Package ‘audiometry’

July 15, 2020

Type Package

Title Standard Conform Pure Tone Audiometry (PTA) Plots

Version 0.2.0

Author Bernhard Lehnert

Maintainer Bernhard Lehnert <bernhard.lehnert@med.uni-greifswald.de>

Description Facilitates plotting audiometric data (mostly) by preparing the coordinate system according to standards, given e. g. in American Speech-Language-Hearing Association (2005), <doi:10.1044/policy.GL2005-00014>.

Imports ggplot2

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Suggests knitr, rmarkdown, ggbeeswarm, ggthemes

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2020-07-15 04:20:07 UTC

R topics documented:

 audiometry ... 2
 boltzmann ... 2
 gg_freiburg ... 3
 gg_pta ... 3

Index 6
audiometry

Description
a package for standard confirm pur tone audiometry data visualisation using the versatile ggplot2 package.

Details
Right now this is almost only about the gg_pta function to start a ggplot with pure tone audiometry data so that the reference frame looks familiar to audiologists and ent doctors.

boltzmann

Boltzmann’s function

Description
s-shaped curve , used as discrimination function to draw the "normal" curves in the Freiburger Sprachtest. Given as \(y = \frac{(\exp(-4*(L-L_{50}))\times s_{50})^{-1}}{1} \) this is similar to a logistic regression result but with parameterization usefull here:

Usage
boltzmann(L, L_{50} = 18.4, s_{50} = 0.08)

Arguments
- \(L \) sound pressure level for which the intelligibility is to be computed
- \(L_{50} \) sound pressure level at 50% intelligibility
- \(s_{50} \) intelligibility at \(L_{50} \), happens to be 8% in Freiburger Zahlentest and 5% in Freiburger Einsilbertest (values taken from S. Hoth, Der Freiburger Sprachtest, HNO 2016, 64:540-48).

Value
predicted intelligibility

Examples
Freiburger Einsilbertest has \(L_{50} = 29.3 \) dB and \(s_{50} \) at 5 %/dB.
Compute the expected intelligibility at 20, 30 and 40 dB SPL

boltzmann(L = c(20, 30, 40), L_{50} = 29.3, s_{50} = .05)
gg_freiburg

Freiburger Sprachtest data with ggplot2

Description

Probably the most influential speech intelligibility test in German speaking countries. This function serves as a starting point for plotting data in way that reflects the usual representation of Freiburger Sprachtest results.

Usage

```
gg_freiburg(data = data.frame(), NC_alpha = 0.6, HV_color = "grey")
```

Arguments

- `data`: a data.frame that is given to ggplot for initialization
- `NC_alpha`: value between 0 and 1 defining how prominent the "normal" curves are.
- `HV_color`: color of the Hörverlust-Scale in the middle of the diagram.

Value

a ggplot suitable for adding Freiburger Sprachtest data as geom_*

Examples

```r
library(ggplot2)
id = gl(25,4)
gender=gl(2,25, label =c("Frauen", "Männer"))
x = rep(c(35, 50, 65, 80), 25)
y = 100*boltzmann(jitter(x,3), 45, .03)
example <- data.frame(Patient=id, Geschlecht = gender, x=x, y=y)

p <- gg_freiburg(NC_alpha = 1, HV_color = "grey") +
    geom_boxplot(aes(x = x, y = y, group = x), example) +
    geom_line(aes(x = x, y = y, color = Geschlecht, group = id), example)
print(p)
```

gg_pata

Make a primer for pure tone audiograms with ggplot2

Description

Call this to start building a plot based on pure tone audiometry.
Usage

```r
gg_pta(
  data = data.frame(),
  theme = theme_light,
  lettermark = NULL,
  lettermarksize = 30,
  xlab = "Frequency in Hertz (Hz)",
  ylab = "Hearing Levels in Decibels (dB)",
  xlim = c(125, 8000),
  xbreaks = c(125, 250, 500, 1000, 2000, 4000, 8000),
  minor_xbreaks = c(750, 1500, 3000),
  x_base_lwd = 1,
  xlabels = c("125", "250", "500", "1000", "2000", "4000", "8000"),
  ylim = c(120, -10),
  yposition = "left"
)
```

Arguments

- `data` data.frame that contains the data, later to be added to the plot. If no such data.frame is available, can be `data = data.frame(0)`
- `theme` theme for plotting in ggplot2. Can be set to `NULL`. A different theme can always be added later
- `lettermark` either "R" or "L" or c("R", "L") to add a letter describing the left or right side (see `lettermarksize`)
- `lettermarksize` size of letter for lettermark
- `xlab` string containing the x axis label
- `ylab` string containing the y axis label
- `xlim` limits of the frequencies displayed at the x axis.
- `xbreaks` frequencies at which major line breaks should be drawn. Must be of same length as `xlabels`
- `minor_xbreaks` frequencies at which minor line breaks should be drawn
- `x_base_lwd` if positive, a line to mark the 0 dB threshold level is drawn, the line width of which is given by `x_base_lwd`. Set to -1 to turn the line of
- `xlabels` vector of strings as frequency axis labels. Must be of same length as `xbreaks`
- `ylim` limits of the decibels on the y axis
- `yposition` side on which to label the y axis: either "right" or "left"

Details

This function is called instead of ggplot2::ggplot with a data.frame and will return a ggplot with fixed axes, fixed axis ratio, ...

Value

a ggplot with standard axis ratio, given axis etc. to add geoms to
gg_pra

Author(s)

Bernhard Lehnert

Examples

library(ggplot2)
fig1 <- gg_pra(data.frame())
print(fig1)

fig2 <- gg_pra(data.frame(), xlab="Frequency [Hz]",
 xlim=c(125,12000),
 xbreaks = c(125, 250, 500, 1000, 2000, 4000, 8000, 12000),
 xlabels = c("125", "250", "500", "1k", "2k", "4k", "8k", "12k")
print(fig2)

expl <- data.frame(x=rep(c(500, 1000, 2000, 4000), 200),
 y=5 + 70*rbeta(200,1,5))
fig3 <- gg_pra(expl, lettermark = "R",
 xlab="frecuencia", ylab="volumen") +
 geom_boxplot(aes(x=x, y=y, group=x)) +
 theme_grey()
print(fig3)
Index

audiometry, 2
audiometry-package (audiometry), 2
boltzmann, 2

gg_freiburg, 3
gg_pta, 3