and 1, the thin of the jumps in a HMC method. By default is 0.9
- **tree.depth**: An integer of the maximum depth of the trees evaluated during each iteration. By default is 10.
- **seed**: An integer with the seed for using when predicting with the model.
- **...**: Additional arguments passed to `forecast::Arima()`
Usage

svm_reg(
    mode = "regression",
    non_seasonal_ar = NULL,
    non_seasonal_ma = NULL,
    markov_chains = NULL,
    chain_iter = NULL,
    warmup_iter = NULL,
    adapt_delta = NULL,
    tree_depth = NULL,
    pred_seed = NULL
)

Arguments

mode A single character string for the type of model. The only possible value for this model is "regression".
non_seasonal_ar The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in pdq-notation.
non_seasonal_ma The order of the non-seasonal moving average (MA) terms. Often denoted "q" in pdq-notation
markov_chains An integer of the number of Markov Chains chains to be run, by default 4 chains are run.
chain_iter An integer of total iterations per chain including the warm-up, by default the number of iterations are 2000.
warmup_iter A positive integer specifying number of warm-up (aka burn-in) iterations. This also specifies the number of iterations used for step-size adaptation, so warm-up samples should not be used for inference. The number of warmup should not be larger than iter and the default is iter/2.
adapt_delta An optional real value between 0 and 1, the thin of the jumps in a HMC method. By default is 0.9
tree_depth An integer of the maximum depth of the trees evaluated during each iteration. By default is 10.
pred_seed An integer with the seed for using when predicting with the model.

Details

The data given to the function are not saved and are only used to determine the mode of the model. For svm_reg(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

- "stan" (default) - Connects to bayesforecast::stan_SVM()

Main Arguments

The main arguments (tuning parameters) for the model are:
• non_seasonal_ar: The order of the non-seasonal auto-regressive (AR) terms.
• non_seasonal_ma: The order of the non-seasonal moving average (MA) terms.
• markov_chains: An integer of the number of Markov Chains chains to be run.
• adapt_delta: The thin of the jumps in a HMC method.
• tree_depth: The maximum depth of the trees evaluated during each iteration.

These arguments are converted to their specific names at the time that the model is fit.
Other options and argument can be set using set_engine() (See Engine Details below).
If parameters need to be modified, update() can be used in lieu of recreating the object from scratch.

Value
A model spec

Engine Details
The standardized parameter names in bayesmodels can be mapped to their original names in each engine:

<table>
<thead>
<tr>
<th>bayesmodels</th>
<th>bayesforecast::stan_SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>non_seasonal_ar, non_seasonal_ma</td>
<td>arma(0, 0)</td>
</tr>
<tr>
<td>markov_chains</td>
<td>chains(4)</td>
</tr>
<tr>
<td>adapt_delta</td>
<td>adapt.delta(0.9)</td>
</tr>
<tr>
<td>tree_depth</td>
<td>tree.depth(10)</td>
</tr>
</tbody>
</table>

Other options can be set using set_engine().

stan (default engine)
The engine uses bayesforecast::stan_SVM().

Parameter Notes:
• xreg - This is supplied via the parsnip / modeltime fit() interface (so don’t provide this manually). See Fit Details (below).

Fit Details

Date and Date-Time Variable
It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts date and date-time features and handles them internally.

• fit(y ~ date)

Seasonal Period Specification
The period can be non-seasonal (seasonal_period = 1 or "none") or yearly seasonal (e.g. For monthly time stamps, seasonal_period = 12, seasonal_period = "12 months", or seasonal_period = "yearly"). There are 3 ways to specify:
1. seasonal_period = "auto": A seasonal period is selected based on the periodicity of the data (e.g. 12 if monthly)
2. seasonal_period = 12: A numeric frequency. For example, 12 is common for monthly data
3. seasonal_period = "1 year": A time-based phrase. For example, "1 year" would convert to 12 for monthly data.

**Univariate (No xregs, Exogenous Regressors):**

For univariate analysis, you must include a date or date-time feature. Simply use:

- Formula Interface (recommended): `fit(y ~ date)` will ignore xreg’s.

**Multivariate (xregs, Exogenous Regressors)**

The `xreg` parameter is populated using the `fit()` or `fit_xy()` function:

- Only factor, ordered factor, and numeric data will be used as xregs.
- Date and Date-time variables are not used as xregs
- Character data should be converted to factor.

**Xreg Example:** Suppose you have 3 features:

1. `y` (target)
2. `date` (time stamp),
3. `month.lbl` (labeled month as a ordered factor).

The `month.lbl` is an exogenous regressor that can be passed to the `arima_reg()` using `fit()`:

- `fit(y ~ date + month.lbl)` will pass `month.lbl` on as an exogenous regressor.

Note that date or date-time class values are excluded from `xreg`.

**See Also**

`fit.model_spec()`, `set_engine()`

**Examples**

```r
Not run:
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)
library(bayesmodels)

Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

Split Data 80/20
splits <- rsample::initial_time_split(m750, prop = 0.8)
```
# Model Spec
model_spec <- svm_reg() %>%
  set_engine("stan")

# Fit Spec
model_fit <- model_spec %>%
  fit(log(value) ~ date, data = training(splits))
model_fit

## End(Not run)

---

**svm_stan_fit_impl**  
*Low-Level ARIMA function for translating modeltime to forecast*

---

**Description**

Low-Level ARIMA function for translating modeltime to forecast

**Usage**

```r
svm_stan_fit_impl(
 x, y, p = 0, q = 0, chains = 4,
 iter = 2000, warmup = iter/2,
 adapt.delta = 0.9, tree.depth = 10,
 seed = NULL,
 ...
)
```

**Arguments**

- `x`  
  A dataframe of xreg (exogenous regressors)

- `y`  
  A numeric vector of values to fit

- `p`  
  The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in pdq-notation.

- `q`  
  The order of the non-seasonal moving average (MA) terms. Often denoted "q" in pdq-notation.

- `chains`  
  An integer of the number of Markov Chains chains to be run, by default 4 chains are run.
iter
An integer of total iterations per chain including the warm-up, by default the number of iterations are 2000.

warmup
A positive integer specifying number of warm-up (aka burn-in) iterations. This also specifies the number of iterations used for step-size adaptation, so warm-up samples should not be used for inference. The number of warmup should not be larger than iter and the default is iter/2.

adapt.delta
An optional real value between 0 and 1, the thin of the jumps in a HMC method. By default is 0.9

tree.depth
An integer of the maximum depth of the trees evaluated during each iteration. By default is 10.

seed
An integer with the seed for using when predicting with the model.

... Additional arguments passed to forecast::Arima

Value
A modeltime model

Description
Bridge prediction function for ARIMA models

Usage
	svm_stan_predict_impl(object, new_data, ...)

Arguments

object An object of class model_fit
new_data A rectangular data object, such as a data frame.
... Additional arguments passed to forecast::Arima()

Value
A prediction
Index

adapt_delta (sarima_params), 37
adaptive_spline, 2
adaptive_spline_stan_fit_impl, 6
adaptive_spline_stan_predict_impl, 7
adaptive_splines_params, 5
additive_state_space, 8
arch_order (garch_params), 21
asymmetry (garch_params), 21
BASS::bass(), 3, 4
bayesforecast::stan_garch(), 23, 24
bayesforecast::stan_naive(), 33, 34
bayesforecast::stan_sarima(), 40, 41
bayesforecast::stan_svm(), 9, 10
bayesforecast::stan_SVM(), 48, 49
bayesian_structural_reg, 12
bayesian_structural_stan_fit_impl, 14
bayesian_structural_stan_predict_impl, 15
brms::brm(), 29
brms::s(), 29
brms::t2(), 29
bsts::bsts(), 12
damped_model (ssm_params), 45
derror_method
(expoential_smoothing_params), 18
exp_smoothing_stan_fit_impl, 19
exp_smoothing_stan_predict_impl, 20
exponential_smoothing, 15
exponential_smoothing_params, 18
fit.model_spec(), 4, 11, 13, 17, 25, 34, 42, 50
garch_order (garch_params), 21
garch_params, 21
garch_reg, 22
garch_stan_fit_impl, 26
garch_stan_predict_impl, 28
garch_t_student (garch_params), 21
gen_additive_reg, 28
gen_additive_stan_fit_impl, 30
gen_additive_stan_predict_impl, 31
markov_chains (sarima_params), 37
max_categorical_degree (adaptive_splines_params), 5
max_degree (adaptive_splines_params), 5
method (exponential_smoothing_params), 18
mgarch_order (garch_params), 21
min_basis_points (adaptive_splines_params), 5
naive_params, 32
non_seasonal_ar (sarima_params), 37
non_seasonal_differences (sarima_params), 37
non_seasonal_ma (sarima_params), 37
parsnip::set_engine(), 29
random_walk_reg, 32
random_walk_stan_fit_impl, 35
random_walk_stan_predict_impl, 36
Rlgt::rlgt(), 16
sarima_params, 37
sarima_reg, 38
Sarima_stan_fit_impl, 43
Sarima_stan_predict_impl, 44
seasonal_ar (sarima_params), 37
seasonal_differences (sarima_params), 37
seasonal_ma (sarima_params), 37
seasonal_model (ssm_params), 45
seasonal_random_walk (naive_params), 32
seasonality_type
(exponential_smoothing_params), 18
set_engine(). 4, 11, 13, 17, 25, 34, 42, 50
splines_degree
    (adaptiveSplines_params), 5
ssm_params, 45
ssm_stan_fit_impl, 46
ssm_stan_predict_impl, 47
svm_reg, 47
svm_stan_fit_impl, 51
svm_stan_predict_impl, 52

tree_depth (sarima_params), 37
trend_model (ssm_params), 45