Package ‘bayesassurance’

June 17, 2022

Type Package
Title Bayesian Assurance Computation
Version 0.1.0
Description Computes Bayesian assurance under various settings characterized by different assumptions and objectives, including precision-based conditions, credible intervals, and goal functions. All simulation-based functions included in this package rely on a two-stage Bayesian method that assigns two distinct priors to evaluate the probability of observing a positive outcome, which addresses subtle limitations that take place when using the standard single-prior approach. For more information, please refer to Pan and Banerjee (2021) <arXiv:2112.03509>.
License GPL (>= 2)
URL https://github.com/jpan928/bayesassurance_rpackage
Depends R (>= 3.5.0),
Imports ggplot2 (>= 3.3.5), plotly (>= 4.10.0), plot3D (>= 1.4), pbapply (>= 1.5.0), dplyr (>= 1.0.8), MASS (>= 7.3.55), rlang (>= 1.0.2), stats (>= 4.0.5), mathjaxr (>= 1.5.2)
Maintainer Jane Pan <jpan1@ucla.edu>
Encoding UTF-8
Language en-US
RoxygenNote 7.1.2
Suggests rmarkdown, knitr, testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation no
Author Jane Pan [cre, aut], Sudipto Banerjee [aut]
Repository CRAN
Date/Publication 2022-06-17 10:40:17 UTC
R topics documented:

assurance_nd_na .. 2
bayes_adcock .. 3
bayes_goal_func .. 4
bayes_sim .. 6
bayes_sim_betabin .. 9
bayes_sim_unbalanced ... 10
bayes_sim_unknownvar ... 13
gen_Xn .. 15
gen_Xn_longitudinal ... 16
pwr_curve .. 17
pwr_freq .. 19

Index 21

assurance_nd_na Bayesian Assurance Computation

Description
Takes in a set of parameters and returns the exact Bayesian assurance based on a closed-formed solution.

Usage
assurance_nd_na(n, n_a, n_d, theta_0, theta_1, sigsq, alt, alpha = 0.05)

Arguments

n sample size (either scalar or vector)

n_a sample size at analysis stage that quantifies the amount of prior information we have for parameter \(\theta \). This should be a single scalar value.

n_d sample size at design stage that quantifies the amount of prior information we have for where the data is being generated from. This should be a single scalar value.

theta_0 parameter value that is known a priori (typically provided by the client)

theta_1 alternative parameter value that will be tested in comparison to theta_0. See alt for specification options.

sigsq known variance \(\sigma^2 \).

alt specifies alternative test case, where alt = "greater" tests if \(\theta_1 > \theta_0 \), alt = "less" tests if \(\theta_1 < \theta_0 \), and alt = "two.sided" performs a two-sided test. alt = "greater" by default.

alpha significance level
Value

objects corresponding to the assurance

- assurance_table: table of sample sizes and corresponding assurance values.
- assurance_plot: assurance curve that is only returned if n is a vector. This curve covers a wider range of sample sizes than the inputted values specified for n, where specific assurance values are marked in red.

Examples

```r
## Assign the following fixed parameters to determine the Bayesian assurance
## for the given vector of sample sizes.

n <- seq(10, 250, 5)
n_a <- 1e-8
n_d <- 1e+8
theta_0 <- 0.15
theta_1 <- 0.25
sigsq <- 0.104
assur_vals <- assuranceNdNa(n = n, n_a = n_a, n_d = n_d,
theta_0 = theta_0, theta_1 = theta_1,
sigsq = sigsq, alt = "two.sided", alpha = 0.05)
assur_vals$assurance_plot
```

Bayesian Assurance Computation in the Precision-Based Setting

Description

Returns the Bayesian assurance of observing that the absolute difference between the true underlying population parameter and the sample estimate falls within a margin of error no greater than a fixed precision level, d.

Usage

```r
bayes_adcock(
  n,
  d,
  mu_beta_a,
  mu_beta_d,
  n_a,
  n_d,
  sig_sq,
  alpha,
  mc_iter = 1000
)
```
Arguments

- **n**: sample size (either vector or scalar).
- **d**: fixed precision level
- **mu_beta_a**: analysis stage mean
- **mu_beta_d**: design stage mean
- **n_a**: sample size at analysis stage. Also quantifies the amount of prior information we have for parameter μ.
- **n_d**: sample size at design stage. Also quantifies the amount of prior information we have for where the data is being generated from.
- **sig_sq**: known variance σ^2.
- **alpha**: significance level
- **mc_iter**: number of MC samples evaluated under the analysis objective

Value

- approximate Bayesian assurance under precision-based conditions

Examples

```r
n <- seq(20, 145, 5)
out <- bayes_adcock(n = n, d = 0.20, mu_beta_a = 0.64, mu_beta_d = 0.9,
n_a = 20, n_d = 10, sig_sq = 0.265,
alpha = 0.05, mc_iter = 1000)
head(out$assurance_table)
out$assurance_plot
```

bayes_goal_func
Decision Making using Rate of Correct Classification

Description

Determines the rate of correctly classifying the linear hypothesis as true or false, where the hypothesis test is specified as

$$H_0: u'\beta = c0$$

vs.

$$H_1: u'\beta = c1$$

. See vignette for more details.

Usage

```r
bayes_goal_func(n, Xn = NULL, K, pi, sigsq, u, beta_0, beta_1)
```
bayes_goal_func

Arguments

- `n` sample size (vector or scalar).
- `Xn` design matrix that characterizing the data. This is specifically given by the normal linear regression model

\[y_n = X_n \beta + \epsilon, \]
\[\epsilon \sim N(0, \sigma^2 I_n), \]

where \(I_n \) is an \(n \) by \(n \) identity matrix. When set to NULL, an appropriate \(Xn \) is automatically generated bayesassurance::gen_Xn(). Note that setting \(Xn = \) NULL also enables user to pass in a vector of sample sizes to undergo evaluation as the function will automatically adjust \(Xn \) accordingly based on the sample size.

- `K` The amount of utility associated with \(H0 \) being correctly accepted. The null hypothesis is not rejected if the posterior probability of \(H0 \) is at least \(1/(1 + K) \).

- `pi` constant corresponding to the prior on parameter \(\beta \) such that \(P(u'\beta_0) = 1 - P(u'\beta_1) = \pi \).

- `sigsq` variance constant of the linear regression model

- `u` fixed scalar or vector of the same dimension as \(\beta_0 \) and \(\beta_1 \)

- `beta_0` fixed scalar or vector that null hypothesis is set to

- `beta_1` fixed scalar or vector that alternative hypothesis is set to

Value

a list of objects corresponding to the rate of classifications

- `rc_table`: table of sample size and corresponding correct classification rates
- `rc_plot`: plot of correct classification rates for varying sample sizes

Examples

```r
## Example
n <- seq(100, 1200, 10)
out <- bayesassurance::bayes_goal_func(n, Xn = NULL, K = 1, pi = 0.5, sigsq = 1, u = 1, beta_0 = 0.5, beta_1 = 0.6)
out$rc_plot
```
Bayesian Simulation in Conjugate Linear Model Framework

Description

Approximates the Bayesian assurance of attaining either \(u'\beta > C \), \(u'\beta < C \), or \(u'\beta \neq C \), for equal-sized samples through Monte Carlo sampling. The function also carries the capability to process longitudinal data. See Argument descriptions for more detail.

Usage

bayes_sim(
 n,
 p = NULL,
 u,
 C,
 Xn = NULL,
 Vn = NULL,
 Vbeta_d,
 Vbeta_a_inv,
 sigsq,
 mu_beta_d,
 mu_beta_a,
 alt = "two.sided",
 alpha,
 mc_iter,
 longitudinal = FALSE,
 ids = NULL,
 from = NULL,
 to = NULL,
 poly_degree = NULL
)

Arguments

- **n**
 sample size (either scalar or vector). When `longitudinal = TRUE`, n denotes the number of observations per subject.

- **p**
 column dimension of design matrix \(Xn \). If \(Xn = NULL \), p must be specified to denote the column dimension of the default design matrix generated by the function.

- **u**
 a scalar or vector included in the expression to be evaluated, e.g.

 \[
 u'\beta > C,
 \]

 where \(\beta \) is an unknown parameter that is to be estimated.

- **C**
 constant to be compared
\(X_n\) design matrix that characterizes where the data is to be generated from. This is specifically given by the normal linear regression model
\[y_n = X_n \beta + \epsilon, \]
\[\epsilon \sim N(0, \sigma^2 V_n). \]
When set to NULL, \(X_n\) is generated in-function using either `bayesassurance::gen_Xn()` or `bayesassurance::gen_Xn_longitudinal()`. Note that setting \(X_n = \text{NULL}\) also enables user to pass in a vector of sample sizes to undergo evaluation as the function will automatically adjust \(X_n\) accordingly based on the sample size.

\(V_n\) a correlation matrix for the marginal distribution of the sample data \(y_n\). Takes on an identity matrix when set to NULL.

\(V_{\beta_d}\) correlation matrix that helps describe the prior information on \(\beta\) in the design stage.

\(V_{\beta_a}^{-1}\) inverse-correlation matrix that helps describe the prior information on \(\beta\) in the analysis stage.

\(\text{sigsq}\) a known and fixed constant preceding all correlation matrices \(V_n\), \(V_{\beta_d}\), and \(V_{\beta_a}^{-1}\).

\(\mu_{\beta_d}\) design stage mean

\(\mu_{\beta_a}\) analysis stage mean

\(\text{alt}\) specifies alternative test case, where alt = "greater" tests if \(u' \beta > C\), alt = "less" tests if \(u' \beta < C\), and alt = "two.sided" performs a two-sided test. By default, alt = "greater".

\(\alpha\) significance level

\(\text{mc.iter}\) number of MC samples evaluated under the analysis objective

\(\text{longitudinal}\) when set to TRUE, constructs design matrix using inputs that correspond to a balanced longitudinal study design.

\(\text{ids}\) vector of unique subject ids, usually of length 2 for study design purposes.

\(\text{from}\) start time of repeated measures for each subject

\(\text{to}\) end time of repeated measures for each subject

\(\text{poly}_\text{degree}\) only needed if \(\text{longitudinal} = \text{TRUE}\), specifies highest degree taken in the longitudinal model.

Value

a list of objects corresponding to the assurance approximations

- `assurance_table`: table of sample size and corresponding assurance values
- `assur_plot`: plot of assurance values
- `mc_samples`: number of Monte Carlo samples that were generated and evaluated

See Also

`pwr_freq` for frequentist power function, `assurance_nd_na` for a closed form assurance function, and `bayes_sim_unknownvar` for a Bayesian assurance function assumes unvariance.
Examples

Example 1
A single Bayesian assurance value obtained given a scalar sample size
n and p=1. Note that setting p=1 implies that
beta is a scalar parameter.

bayesassurance::bayes_sim(n=100, p = 1, u = 1, C = 0.15, Xn = NULL,
Vbeta_d = 1e-8, Vbeta_a_inv = 0, Vn = NULL, sigsq = 0.265, mu_beta_d = 0.3,
mu_beta_a = 0, alt = "two.sided", alpha = 0.05, mc_iter = 5000)

Example 2
Illustrates a scenario in which weak analysis priors and strong
design priors are assigned to enable overlap between the frequentist
power and Bayesian assurance.

library(ggplot2)
n <- seq(100, 250, 5)

Frequentist Power
power <- bayesassurance::pwr_freq(n, sigsq = 0.265, theta_0 = 0.15,
theta_1 = 0.25, alt = "greater", alpha = 0.05)

Bayesian simulation values with specified values from the n vector
assurance <- bayesassurance::bayes_sim(n, p = 1, u = 1, C = 0.15, Xn = NULL,
Vbeta_d = 1e-8, Vbeta_a_inv = 0, Vn = NULL, sigsq = 0.265, mu_beta_d = 0.25,
mu_beta_a = 0, alt = "greater", alpha = 0.05, mc_iter = 1000)

Visual representation of plots overlayed on top of one another
df1 <- as.data.frame(cbind(n, power = powerpwr_tablePower))
df2 <- as.data.frame(cbind(n, assurance =
assurance$assurance_table$Assurance))

plot_curves <- ggplot2::ggplot(df1, alpha = 0.5, ggplot2::aes(x = n, y = power,
color="Frequentist")) + ggplot2::geom_line(lwd=1.2)
plot_curves <- plot_curves + ggplot2::geom_point(data = df2, alpha = 0.5,
aes(x = n, y = assurance, color="Bayesian"),lwd=1.2) +
ggplot2::ggtitle("Bayesian Simulation vs. Frequentist Power Computation")
plot_curves

Example 3
Longitudinal example where n now denotes the number of repeated measures
per subject and design matrix is determined accordingly.

subject ids
n <- seq(10, 100, 5)
ids <- c(1,2)
siqsq <- 100
Vbeta_a_inv <- matrix(rep(0, 16), nrow = 4, ncol = 4)
Bayesian Assurance Computation in the Beta-Binomial Setting

Description

Returns the Bayesian assurance corresponding to a hypothesis test for difference in two independent proportions.

Usage

```r
bayes_sim_betabin(
  n1,
  n2,
  p1,
  p2,
  alpha_1,
  alpha_2,
  beta_1,
  beta_2,
  sig_level,
  alt,
  mc_iter
)
```

Arguments

- `n1`: sample size of first group
- `n2`: sample size of second group
- `p1`: proportion of successes in first group. Takes on a NULL (default) assignment if unknown.
- `p2`: proportion of successes in second group. Takes on a NULL (default) assignment if unknown.
alpha_1, beta_1
shape parameters for the distribution of \(p_1 \) if \(p_1 \) is unknown: \(p_1 \ Beta(\alpha_1, \beta_1) \)

alpha_2, beta_2
shape parameters for the distribution of \(p_2 \) if \(p_2 \) is unknown: \(p_2 \ Beta(\alpha_2, \beta_2) \)

sig_level
significance level

alt
a character string specifying the alternative hypothesis, must select one of following choices: "two.sided" (default), "greater" or "less".

mc_iter
number of MC samples evaluated under the analysis objective

Value
approximate Bayesian assurance of independent two-sample proportion test

Examples

###
alpha1 = 0.5, beta1 = 0.5, alpha2 = 0.5, beta2 = 0.5
###

n <- seq(200, 1000, 10)
assur_vals <- bayesassurance::bayes_sim_betabin(n1 = n, n2 = n,
p1 = 0.25, p2 = 0.2, alpha_1 = 0.5, beta_1 = 0.5, alpha_2 = 0.5,
beta_2 = 0.5, sig_level = 0.05, alt = "greater", mc_iter = 1000)

assur_vals$assurance_table
assur_vals$assurance_plot

bayes_sim_unbalanced

Unbalanced Bayesian Simulation in Conjugate Linear Model Framework

Description
Approximates the Bayesian assurance of attaining \(\mathbf{x}' \beta > C \) for unbalanced study designs through Monte Carlo sampling. See Argument descriptions for more detail.

Usage

bayes_sim_unbalanced(
 n1,
 n2,
 repeats = 1,
 u,
 C,
 Xn = NULL,
 Vn = NULL,
 Vbeta_d,
Arguments

n1: first sample size (vector or scalar).
n2: second sample size (vector or scalar).
repeats: an positive integer specifying number of times to repeat c(n1, n2). Applicable for studies that consider multiple measures within each group. Default setting is repeats = 1 if not applicable.
u: a scalar or vector to evaluate $u' \beta > C$,
where β is an unknown parameter that is to be estimated. Default setting is $u = 1$.
C: constant value to be compared to when evaluating $u' \beta > C$
Xn: design matrix that characterizes where the data is to be generated from. This is specifically designed under the normal linear regression model
\[
y_n = X_n \beta + \epsilon, \epsilon \sim N(0, \sigma^2 V_n).
\]
When set to NULL, X_n is generated in-function using bayesassurance::gen_Xn(). Note that setting $X_n = \text{NULL}$ also enables user to pass in a vector of sample sizes to undergo evaluation.

Vn: a correlation matrix for the marginal distribution of the sample data y_n. Takes on an identity matrix when set to NULL.

Vbeta_d: correlation matrix that helps describe the prior information on β in the design stage

Vbeta_a_inv: inverse-correlation matrix that helps describe the prior information on β in the analysis stage

sigsq: a known and fixed constant preceding all correlation matrices V_n, $Vbeta_d$ and $Vbeta_a_inv$.

mu_beta_d: design stage mean

mu_beta_a: analysis stage mean

alt: specifies alternative test case, where alt = "greater" tests if $u' \beta > C$, alt = "less" tests if $u' \beta < C$, and alt = "two.sided" performs a two-sided test. By default, alt = "greater".
alpha significance level
mc_iter number of MC samples evaluated under the analysis objective
surface_plot when set to TRUE and n1 and n2 are vectors, a contour map showcasing various assurance values corresponding to different combinations of n1 and n2 is produced.

Value

a list of objects corresponding to the assurance approximations

- assurance_table: table of sample size and corresponding assurance values
- contourplot: contour map of assurance values
- mc_samples: number of Monte Carlo samples that were generated and evaluated

Examples

Example 1
Sample size vectors are passed in for n1 and n2 to evaluate
assurance.

n1 <- seq(20, 75, 5)
n2 <- seq(50, 160, 10)

assur_out = bayes_sim_unbalanced(n1 = n1, n2 = n2, repeats = 1, u = c(1, -1),
C = 0, Xn = NULL, Vbeta_d = matrix(c(50, 0, 0, 10), nrow = 2, ncol = 2),
Vbeta_a_inv = matrix(rep(0, 4), nrow = 2, ncol = 2),
Vn = NULL, sigsq = 100, mu_beta_d = c(1.17, 1.25),
mu_beta_a = c(0, 0), alt = "two.sided", alpha = 0.05, mc_iter = 1000,
surface_plot = FALSE)

assur_out$assurance_table

Example 2
We can produce a contour plot that evaluates unique combinations of n1
and n2 simply by setting `surfaceplot = TRUE`.

n1 <- seq(20, 75, 5)
n2 <- seq(50, 160, 10)

assur_out = bayes_sim_unbalanced(n1 = n1, n2 = n2, repeats = 1, u = c(1, -1),
C = 0, Xn = NULL, Vbeta_d = matrix(c(50, 0, 0, 10), nrow = 2, ncol = 2),
Vbeta_a_inv = matrix(rep(0, 4), nrow = 2, ncol = 2),
Vn = NULL, sigsq = 100, mu_beta_d = c(1.17, 1.25),
mu_beta_a = c(0, 0), alt = "two.sided", alpha = 0.05, mc_iter = 1000,
surface_plot = TRUE)

assur_out$assurance_table
assur_out$contourplot
Bayesian Simulation with Composite Sampling

Description

Approximates the Bayesian assurance of a one-sided hypothesis test through Monte Carlo sampling with the added assumption that the variance is unknown.

Usage

bayes_sim_unknownvar(
 n,
 p = NULL,
 u,
 C,
 R,
 Xn = NULL,
 Vn,
 Vbeta_d,
 Vbeta_a_inv,
 mu_beta_d,
 mu_beta_a,
 a_sig_a,
 b_sig_a,
 a_sig_d,
 b_sig_d,
 alt = "greater",
 alpha,
 mc_iter
)

Arguments

n sample size (either vector or scalar)

p column dimension of design matrix Xn. If Xn = NULL, p must be specified to denote the column dimension of the default design matrix generated by the function.

u a scalar or vector to evaluate $u'\beta > C$,

where β is an unknown parameter that is to be estimated.

C constant value to be compared to when evaluating $u'\beta > C$

R number of iterations we want to pass through to check for satisfaction of the analysis stage objective. The proportion of those iterations meeting the analysis objective corresponds to the approximated Bayesian assurance.
X_n design matrix that characterizes where the data is to be generated from. This is specifically given by the normal linear regression model

$$y_n = X_n \beta + \epsilon,$$

$$\epsilon \sim N(0, \sigma^2 V_n),$$

where σ^2 is unknown in this setting. Note that X_n must have column dimension p.

V_n an n by n correlation matrix for the marginal distribution of the sample data y_n. Takes on an identity matrix when set to NULL.

V_{beta_d} correlation matrix that helps describe the prior information on β in the design stage

V_{beta_a} inverse-correlation matrix that helps describe the prior information on β in the analysis stage

μ_{beta_d} design stage mean

μ_{beta_a} analysis stage mean

a_{sig_a}, b_{sig_a} shape and scale parameters of the inverse gamma distribution where variance σ^2 is sampled from in the analysis stage

a_{sig_d}, b_{sig_d} shape and scale parameters of the inverse gamma distribution where variance σ^2 is sampled from in the design stage

alt specifies alternative test case, where $alt = "greater"$ tests if $u'\beta > C$, $alt = "less"$ tests if $u'\beta < C$, and $alt = "two.sided"$ performs a two-sided test. By default, $alt = "greater"$.

$alpha$ significance level

mc_iter number of MC samples evaluated under the analysis objective

Value

a list of objects corresponding to the assurance approximations

- assurance_table: table of sample size and corresponding assurance values
- assur_plot: plot of assurance values
- mc_samples: number of Monte Carlo samples that were generated and evaluated

See Also

bayes_sim for the Bayesian assurance function for known variance.

Examples

```r
## O'Hagan and Stevens (2001) include a series of examples with
## pre-specified parameters that we will be using to replicate their
## results through our Bayesian assurance simulation.
```
The inputs are as follows:

\[
n \leftarrow 285
\]
\[
p \leftarrow 4 \quad \text{## includes two parameter measures (cost and efficacy) for each of}
\]
\[
\text{## the two treatments, for a total of } p = 4 \text{ parameters.}
\]
\[
K \leftarrow 20000
\]
\[
C \leftarrow 0
\]
\[
u \leftarrow \text{as.matrix(c(-K, 1, K, -1))}
\]

Set up correlation matrices

\[
V_{\beta_a}^{-1} \leftarrow \text{matrix(rep(0, } p^2) \text{, nrow = } p \text{, ncol = } p)
\]
\[
sigsq \leftarrow 4.04^2
\]
\[
\tau_1 \leftarrow \tau_2 \leftarrow 8700
\]
\[
sig \leftarrow \text{sqrt(sigsq)}
\]
\[
V_n \leftarrow \text{matrix(0, nrow = n*p, ncol = n*p)}
\]
\[
V_n[1:n, 1:n] \leftarrow \text{diag(n)}
\]
\[
V_n[(2*n - (n-1)):2*(n-1)), (2*n - (n-1)):2*(n-1))] \leftarrow (\tau_1 / \text{sig})^2 \times \text{diag(n)}
\]
\[
V_n[(3*n - (n-1)):3*(n-1)), (3*n - (n-1)):3*(n-1))] \leftarrow \text{diag(n)}
\]
\[
V_n[(4*n - (n-1)):4*(n-1)), (4*n - (n-1)):4*(n-1))] \leftarrow (\tau_2 / \text{sig})^2 \times \text{diag(n)}
\]

\[
V_{\beta_d} \leftarrow (1 / \text{sigsq}) \ast
\]
\[
\text{matrix(c(4, 0, 3, 0, 0, 10^7, 0, 0, 3, 0, 4, 0, 0, 0, 0, 0, 10^7), nrow = 4, ncol = 4)}
\]
\[
\mu_{\beta_d} \leftarrow \text{as.matrix(c(5, 6000, 6.5, 7200))}
\]
\[
\mu_{\beta_a} \leftarrow \text{as.matrix(rep(0, p))}
\]
\[
alpha \leftarrow 0.05
\]
\[
epsilon \leftarrow 10^e-7
\]
\[
a_{\text{sig}_d} \leftarrow (\text{sigsq} / \text{epsilon}) + 2
\]
\[
b_{\text{sig}_d} \leftarrow \text{sigsq} \ast (a_{\text{sig}_d} - 1)
\]
\[
a_{\text{sig}_a} \leftarrow -p / 2
\]
\[
b_{\text{sig}_a} \leftarrow 0
\]

\[
\text{bayesassurance::bayes_sim_unknownvar(n = } n \text{, } p = 4, u = \text{as.matrix(c(-K, 1, K, -1))), } C = 0 \text{, } R = 40, Xn = NULL, Vn = Vn, V_{\beta_d} = V_{\beta_d}, V_{\beta_a}^{-1} = V_{\beta_a}^{-1}, \mu_{\beta_d} = \mu_{\beta_d}, \mu_{\beta_a} = \mu_{\beta_a}, a_{\text{sig}_d} = a_{\text{sig}_d}, b_{\text{sig}_d} = b_{\text{sig}_d}, a_{\text{sig}_a} = a_{\text{sig}_a}, b_{\text{sig}_a} = b_{\text{sig}_a}, a_{\text{sig}_d} = a_{\text{sig}_d}, b_{\text{sig}_d} = b_{\text{sig}_d}, b_{\text{sig}_d} = b_{\text{sig}_d}, b_{\text{sig}_a} = b_{\text{sig}_a}, \alpha = 0.05, \text{mc_iter} = 500)
\]

Description

Constructs design matrix using given sample size(s). Used for assurance analysis in the Bayesian setting.
Usage

\[\text{gen}_Xn(n) \]

Arguments

\(n \)
vector of sample sizes. Length of \(n \) corresponds to the number of groups being assessed in the study design as well as the column dimension of the design matrix.

Value

\(X_n \): a design matrix that can be used to assess the Bayesian assurance through Monte Carlo sampling using functions presented in this package.

See Also

\[\text{gen}_Xn_longitudinal \]

test

test

Examples

```r
## In the following example, notice that passing in a vector
## of length 4 returns a design matrix of column dimension 4, where
## each column is comprised of ones vectors with lengths that correspond
## to the inputted sample sizes.

n <- c(1,3,5,8)
gen_Xn(n = n)
```

Description

Constructs design matrix using inputs that correspond to a balanced longitudinal study design. Used for power and sample size analysis in the Bayesian setting.

Usage

\[\text{gen}_Xn_longitudinal(ids, from, to, num_repeated_measures, poly_degree = 1) \]

Arguments

\(ids \)
vector of unique subject ids, usually of length 2 for study design purposes.

\(from \)
start time of repeated measures for each subject

\(to \)
end time of repeated measures for each subject

\(num_repeated_measures \)
desired length of the repeated measures sequence. Should be a non-negative number, will be rounded up if fractional.

\(poly_degree \)
degree of polynomial in longitudinal model, set to 1 by default.
Value

Xn: a design matrix that can be used to assess the Bayesian assurance through Monte Carlo sampling using functions presented in this package.

See Also

gen_Xn

Examples

Example 1
We pass in a vector of subject IDs and specify the start and end
timepoints along with the desired length of the sequence.
The resulting design matrix contains vectors of
ones with lengths that correspond to the number of repeated
measures for each unique subject.

ids <- c(1, 2, 3, 4)
gen_Xn_longitudinal(ids, from = 1, to = 10, num_repeated_measures = 4)

Example 2
If we wish to fit a longitudinal model of a higher degree (e.g.
parabolic, cubic), we need to adjust the 'poly_degree' variable

parabolic
ids <- c(1, 2, 3, 4)
gen_Xn_longitudinal(ids, from = 1, to = 10, num_repeated_measures = 4,
poly_degree = 2)

cubic
ids <- c(1, 2, 3, 4)
gen_Xn_longitudinal(ids, from = 1, to = 10, num_repeated_measures = 4,
poly_degree = 3)

pltvx
n_d,
theta_0,
theta_1,
siqsq,
alt = "greater",
alpaha,
bayes_sim = FALSE,
mc_iter = NULL
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>sample size (either a scalar or vector)</td>
</tr>
<tr>
<td>n_a</td>
<td>sample size at analysis stage (setting n_a close to 0 corresponds to a weak analysis prior)</td>
</tr>
<tr>
<td>n_d</td>
<td>sample size at design stage</td>
</tr>
<tr>
<td>theta_0</td>
<td>parameter value that is known a priori (typically provided by the client)</td>
</tr>
<tr>
<td>theta_1</td>
<td>alternative parameter value that will be tested in comparison to theta_0. See alt for specification options.</td>
</tr>
<tr>
<td>sigsq</td>
<td>known variance σ^2</td>
</tr>
<tr>
<td>alt</td>
<td>specifies alternative test case, where alt = "greater" tests if theta_1 > theta_0, "less" tests if theta_1 < theta_0, and "two.sided" performs a two-sided test. alt = "greater" by default.</td>
</tr>
<tr>
<td>alpha</td>
<td>significance level</td>
</tr>
<tr>
<td>bayes_sim</td>
<td>when set to "TRUE", this indicates that the user wants to include simulated assurance results in the outputted plot. Default setting is "FALSE".</td>
</tr>
<tr>
<td>mc_iter</td>
<td>number of MC samples provided that bayes_sim = TRUE</td>
</tr>
</tbody>
</table>

Value

- plot of overlayed power and assurance curves produced using ggplot2
- a list of objects corresponding to the power/assurance curves
 - power: table of sample sizes and corresponding power values obtained from bayesassurance::pwr_freq().
 - assurance_table: table of sample sizes and corresponding assurance values obtained from bayesassurance::assurance_nd_na().
 - bayes_sim_table: table of sample sizes and corresponding assurance values obtained from MC sampling using bayesassurance::bayes_sim(). Returned only if bayes_sim = TRUE.
 - mc_samples: number of Monte Carlo samples that were generated and evaluated if bayes_sim = TRUE.
 - plot: plot of overlayed power/assurance curves.

See Also

ggplot2, pwr_freq for frequentist power function and bayes_sim for the Bayesian assurance function
Case 1: Weak Analysis Prior (n_a set to be small) + Strong Design Prior (n_d set to be large) that results in the Bayesian assurance and frequentist curve perfectly overlapping one another.

```r
n <- seq(10, 200, 10)
n_a <- 1e-8
n_d <- 1e+8
theta_0 <- 0.15
theta_1 <- 0.25
sigsq <- 0.104
alpha <- 0.05

# outputs all three plots
out <- bayesassurance::pwr_curve(n = n, n_a = n_a, n_d = n_d,
theta_0 = theta_0, theta_1 = theta_1, sigsq = sigsq, alt = "greater",
alpha = alpha, bayes_sim = TRUE, mc_iter = 5000)

# only outputs the closed-form solution power and assurance curves
pwr_curve(n = n, n_a = n_a, n_d = n_d, theta_0 = theta_0, theta_1 = theta_1,
siqsq = sigsq, alt = "greater", alpha = alpha, bayes_sim = FALSE)
```

Case 2: Weak Analysis Prior (n_a set to be small) + Weak Design Prior (n_d set to be small) that results in a assurance curve, which illustrates the noninformative prior setting.

```r
n <- seq(10, 200, 10)
n_a <- 1e-8
n_d <- 1e-8
theta_0 <- 0.15
theta_1 <- 0.25
sigsq <- 0.104
alpha <- 0.05

bayesassurance::pwr_curve(n = n, n_a = n_a, n_d = n_d, theta_0 = theta_0,
theta_1 = theta_1, sigsq = sigsq, alt = "greater", alpha = alpha,
bayes_sim = TRUE, mc_iter = 1000)
```

Description

Constructs a simple hypothesis testing framework based on the parameters specified and returns the corresponding frequentist power.
Usage

pwr_freq(n, theta_0, theta_1, sigsq, alt, alpha)

Arguments

n sample size (either scalar or vector)
theta_0 initial value the parameter is set equal to in the null hypothesis, where \(H_0 : \theta = \theta_0 \).
theta_1 alternative value to be compared to theta_0. See alt for specification options.
sigsq known variance \(\sigma^2 \)
alts specifies comparison between \(\theta_1 \) and \(\theta_0 \), where alt = "greater" tests if \(\theta_1 > \theta_0 \), alt = "less" tests if \(\theta_1 < \theta_0 \), and alt = "two.sided" performs a two-sided test. alt = "greater" by default.
alpha significance level

Value

objects corresponding to the power

- pwr_table: table of sample sizes and corresponding power values.
- pwr_plot: power curve that is only returned if n is a vector. This power curve covers a wider range of sample sizes than the inputted values specified for n, where specific power values are marked in red.
- power_val: single power value that is returned if n is a scalar.

Examples

n <- seq(10, 140, 5)
theta_0 <- 0.15
theta_1 <- 0.35
sigsq <- 0.3

pwr_vals <- pwr_freq(n = n, theta_0 = theta_0, theta_1 = theta_1, sigsq = sigsq, alt = "greater", alpha = 0.05)
pwr_vals$pwr_plot
Index

assurance_nd_na, 2, 7
bayes_adcock, 3
bayes_goal_func, 4
bayes_sim, 6, 14, 18
bayes_sim_betabin, 9
bayes_sim_unbalanced, 10
bayes_sim_unknownvar, 7, 13
gen_Xn, 15, 17
gen_Xn_longitudinal, 16, 16
ggplot2, 18
pwr_curve, 17
pwr_freq, 7, 18, 19