Package ‘aws.wrfsmn’

March 9, 2024

Type Package
Title Data Processing of SMN Hi-Res Weather Forecast from 'AWS'
Version 0.0.3
Description Exploration of Weather Research & Forecasting ('WRF') Model data of Servicio Meteorologico Nacional (SMN) from Amazon Web Services (<https://registry.opendata.aws/smn-ar-wrf-dataset/> cloud. The package provides the possibility of data downloading, processing and correction methods. It also has map management and series exploration of available meteorological variables of 'WRF' forecast.
License GPL (>= 3)
Depends R (>= 4.1.0)
Imports aws.s3 (>= 0.3.21), lubridate (>= 1.9.3), terra (>= 1.7-65), dplyr (>= 1.1.4), ggplot2 (>= 3.4.4), hydroGOF (>= 0.5-4), stats (>= 4.1.2), magrittr (>= 2.0.3)
Encoding UTF-8
LazyData true
RoxygenNote 7.3.1
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation no
Author Gonzalo Diaz [cre, aut]
Maintainer Gonzalo Diaz <gonzalomartindiaz22@gmail.com>
Repository CRAN
Date/Publication 2024-03-09 01:20:07 UTC

R topics documented:

 eva .. 2
 find.nearest.point 3
Evaporation data (observation and model)

Description
Data of evaporation from in-situ observation and several soil model outputs

Usage
data(eva)

Format
An object of class "data.frame".

Dates 1st column with dates
evapo_obs 2nd column with evaporation observation
OUT_PREC Precipitation
OUT_EVAP Evaporation
OUT_RUNOFF Runoff
OUT_BASEFLOW Baseflow
OUT_SOIL_MOIST_lyr_1 Soil moisture from 1st layer
OUT_EVAP_CANOP Evaporation from canopy
OUT_SURF_TEMP Surface temperature

References
Diaz et al. (2024) AAGG 2024 Not yet published

Examples
data(eva)
find.nearest.point

Temporal series of closest location

Description

Location of nearest point to lon/lat and temporal serie of location

Usage

```r
find.nearest.point(data.spat.raster = data.spat.raster, lon = lon, lat = lat)
```

Arguments

- `data.spat.raster`
 - Spat Raster of WRF SMN (only one or several)
- `lon`
 - Longitude location of nearest point to find
- `lat`
 - Latitude location of nearest point to find

Value

a vector with the nearest location (lon/lat) and time serie of that location

get.wrf.files

List of available files for downloading

Description

Character string with the filenames of WRF SMN located in AWS Bucket

Usage

```r
get.wrf.files(year = year, month = month, day = day, cycle = cycle, time = time)
```

Arguments

- `year`
 - character or numeric of year
- `month`
 - character or numeric of month
- `day`
 - character or numeric of day
- `cycle`
 - cycle of forecast, "00", "06", "12" or "18"
- `time`
 - selection of datasets, "01H", "24H" or "10M"

Value

string of the list of elements in the Bucket
load.by.variable

Load and projection of data

Description

Open of netcdf files of WRF SMN drom AWS and optional projection

Usage

load.by.variable(nc.filenames, variable, transform, method)

Arguments

- nc.filenames: netcdf files
- variable: name of variable from https://odp-aws-smn.github.io/documentation_wrf_det/Formato_de_datos/ as character
- transform: TRUE to project data to longlat datum=WGS84
- method: if transform is set TRUE define projection method taken from project function of terra package

Value

Spat Raster

mg.evaluation

Evaluation of regression

Description

Evaluation of the linear multiple regression obtained from the multiple.guidance function

Usage

mg.evaluation(
 input.data = input.data,
 predictand = predictand,
 predictors = predictors,
 var.model = var.model,
 lmodel = lmodel
)
multiple.guidance

Arguments

- **input.data**: Data frame with first column as a "POSIXct" class and one or more columns with data values. The predictand and predictors variables should be located in these columns.
- **predictand**: Character with column name of the predictand variable.
- **predictors**: Character array with one or more elements of the predictors chosen by the user.
- **var.model**: Character with column name of the modeled predicting variable.
- **lmodel**: Element of class lm obtained from multiple.guidance output function.

Value

List of two elements. First element is a matrix with the columns of observed data, modeled data and corrected data. Second element is a data frame of the statistical results of the modeled and corrected data versus observed data.

Description

Definition of linear multiple regression adjustment based on predictor variables that fit a predicting variable.

Usage

```r
multiple.guidance(
  input.data = input.data,
  predictand = predictand,
  predictors = predictors
)
```

Arguments

- **input.data**: Data frame with first column as a "POSIXct" class and one or more columns with data values. The predictand and predictors variables should be located in these columns.
- **predictand**: Character with column name of the predictand variable.
- **predictors**: Character array with one or more elements of the predictors chosen by the user.

Value

- an element of class lm
ploting

Plot of data

Description
Plot of observed, modeled and corrected guidance series

Usage
ploting(data = data)

Arguments
- data: Data frame from daily2monthly output function or any other temporal series

Value
ggplot element

wrf.download

Download of wrf files

Description
Download of WRF SMN data from AWS

Usage
wrf.download(wrf.name = wrf.name)

Arguments
- wrf.name: list of names to download from get.wrf.files. e.g.: "DATA/WRF/DET/2024/01/18/WRFDETAR_24H_"

Value
downloaded netcdf files
%>% Daily data to monthly

Description
Data transformation from daily to monthly scale

Usage
daily2monthly(data = data)

Arguments
data matrix with daily data from mg.evaluation output function

Value
Data frame with monthly data
Index

* datasets
 eva, 2
 %>%, 7

daily2monthly (%>%), 7

eva, 2

find.nearest.point, 3

get.wrf.files, 3

load.by.variable, 4

mg.evaluation, 4

multiple.guidance, 5

ploting, 6

wrf.download, 6