bamlss: Bayesian Additive Models for Location, Scale, and Shape (and Beyond)

Infrastructure for estimating probabilistic distributional regression models in a Bayesian framework. The distribution parameters may capture location, scale, shape, etc. and every parameter may depend on complex additive terms (fixed, random, smooth, spatial, etc.) similar to a generalized additive model. The conceptual and computational framework is introduced in Umlauf, Klein, Zeileis (2019) <doi:10.1080/10618600.2017.1407325> and the R package in Umlauf, Klein, Simon, Zeileis (2021) <doi:10.18637/jss.v100.i04>.

Version: 1.2-4
Depends: R (≥ 3.5.0), coda, colorspace, distributions3 (≥ 0.2.1), mgcv
Imports: Formula, MBA, mvtnorm, sp, Matrix, survival, methods, parallel
Suggests: bit, ff, fields, gamlss, gamlss.dist, interp, rjags, BayesX, mapdata, maps, sf, nnet, spatstat, spdep, zoo, keras, splines2, sdPrior, statmod, glogis, glmnet, scoringRules, knitr, rmarkdown, MASS, tensorflow
Published: 2024-04-29
DOI: 10.32614/CRAN.package.bamlss
Author: Nikolaus Umlauf ORCID iD [aut, cre], Nadja Klein ORCID iD [aut], Achim Zeileis ORCID iD [aut], Meike Koehler [ctb], Thorsten Simon ORCID iD [aut], Stanislaus Stadlmann [ctb], Alexander Volkmann ORCID iD [ctb]
Maintainer: Nikolaus Umlauf <Nikolaus.Umlauf at>
License: GPL-2 | GPL-3
NeedsCompilation: yes
Citation: bamlss citation info
Materials: NEWS
In views: Bayesian, MixedModels
CRAN checks: bamlss results


Reference manual: bamlss.pdf
Vignettes: First Steps


Package source: bamlss_1.2-4.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): bamlss_1.2-4.tgz, r-oldrel (arm64): bamlss_1.2-4.tgz, r-release (x86_64): bamlss_1.2-4.tgz, r-oldrel (x86_64): bamlss_1.2-4.tgz
Old sources: bamlss archive

Reverse dependencies:

Reverse depends: gmfamm, MJMbamlss
Reverse imports: distreg.vis, mevr, spiky


Please use the canonical form to link to this page.