Package ‘baguette’

February 14, 2024

Title Efficient Model Functions for Bagging

Version 1.0.2

Description Tree- and rule-based models can be bagged
(<doi:10.1007/BF00058655>) using this package and their predictions
equations are stored in an efficient format to reduce the model
objects size and speed.

License MIT + file LICENSE

URL https://baguette.tidymodels.org,
https://github.com/tidymodels/baguette

BugReports https://github.com/tidymodels/baguette/issues

Depends parsnip (>= 1.0.0), R (>= 3.6)

Imports butcher, C50, dials, dplyr, furrr, generics, hardhat (>=
1.1.0), magrittr, purrr, rlang, rpart, rsample, tibble, tidyr,
utils, withr

Suggests AmesHousing, covr, earth, modeldata, nnet, recipes,
markdown, spelling, testthat (>= 3.0.0), yardstick

Config/Needs/website tidyverse/tidytemplate

Config/testthat/edition 3

Encoding UTF-8

Language en-US

RoxygenNote 7.3.1

NeedsCompilation no

Author Max Kuhn [aut, cre] (<https://orcid.org/0000-0003-2402-136X>),
Posit Software, PBC [cph, fnd]

Maintainer Max Kuhn <max@posit.co>

Repository CRAN

Date/Publication 2024-02-13 23:36:47 UTC
R topics documented:

- bagger .. 2
- class_cost .. 5
- control_bag 6
- predict.bagger 7
- var_imp.bagger 8

Index 9

Description

General suite of bagging functions for several models.

Usage

bagger(x, ...)

Default S3 method:
bagger(x, ...)

S3 method for class 'data.frame'
bagger(
x,
y,
weights = NULL,
base_model = "CART",
times = 11L,
control = control_bag(),
cost = NULL,
...
)

S3 method for class 'matrix'
bagger(
x,
y,
weights = NULL,
base_model = "CART",
times = 11L,
control = control_bag(),
cost = NULL,
...
)
bagger

S3 method for class 'formula'
bagger(
 formula,
 data,
 weights = NULL,
 base_model = "CART",
 times = 11L,
 control = control_bag(),
 cost = NULL,
 ...
)

S3 method for class 'recipe'
bagger(
 x,
 data,
 base_model = "CART",
 times = 11L,
 control = control_bag(),
 cost = NULL,
 ...
)

Arguments

x A data frame, matrix, or recipe (depending on the method being used).

... Optional arguments to pass to the base model function.

y A numeric or factor vector of outcomes. Categorical outcomes (i.e, classes) should be represented as factors, not integers.

weights A numeric vector of non-negative case weights. These values are not used during bootstrap resampling.

base_model A single character value for the model being bagged. Possible values are "CART", "MARS", "nnet", and "C5.0" (classification only).

times A single integer greater than 1 for the maximum number of bootstrap samples/ensemble members (some model fits might fail).

control A list of options generated by control_bag().

cost A non-negative scale (for two class problems) or a cost matrix.

formula An object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. Note that this package does not support multivariate outcomes and that, if some predictors are factors, dummy variables will not be created unless by the underlying model function.

data A data frame containing the variables used in the formula or recipe.

details

bagger() fits separate models to bootstrap samples. The prediction function for each model object
is encoded in an R expression and the original model object is discarded. When making predictions, each prediction formula is evaluated on the new data and aggregated using the mean.

Variable importance scores are calculated using implementations in each package. When requested, the results are in a tibble with column names `term` (the predictor), `value` (the importance score), and `used` (the percentage of times that the variable was in the prediction equation).

The models can be fit in parallel using the `future` package. The enable parallelism, use the `future::plan()` function to declare how the computations should be distributed. Note that this will almost certainly multiply the memory requirements required to fit the models.

For neural networks, variable importance is calculated using the method of Garson described in Gevrey *et al* (2003)

References

Examples

```r
library(recipes)
library(dplyr)

data(biomass, package = "modeldata")

biomass_tr <-
  biomass %>%
  dplyr::filter(dataset == "Training") %>%
  dplyr::select(-dataset, -sample)

biomass_te <-
  biomass %>%
  dplyr::filter(dataset == "Testing") %>%
  dplyr::select(-dataset, -sample)

# ------------------------------------------------------------------------------
ctrl <- control_bag(var_imp = TRUE)
# ------------------------------------------------------------------------------

set.seed(7687)
cart_bag <- bagger(x = biomass_tr[, -6], y = biomass_tr$HHV,
                   base_model = "CART", times = 5, control = ctrl)
cart_bag

# Other interfaces
class_cost

# Recipes can be used
biomass_rec <-
  recipe(HHV ~ ., data = biomass_tr) %>%
  step_pca(all_predictors())

set.seed(7687)
cart_pca_bag <- bagger(biomass_rec, data = biomass_tr, base_model = "CART",
  times = 5, control = ctrl)
cart_pca_bag

class_cost  Cost parameter for minority class

Description

Used in bag_treer().

Usage

class_cost(range = c(0, 5), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible values, respectively.
trans A trans object from the scales package, such as scales::log10_trans() or scales::reciprocal_trans(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

This parameter reflects the cost of a misclassified sample relative to a baseline cost of 1.0. For example, if the first level of an outcome factor occurred rarely, it might help if this parameter were set to values greater than 1.0. If the second level of the outcome factor is in the minority, values less than 1.0 would cause the model to emphasize the minority class more than the majority class.

Examples

class_cost()
control_bag

Controlling the bagging process

Description

control_bag() can set options for ancillary aspects of the bagging process.

Usage

control_bag(
  var_imp = TRUE,
  allow_parallel = TRUE,
  sampling = "none",
  reduce = TRUE,
  extract = NULL
)

Arguments

var_imp A single logical: should variable importance scores be calculated?
allow_parallel A single logical: should the model fits be done in parallel (even if a parallel plan() has been created)?
sampling Either "none" or "down". For classification only. The training data, after bootstrapping, will be sampled down within each class (with replacement) to the size of the smallest class.
reduce Should models be modified to reduce their size on disk?
extract A function (or NULL) that can extract model-related aspects of each ensemble member. See Details and example below.

Details

Any arbitrary item can be saved from the model object (including the model object itself) using the extract argument, which should be a function with arguments x (for the model object), and ... . The results of this function are saved into a list column called extras (see the example below).

Value

A list.

Examples

# Extracting model components

num_term_nodes <- function(x, ...) {
  tibble::tibble(num_nodes = sum(x$frame$var == "<leaf>"))
}

# Extracting model components
predict.bagger

```r
set.seed(7687)
with_extras <- bagger(mpg ~ ., data = mtcars,
 base_model = "CART", times = 5,
 control = control_bag(extract = num_term_nodes))
dplyr::bind_rows(with_extras$model_df$extras)
```

---

**predict.bagger**

**Predictions from a bagged model**

**Description**

The `predict()` function computes predictions from each of the models in the ensembles and returns a single aggregated value for each sample in `new_data`.

**Usage**

```r
S3 method for class 'bagger'
predict(object, new_data, type = NULL, ...)
```

**Arguments**

- `object` An object generated by `bagger()`.
- `new_data` A data frame of predictors. If a recipe or formula were originally used, the `original` data should be passed here instead of a preprocessed version.
- `type` A single character value for the type of predictions. For regression models, `type = 'numeric'` is valid and `class` and `prob` are valid for classification models.
- `...` Not currently used.

**Examples**

```r
data(airquality)
set.seed(7687)
cart_bag <- bagger(Ozone ~ ., data = airquality, base_model = "CART", times = 5)
predict(cart_bag, new_data = airquality[, -1])
```
var_imp.bagger

Obtain variable importance scores

Description
Obtain variable importance scores

Usage
## S3 method for class 'bagger'
var_imp(object, ...)

Arguments
- object: An object.
- ...: Not currently used.

Details
baguette can compute different variable importance scores for each model in the ensemble. The var_imp() function returns the average importance score for each model. Additionally, the function returns the number of times that each predictor is included in the final prediction equation.

Specific methods used by the models are:
- **CART**: The model accumulates the improvement of the model that occurs when a predictor is used in a split. These values are taken from the rpart object. See rpart::rpart.object().
- **MARS**: MARS models include a backwards elimination feature selection routine that looks at reductions in the generalized cross-validation (GCV) estimate of error. The earth() function tracks the changes in model statistics, such as the GCV, for each predictor and accumulates the reduction in the statistic when each predictor's feature is added to the model. This total reduction is used as the variable importance measure. If a predictor was never used in any of the MARS basis functions in the final model (after pruning), it has an importance value of zero. baguette wraps earth::evimp().
- **C5.0**: C5.0 measures predictor importance by determining the percentage of training set samples that fall into all the terminal nodes after the split. For example, the predictor in the first split automatically has an importance measurement of 100 percent since all samples are affected by this split. Other predictors may be used frequently in splits, but if the terminal nodes cover only a handful of training set samples, the importance scores may be close to zero.

Note that the value column that is the average of the importance scores form each model. The divisor of this average (and the corresponding standard error) is the number of models (as opposed to the number of models that used the predictor). This means that the importance scores for a predictor that was not used in the model has an implicit zero importance.

Value
A tibble with columns for term (the predictor), value (the mean importance score), std.error (the standard error), and used (the occurrences of the predictors).
Index

bagger, 2

class_cost, 5
control_bag, 6

predict.bagger, 7

var_imp.bagger, 8