Package ‘arulesCBA’

April 20, 2020

Version 1.2.0
Date 2020-4-17
Title Classification Based on Association Rules
Description Provides the infrastructure for association rule-based classification including algorithms like Classification Based on Associations (CBA).
Maintainer Michael Hahsler <mhahsler@lyle.smu.edu>
Depends R (>= 3.5.0), Matrix (>= 1.2-0), arules (>= 1.6-5)
Imports methods, discretization (>= 1.0-1), glmnet (>= 2.0-16)
Suggests testthat, RWeka, rJava
License GPL-3
URL https://github.com/ianjjohnson/arulesCBA
BugReports https://github.com/ianjjohnson/arulesCBA
NeedsCompilation yes
Author Michael Hahsler [aut, cre, cph],
 Ian Johnson [aut, cph],
 Tyler Giallanza [ctb]
Repository CRAN
Date/Publication 2020-04-20 13:50:08 UTC

R topics documented:

 bCBA .. 2
 CBA ... 3
 CBA.object ... 5
 classFrequency 7
 discretizeDF.supervised 9
 FOIL ... 10
 LUCS_KDD_CBA 12
 Lymphography 14
 mineCARs ... 15
bCBA Classification Based on Association Rules

Description

Build a classifier using a transaction boosting classification by association algorithm. The algorithm is currently in development, and is not yet formally documented.

Usage

bCBA(formula, data, gamma = 0.05, cost = 10.0, parameter = NULL, control = NULL, sort.parameter = NULL, lhs.support = FALSE, class.weights = NULL, disc.method = "mdlp", verbose = FALSE, ...)

Arguments

- **formula**: A symbolic description of the model to be fitted. Has to be of form class ~ .. The class is the variable name (part of the item label before =).
- **data**: A data.frame containing the training data.
- **gamma**, **cost**: Hyperparameters for the bCBA algorithm.
- **verbose**: Optional logical flag to allow verbose execution, where additional intermediary execution information is printed at runtime.
- **parameter**, **control**: Optional parameter and control lists for apriori.
- **sort.parameter**: Ordered vector of arules interest measures (as characters) which are used to sort rules in preprocessing.
- **lhs.support**: Logical variable, which, when set to default value of True, indicates that LHS support should be used for rule mining.
- **class.weights**: Weights that should be assigned to the rows of each class (ordered by appearance in levels(classColumn))
- **disc.method**: Discretization method for factorizing numeric input (default: "mdlp"). See discretizeDF.supervised for more supervised discretization methods.
- **...**: Additional parameters are added to the apriori parameters (e.g., support and confidence).
Details

Formats the input data frame and calls a C implementation of a transaction-boosted classification algorithm which is currently being developed. This R package provides an interface to the current most stable release.

Before the 'bCBA' algorithm in C is executed, association rules are generated with the Apriori algorithm from the arules package.

A default class is selected for the classifier. Note that for datasets which do not yield any strong association rules it’s possible that no rules will be included in the classifier, and only a default class.

Value

Returns an object of class CBA representing the trained classifier with fields:

- rules: the classifier rule base.
- default: default class label.
- levels: levels of the class variable.

Author(s)

Ian Johnson

See Also

predict.CBA, CBA.object, apriori

Examples

```r
data("iris")

classifier <- bCBA(Species ~ ., data = iris, supp = 0.05, conf = 0.9,
                   lhs.support = TRUE)
classifier

predict(classifier, head(iris))
```

CBA

Classification Based on Association Rules Algorithm (CBA)

Description

Build a classifier based on association rules using the ranking, pruning and classification strategy of the CBA algorithm by Liu, et al. (1998).
Usage

CBA(formula, data, pruning = "M1",
 parameter = NULL, control = NULL, balanceSupport = FALSE,
 disc.method = "mdlp", verbose = FALSE, ...)

pruneCBA_M1(formula, rules, transactions, verbose = FALSE)
pruneCBA_M2(formula, rules, transactions, verbose = FALSE)

Arguments

formula A symbolic description of the model to be fitted. Has to be of form class ~ . or class ~ predictor1 + predictor2.
data A data.frame or a transaction set containing the training data. Data frames are automatically discretized and converted to transactions.
pruning Pruning strategy used: "M1" or "M2".
parameter, control Optional parameter and control lists for apriori.
balanceSupport balanceSupport parameter passed to mineCARs function.
disc.method Discretization method used to discretize continuous variables if data is a data.frame (default: "mdlp"). See discretizeDF.supervised for more supervised discretization methods.

... For convenience, additional parameters are used to create the parameter control list for apriori (e.g., to specify the support and confidence thresholds).
rules, transactions prune a set of rules using a transaction set.
verbose Show progress?

Details

Implementation the CBA algorithm with the M1 or M2 pruning strategy introduced by Liu, et al. (1998).

Candidate classification association rules (CARs) are mined with the standard APRIORI algorithm. Rules are ranked by confidence, support and size. Then either the M1 or M2 algorithm are used to perform database coverage pruning and to determin the number of rules to use and the default class.

Value

Returns an object of class CBA.object representing the trained classifier.

Author(s)

Ian Johnson and Michael Hahsler
CBA.object

References

See Also

CBA.object, mineCARs.

Examples

data("iris")

1. Learn a classifier using automatic default discretization
classifier <- CBA(Species ~ ., data = iris, supp = 0.05, conf = 0.9)
classifier

inspect the rule base
inspect(rules(classifier))

make predictions
predict(classifier, head(iris))
table(pred = predict(classifier, iris), true = iris$Species)

2. Learn classifier from transactions (and use verbose)
iris_trans <- prepareTransactions(Species ~ ., iris, disc.method = "mdlp")
iris_trans
classifier <- CBA(Species ~ ., data = iris_trans, supp = 0.05, conf = 0.9, verbose = TRUE)
classifier

make predictions. Note: response extracts class information from transactions.
predict(classifier, head(iris_trans))
table(pred = predict(classifier, iris_trans), true = response(Species ~ ., iris_trans))

CBA.object

Objects for Classifiers Based on Association Rules

Description

Objects for classifiers based on association rules have class "CBA". A creator function CBA_ruleset() and several methods are provided.

Usage

CBA_ruleset(formula, rules, method = "first", weights = NULL, default = NULL, description = "Custom rule set")
S3 method for class 'CBA'
print(x, ...)
S3 method for class 'CBA'
rules(x)
S3 method for class 'CBA'
predict(object, newdata, type = c("class", "score"), ...)

Arguments

- **formula**
 A symbolic description of the model to be fitted. Has to be of form `class ~ .`.
 The class is the variable name (part of the item label before `=`).

- **rules**
 A set of class association rules mined with `mineCars` or `apriori` (from `arules`).

- **method**
 Classification method "first" found rule or "majority".

- **weights**
 Rule weights for method majority. Either a quality measure available in `rules`
 or a numeric vector of the same length are `rules` can be specified. If missing,
 then equal weights are used

- **default**
 Default class of the form `variable=level`. If not specified then the most fre-
 quent RHS in `rules` is used.

- **description**
 Description field used when the classifier is printed.

- **x, object**
 An object of class CBA.

- **newdata**
 A data.frame or transactions containing rows of new entries to be classified.

- **type**
 Predict "class" labels. Some classifiers can also return "scores".

- **...**
 Additional arguments currently not used.

Details

`CBA_ruleset` creates a new object of class CBA using the provides rules as the rule base. For
method "first", the user needs to make sure that the rules are predictive and sorted from most to
least predictive.

Value

`CBA_ruleset()` returns an object of class CBA representing the trained classifier with fields:

- **formula** used formula.
- **discretization** discretization information.
- **rules** the classifier rule base.
- **default** default class label ot NA.
- **weights** rule weights.
- **biases** class biases.
- **method** classification method.
- **description** description in human readable form.

`predict` returns predicted labels for `newdata`.
`rules` returns the rule base.
classFrequency

Author(s)

Michael Hahsler

See Also

CBA, mineCARs, apriori, rules, transactions.

Examples

data("iris")

discretize and create transactions
iris.disc <- discretizeDF.supervised(Species ~ ., iris)
trans <- as(iris.disc, "transactions")

create rule base with CARs
cars <- mineCARs(Species ~ ., trans, parameter = list(support = .01, confidence = .8))

cars <- cars[!is.redundant(cars)]
cars <- sort(cars, by = "conf")

create classifier
cl <- CBA_ruleset(Species ~ ., cars)
cl

look at the rule base
rules(cl)

make predictions
prediction <- predict(cl, trans)
table(prediction, response(Species ~ ., trans))

use weighted majority
cl <- CBA_ruleset(Species ~ ., cars, method = "majority", weights = "lift")
cl

prediction <- predict(cl, trans)
table(prediction, response(Species ~ ., trans))

classFrequency

Extracting the Response and Class Frequency for Transactions or CAR Sets

Description

Converts the class items in transactions/CARs back to a class label. Class frequency can be used to check transactions for class imbalance or the proportion of rules for each class label in a set of CARs.
Usage

response(formula, x)
classFrequency(formula, x, type = "relative")
majorityClass(formula, transactions)

Arguments

formula A symbolic description of the model to be fitted.
x, transactions An object of class transactions or rules.
type "relative" or "absolute" to return proportions or absolute counts.

Value

response returns the response label as a factor.
classFrequency returns the item frequency for each class label as a vector.
majorityClass returns the most frequent class label in the transactions.

Author(s)

Michael Hahsler

See Also

itemFrequency, rules, transactions.

Examples

data("iris")

iris.disc <- discretizeDF.supervised(Species ~ ., iris)
iris.trans <- as(iris.disc, "transactions")
inspect(head(iris.trans, n = 2))

convert the class items back to a class label
response(Species ~ ., head(iris.trans, n = 2))

Class distribution. The iris dataset is perfectly balanced.
classFrequency(Species ~ ., iris.trans)

Majority Class
(Note: since all class frequencies for iris are the same, the first one is returned)
majorityClass(Species ~ ., iris.trans)

Use for CARs
cars <- mineCARs(Species ~ ., iris.trans, parameter = list(support = 0.3))

Number of rules for each class
classFrequency(Species ~ ., cars, type = "absolute")
discretizeDF.supervised

conclusion (item in the RHS) of the rule as a class label
response(Species ~ ., head(iris.trans, n = 2))

discretizeDF.supervised

Supervised Methods to Convert Continuous Variables into Categorical Variables

Description
This function implements several supervised methods to convert continuous variables into a categorical variables (factor) suitable for association rule mining and building associative classifiers. A whole data.frame is discretized (i.e., all numeric columns are discretized).

Usage

discretizeDF.supervised(formula, data, method = "mdlp", dig.lab = 3, ...)

Arguments

formula a formula object to specify the class variable for supervised discretization and the predictors to be discretized in the form class ~ . or class ~ predictor1 + predictor2.
data a data.frame containing continuous variables to be discretized
method discretization method. Available are: "mdlp", "caim", "cacc", "ameva", "chi2", "chimerge", "extendedchi2", and "modchi2".
dig.lab integer; number of digits used to create labels.
... Additional parameters are passed on to the implementation of the chosen discretization method.

Details
discretizeDF.supervised only implements supervised discretization. See discretizeDF in package arules for unsupervised discretization.

Value
discretizeDF returns a discretized data.frame. Discretized columns have an attribute "discretized:breaks" indicating the used breaks or and "discretized:method" giving the used method.

Author(s)
Michael Hahsler
See Also

Unsupervised discretization from arules: discretize, discretizeDF.
Details about the available supervised discretization methods from discretization: mdp, caim, cacc, ameva, chi2, chiM, extendChi2, modChi2.

Examples

data("iris")
summary(iris)

supervised discretization using Species
iris.disc <- discretizeDF.supervised(Species ~ ., iris)
summary(iris.disc)

attributes(iris.disc$Sepal.Length)

discretize the first few instances of iris using the same breaks as iris.disc
discretizeDF(head(iris), methods = iris.disc)

only discretize predictors Sepal.Length and Petal.Length
iris.disc2 <- discretizeDF.supervised(Species ~ Sepal.Length + Petal.Length, iris)
head(iris.disc2)

FOIL

Use FOIL to learn a rule set for classification

Description

Build a classifier rule base using FOIL (First Order Inductive Learner), a greedy algorithm that learns rules to distinguish positive from negative examples.

Usage

FOIL(formula, data, max_len = 3, min_gain = .7, best_k = 5,
 disc.method = "mdlp")

Arguments

formula A symbolic description of the model to be fitted. Has to be of form class ~ .
or class ~ predictor1 + predictor2.
data A data.frame or a transaction set containing the training data. Data frames are automatically discretized and converted to transactions.
max_len maximal length of the LHS of the created rules.
min_gain minimal gain required to expand a rule.
best_k use the average expected accuracy (laplace) of the best k rules per class for prediction.
disc.method Discretization method used to discretize continuous variables if data is a data.frame (default: "mdlp"). See discretizeDF.supervised for more supervised discretization methods.

Details

Implements FOIL (Quinlan and Cameron-Jones, 1995) to learn rules and then use them as a classifier following Xiaoxin and Han (2003).

For each class, we find the positive and negative examples and learn the rules using FOIL. Then the rules for all classes are combined and sorted by Laplace accuracy on the training data.

Following Xiaoxin and Han (2003), we classify new examples by

1. select all the rules whose bodies are satisfied by the example;
2. from the rules select the best k rules per class (highest expected Laplace accuracy);
3. average the expected Laplace accuracy per class and choose the class with the highest average.

Value

Returns an object of class \texttt{CBA.object} representing the trained classifier.

Author(s)

Michael Hahsler

References

Yin, Xiaoxin and Jiawei Han. CPAR: Classification based on Predictive Association Rules, SDM, 2003. doi: 10.1137/1.9781611972733.40

See Also

\texttt{CBA.object}.

Examples

data(“iris”)

learn a classifier using automatic default discretization
classifier <- FOIL(Species ~ ., data = iris)
classifier

inspect the rule base
inspect(rules(classifier))

make predictions for the first few instances of iris
predict(classifier, head(iris))
Interface to the LUCS-KDD Implementations of CMAR, PRM and CPAR

Description

Interface for the LUCS-KDD Software Library Java implementations of CMAR (Li, Han and Pei, 2001), PRM, and CPAR (Yin and Han, 2003). Note: The Java implementations is not part of arulesCBA and not covered by the packages license. It will be downloaded and compiled separately. It is available free of charge for non-commercial use.

Usage

CMAR(formula, data, support = 0.1, confidence = 0.5, disc.method = "mdlp", verbose = FALSE)
PRM(formula, data, best_k = 5, disc.method = "mdlp", verbose = FALSE)
CPAR(formula, data, best_k = 5, disc.method = "mdlp", verbose = FALSE)
FOIL2(formula, data, best_k = 5, disc.method = "mdlp", verbose = FALSE)

install_LUCS_KDD_CMAR(force = FALSE, source = "https://cgi.csc.liv.ac.uk/~frans/KDD/Software/CMAR/cmar.tgz")
install_LUCS_KDD_CPAR(force = FALSE, source = "https://cgi.csc.liv.ac.uk/~frans/KDD/Software/FOIL_PRM_CPAR/foilPrmCpar.tgz")

Arguments

formula a symbolic description of the model to be fitted. Has to be of form class ~ . or class ~ predictor1 + predictor2.
data A data.frame or a transaction set containing the training data. Data frames are automatically discretized and converted to transactions.
support, confidence minimum support and minimum confidence thresholds for CMAR (range [0, 1]).
best_k use average expected accuracy (laplace) of the best k rules per class for prediction.
disc.method Discretization method used to discretize continuous variables if data is a data.frame (default: "mdlp"). See discretizeDF.supervised for more supervised discretization methods.
verbose Show verbose output?
force logical; force redownload, rebuilding and reinstallation?
source source for the code. A local file can be specified as a URI starting with file:// (see download.file).
Details

Installation: The LUCS-KDD code is not part of the package and has to be downloaded, compiled and installed using `install_LUCS_KDD_CMAR()` and `install_LUCS_KDD_CPAR()`. You need a complete Java JDK installation including the `javac` compiler. On some systems (Windows), you may need to set the `JAVA_HOME` environment variable so the system finds the compiler.

Memory: The memory for Java can be increased via R options. For example: `options(java.parameters = "-Xmx1024m")`

Note: The implementation does not expose the min. gain parameter for CPAR, PRM and FOIL2. It is fixed at 0.7 (the value used by Yin and Han, 2001). FOIL2 is an alternative Java implementation to the native implementation of FOIL already provided in the `arulesCBA`. FOIL exposes min. gain.

Value

Returns an object of class `CBA.object` representing the trained classifier.

References

Li W., Han, J. and Pei, J. CMAR: Accurate and Efficient Classification Based on Multiple Class-Association Rules, ICDM, 2001, pp. 369-376.

Yin, Xiaoxin and Jiawei Han. CPAR: Classification based on Predictive Association Rules, SDM, 2003. doi: 10.1137/1.9781611972733.40

Frans Coenen et al. The LUCS-KDD Software Library, https://cgi.csc.liv.ac.uk/~frans/KDD/Software/

Examples

```r
## Not run:
data("iris")

# install and compile CMAR
install_LUCS_KDD_CMAR()

# build a classifier, inspect rules and make predictions
c1 <- CMAR(Species ~ ., iris, support = 0.2, confidence = 0.8, verbose = TRUE)
c1

inspect(rules(c1))
predict(c1, head(iris))

# install CPAR (also installs PRM and FOIL2)
install_LUCS_KDD_CPAR()

c1 <- CPAR(Species ~ ., iris)
c1

c1 <- PRM(Species ~ ., iris)
c1
```
Lymphography

cl <- FOIL2(Species ~ ., iris)
c1

End(Not run)

Lymphography

The Lymphography Domain Data Set (UCI)

Description

This is lymphography domain obtained from the University Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia. It was repeatedly used in the machine learning literature.

Usage

```r
data("Lymphography")
```

Format

A data frame with 147 observations on the following 19 variables.

- `class` a factor with levels `normalfind metastases malignlymph fibrosis`
- `lymphatics` a factor with levels `normal arched deformed displaced`
- `blockofaffere` a factor with levels `no yes`
- `bloflymphc` a factor with levels `no yes`
- `bloflymphs` a factor with levels `no yes`
- `bypass` a factor with levels `no yes`
- `extravasates` a factor with levels `no yes`
- `regenerationof` a factor with levels `no yes`
- `earlyuptakein` a factor with levels `no yes`
- `lymnodesdimin` a factor with levels `0 1 2 3`
- `lymnodesenlar` a factor with levels `1 2 3 4`
- `changesinlym` a factor with levels `bean oval round`
- `defectinnode` a factor with levels `no lacunar lacmarginal laccentral`
- `changesinnode` a factor with levels `no lacunar lacmargin laccentral`
- `changesinstru` a factor with levels `no grainy droplike coarse diluted reticular stripped faint`
- `specialforms` a factor with levels `no chalices vesicles`
- `dislocationof` a factor with levels `no yes`
- `exclusionofno` a factor with levels `no yes`
- `noofnodesin` a factor with levels `0-9 10-19 20-29 30-39 40-49 50-59 60-69 >=70`
mineCARs

Source

The data set was obtained from the UCI Machine Learning Repository at http://archive.ics.uci.edu/ml/datasets/Lymphography.

References

This lymphography domain was obtained from the University Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia. Thanks go to M. Zwitter and M. Soklic for providing the data. Please include this citation if you plan to use this database.

Examples

```r
data("Lymphography")

summary(Lymphography)
```

mineCARs
Mine Class Association Rules

Description

Class Association Rules (CARs) are association rules that have only items with class values in the RHS as introduced for the CBA algorithm by Liu et al., 1998.

Usage

```r
mineCARs(formula, transactions, parameter = NULL, control = NULL, balanceSupport = FALSE, verbose = TRUE, ...)```

Arguments

- **formula**: A symbolic description of the model to be fitted.
- **transactions**: An object of class `transactions` containing the training data.
- **parameter, control**: Optional parameter and control lists for the `apriori` algorithm.
- **balanceSupport**: logical; if TRUE, class imbalance is counteracted by using class specific minimum support values. Alternatively, a support value for each class can be specified (see Details section).
- **verbose**: logical; report progress?
- **...**: For convenience, the mining parameters for apriori can be specified as .... Examples are the support and confidence thresholds, and the `maxlen` of rules.
Details

Class association rules (CARs) are of the form

\[ P \Rightarrow c_i, \]

where the LHS \( P \) is a pattern (i.e., an itemset) and \( c_i \) is a single item representing the class label.

**Mining parameters.** Mining parameters for `apriori` can be either specified as a list (or object of `APparameter`) as argument `parameter` or, for convenience, as arguments in . . . Note: mineCARs uses by default a support of 0.1, a confidence of 0.5 and a `maxlen` (rule length including items in the LHS and RHS) of 5.

**Balancing minimum support.** Using a single minimum support threshold for a highly class imbalanced dataset will lead to the problem, that minority classes will only be presented in very few rules. To address this issue, `balanceSupport = TRUE` can be used to adjust minimum support for each class dependent on the prevalence of the class (i.e., the frequency of the \( c_i \) in the transactions) similar to the minimum class support suggested for CBA by Liu et al (2000) we use

\[
\text{minsupp}_i = \text{minsupp} \times \frac{\text{supp}(c_i)}{\max(\text{supp}(C))},
\]

where \( \max(\text{supp}(C)) \) is the support of the majority class. Therefore, the defined minimum support is used for the majority class and then minimum support is scaled down for classes which are less prevalent, giving them a chance to also produce a reasonable amount of rules. In addition, a named numerical vector with a support values for each class can be specified.

Value

Returns an object of class `rules`.

Author(s)

Michael Hahsler

References


See Also

`apriori, APparameter, rules, transactions.`
Examples

data("iris")

# discretize and convert to transactions
iris.disc <- discretizeDF.supervised(Species ~ ., iris)
iris.trans <- as(iris.disc, "transactions")

# mine CARs with items for "Species" in the RHS.
# Note: mineCars uses a default confidence of .5 and maxlen of 5
cars <- mineCars(Species ~ ., iris.trans)
inspect(head(cars))

# specify minimum support and confidence
cars <- mineCars(Species ~ ., iris.trans,
  parameter = list(support = 0.3, confidence = 0.9, maxlen = 3))
inspect(head(cars))

# for convenience this can also be written without a list for parameter using ...
cars <- mineCars(Species ~ ., iris.trans, support = 0.3, confidence = 0.9, maxlen = 3)

# restrict the predictors to items starting with "Sepal"
cars <- mineCars(Species ~ Sepal, iris.trans)
inspect(cars)

# using different support for each class
cars <- mineCars(Species ~ ., iris.trans, balanceSupport = c(
  "Species=setosa" = 0.1,
  "Species=versicolor" = 0.5,
  "Species=virginica" = 0.01), confidence = 0.9)
cars

# balance support for class imbalance
data("Lymphography")
Lymphography_trans <- as(Lymphography, "transactions")

classFrequency(class ~ ., Lymphography_trans)

# mining does not produce CARs for the minority classes
cars <- mineCars(class ~ ., Lymphography_trans, support = .3, maxlen = 3)
classFrequency(class ~ ., cars, type = "absolute")

# Balance support by reducing the minimum support for minority classes
cars <- mineCars(class ~ ., Lymphography_trans, support = .3, maxlen = 3,
  balanceSupport = TRUE)
classFrequency(class ~ ., cars, type = "absolute")

---

Mushroom Data Set (UCI)
Description
The Mushroom data set includes descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family. It contains information about 8123 mushrooms. 4208 (51.8%) are edible and 3916 (48.2%) are poisonous. The data contains 22 nominal features plus the class attribute (edible or not).

Usage
data("Mushroom")

Format
A data frame with 8123 observations on the following 23 variables.

- **Class** a factor with levels edible poisonous
- **CapShape** a factor with levels bell conical flat knobbed sunken convex
- **CapSurf** a factor with levels fibrous grooves smooth scaly
- **CapColor** a factor with levels buff cinnamon red gray brown pink green purple white yellow
- **Bruises** a factor with levels no bruises
- **Odor** a factor with levels almond creosote foul anise musty none pungent spicy fishy
- **GillAttached** a factor with levels attached free
- **GillSpace** a factor with levels close crowded
- **GillSize** a factor with levels broad narrow
- **GillColor** a factor with levels buff cinnamon red gray chocolate black brown orange pink green purple white yellow
- **StalkShape** a factor with levels enlarging tapering
- **StalkRoot** a factor with levels bulbous club equal rooted
- **SurfaceAboveRing** a factor with levels fibrous silky smooth scaly
- **SurfaceBelowRing** a factor with levels fibrous silky smooth scaly
- **ColorAboveRing** a factor with levels buff cinnamon red gray brown orange pink white yellow
- **ColorBelowRing** a factor with levels buff cinnamon red gray brown orange pink white yellow
- **VeilType** a factor with levels partial
- **VeilColor** a factor with levels brown orange white yellow
- **RingNumber** a factor with levels none one two
- **RingType** a factor with levels evanescent flaring large none pendant
- **Spore** a factor with levels buff chocolate black brown orange green purple white yellow
- **Population** a factor with levels brown yellow
- **Habitat** a factor with levels woods grasses leaves meadows paths urban waste

Source
The data set was obtained from the UCI Machine Learning Repository at http://archive.ics.uci.edu/ml/datasets/Mushroom.
prepareTransactions

References


Examples

```r
data(Mushroom)
summary(Mushroom)
```

---

**prepareTransactions**  *Helper to Convert Data into Transactions*

**Description**

Converts a data.frame into transactions by applying class-based discretization.

**Usage**

```r
prepareTransactions(formula, data, disc.method = "mdlp", match = NULL)
```

**Arguments**

- `formula`: the formula.
- `data`: a data.frame with the data.
- `disc.method`: Discretization method used to discretize continuous variables if data is a data.frame (default: "mdlp"). See `discretizeDF.supervised` for more supervised discretization methods.
- `match`: typically `NULL`. Only used internally if data is a already a set of transactions.

**Value**

An object of class `transactions` from `arules` with an attribute called "disc_info" that contains information on the used discretization for each column.

**Author(s)**

Michael Hahsler

**See Also**

`transactions`

**Examples**

```r
data("iris")
iris_trans <- prepareTransactions(Species ~ ., iris)
iris_trans
```
Description

Build a classifier based on association rules mined for an input dataset and weighted with LASSO regularized logistic regression following RCAR (Azmi, et al., 2019). RCAR+ extends RCAR from a binary classifier to a multi-class classifier and can use support-balanced CARs.

Usage

RCAR(formula, data, lambda = NULL, alpha = 1, glmnet.args = NULL, cv.glmnet.args = NULL, parameter = NULL, control = NULL, balanceSupport = FALSE, disc.method = "mdlp", verbose = FALSE, ...)

Arguments

- **formula**: A symbolic description of the model to be fitted. Has to be of form class ~ . or class ~ predictor1 + predictor2.
- **data**: A data.frame containing the training data.
- **lambda**: The amount of weight given to regularization during the logistic regression learning process. If not specified (NULL) then cross-validation is used to determine the best value (see Details section).
- **alpha**: The elastic net mixing parameter. alpha = 1 is the lasso penalty (default RCAR), and alpha = 0 the ridge penalty.
- **cv.glmnet.args, glmnet.args**: A list of arguments passed on to cv.glmnet and glmnet, respectively. See Example section.
- **parameter, control**: Optional parameter and control lists for apriori.
- **balanceSupport**: balanceSupport parameter passed to mineCARs function.
- **disc.method**: Discretization method for factorizing numeric input (default: "mdlp"). See discretizeDF.supervised for more supervised discretization methods.
- **verbose**: Report progress?
- **...**: For convenience, additional parameters are used to create the parameter control list for apriori (e.g., to specify the support and confidence thresholds).

Details

RCAR+ extends RCAR from a binary classifier to a multi-class classifier using regularized multinomial logistic regression via glmnet.

If lambda is not specified (NULL) then cross-validation with the largest value of lambda such that error is within 1 standard error of the minimum is used to determine the best value (see cv.glmnet).

See cv.glmnet for performing cross-validation in parallel.
Value

Returns an object of class `CBA` representing the trained classifier with the additional field `model` containing a list with the following elements:

- **all_rules**: all rules used to build the classifier, including the rules with a weight of zero.
- **reg_model**: the multinomial logistic regression model as an object of class `glmnet`.
- **cv**: contains the results for the cross-validation used to determine lambda.

Author(s)

Tyler Giallanza and Michael Hahsler

References


Azmi's implementation on GitHub: https://github.com/azemi/RCAR.

See Also

`CBA.object`, `mineCARs`, `glmnet` and `cv.glmnet`.

Examples

```r
data("iris")

classifier <- RCAR(Species~., iris)

inspect the rule base sorted by the largest class weight
inspect(sort(rules(classifier), by = "weight"))

make predictions for the first few instances of iris
predict(classifier, head(iris))

inspecting the regression model and the cross-validation results to determine lambda
str(classifier$model$reg_model)
plot(classifier$model$cv)

show progress report and use 5 instead of the default 10 cross-validation folds.
classifier <- RCAR(Species~., iris, cv.glmnet.args = list(nfolds = 5), verbose = TRUE)
```
CBA classifiers based on rule-based classifiers in RWeka

Description

Provides CBA-type classifiers based on RIPPER (Cohen, 1995), C4.5 (Quinlan, 1993) and PART (Frank and Witten, 1998) using the implementation in Weka via RWeka (Hornik et al, 2009).

Usage

RIPPER_CBA(formula, data, control = NULL, disc.method = "mdlp")
PART_CBA(formula, data, control = NULL, disc.method = "mdlp")
C4.5_CBA(formula, data, control = NULL, disc.method = "mdlp")

Arguments

formula A symbolic description of the model to be fitted. Has to be of form class ~ . or class ~ predictor1 + predictor2.
data A data.frame or a transaction set containing the training data. Data frames are automatically discretized and converted to transactions.
disc.method Discretization method used to discretize continuous variables if data is a data.frame (default: "mdlp"). See discretizeDF.supervised for more supervised discretization methods.
control algorithmic control options for R/Weka Rule learners (see Details Section).

Details

You need to install package RWeka to use these classifiers.

See R/Weka functions JRip (RIPPER), J48 (C4.5 rules) PART for algorithm details and how control options can be passed on via control. An example is given in the Examples Section below.

Memory for RWeka can be increased using the R options (e.g., options(java.parameters = "-Xmx1024m")) before RWeka or rJava is loaded or any RWeka-based classigier in this package is used.

Value

Returns an object of class CBA.object representing the trained classifier.

Author(s)

Michael Hahsler
References


See Also

JRip (RIPPER), PART_CBA.object.

Examples

# You need to install rJava and RWeka

## Not run:
data("iris")

# learn a classifier using automatic default discretization
classifier <- RIPPER_CBA(Species ~ ., data = iris)
classifier

# inspect the rule base
inspect(rules(classifier))

# make predictions for the first few instances of iris
predict(classifier, head(iris))

table(predict(classifier, iris), iris$Species)

# C4.5
classifier <- C4.5_CBA(Species ~ ., iris)
inspect(rules(classifier))

# To use algorithmic options (here for PART), you need to load RWeka library(RWeka)

# control options can be found using the Weka Option Wizard (WOW)
WOW(PART)

# build PART with control option U (Generate unpruned decision list) set to TRUE
classifier <- PART_CBA(Species ~ ., data = iris, control = RWeka::Weka_control(U = TRUE))
classifier
inspect(rules(classifier))
predict(classifier, head(iris))
Classification Based on Association Rules

Description

Build a classifier using a naive rule-weighting algorithm. The algorithm is currently in development, and is not yet formally documented.

Usage

\[
\text{wCBA(formula, data, parameter = NULL, control = NULL,}
\]

\[
\text{sort.parameter = NULL, lhs.support = FALSE, class.weights = NULL,}
\]

\[
\text{disc.method = "mdlp", verbose = FALSE, ...}
\]

Arguments

- **formula**: A symbolic description of the model to be fitted. Has to be of form `class ~ ..` The class is the variable name (part of the item label before `=`).
- **data**: A data.frame containing the training data.
- **parameter, control**: Optional parameter and control lists for apriori.
- **sort.parameter**: Ordered vector of arules interest measures (as characters) which are used to sort rules in preprocessing.
- **lhs.support**: Logical variable, which, when set to default value of `True`, indicates that LHS support should be used for rule mining.
- **class.weights**: Weights that should be assigned to the rows of each class (ordered by appearance in `levels(classColumn)`)
- **disc.method**: Discretization method for factorizing numeric input (default: "mdlp"). See `discretizeDF.supervised` for more supervised discretization methods.
- **verbose**: Optional logical flag to allow verbose execution, where additional intermediary execution information is printed at runtime.
- **...**: Additional parameters are added to the apriori parameters (e.g., support and confidence).

Details

Mines association rules on input data and creates a weighted-vote classifier where a rules weight is the product of its support and confidence. Default class is set to the most common class in the training data.
wCBA

Value
Returns an object of class CBA representing the trained classifier with fields:

- rules: the classifier rule base.
- default: default class label.
- levels: levels of the class variable.

Author(s)
Ian Johnson

See Also
predict.CBA, CBA.object, apriori.

Examples

```r
data("iris")

classifier <- wCBA(Species ~ ., data = iris, supp = 0.05, conf = 0.9)
classifier

predict(classifier, head(iris))
```
Index

*Topic **datasets**
- Lymphography, 14
- Mushroom, 17

*Topic **manip**
  - discretizeDF.supervised, 9

ameva, 10
APparameter, 16
apriori, 3, 7, 15, 16, 25
bCBA, 2
bcba(bCBA), 2
C4.5(RWeka_CBA), 22
C4.5_CBA(RWeka_CBA), 22
caacc, 10
caim, 10
CBA, 3, 7
cba(CBA), 3
CBA.object, 3–5, 5, 11, 13, 21–23, 25
CBA_ruleset(CBA.object), 5
chi2, 10
chiM, 10
classFrequency, 7
CMAR(LUCS_KDD_CBA), 12
CPAR(LUCS_KDD_CBA), 12
cv.glmnet, 20, 21
discretize, 10
discretize(discretizeDF.supervised), 9
discretizeDF, 10
discretizeDF(discretizeDF.supervised), 9
discretizeDF.supervised, 2, 4, 9, 11, 12, 19, 20, 22, 24
download.file, 12
extendChi2, 10
FOIL, 10, 13
foil(FOIL), 10
FOIL2(LUCS_KDD_CBA), 12
glmnet, 20, 21
install_LUCS_KDD_CMAR(LUCS_KDD_CBA), 12
install_LUCS_KDD_CPAR(LUCS_KDD_CBA), 12
itemFrequency, 8
J48, 22
JRip, 22, 23
LUCS_KDD_CBA, 12
Lymphography, 14
majorityClass(classFrequency), 7
mlp, 10
mineCARs, 4, 5, 7, 15, 20, 21
modChi2, 10
Mushroom, 17
PART, 22, 23
PART(RWeka_CBA), 22
PART_CBA(RWeka_CBA), 22
predict.CBA, 3, 25
predict.CBA(CBA.object), 5
prepareTransactions, 19
print.CBA(CBA.object), 5
PRM(LUCS_KDD_CBA), 12
pruneCBA_M1(CBA), 3
pruneCBA_M2(CBA), 3
RCAR, 20
rcar(RCAR), 20
response(classFrequency), 7
RIPPER(RWeka_CBA), 22
RIPPER_CBA(RWeka_CBA), 22
rules, 7, 8, 16
rules(CBA.object), 5
RWeka_CBA, 22
transactions, 7, 8, 15, 16, 19
INDEX

wcba (wCBA), 24