Package ‘angstoms’

October 12, 2022

Title Tools for 'ROMS' the Regional Ocean Modeling System
Version 0.0.1
Description Helper functions for working with Regional Ocean Modeling System 'ROMS' output. See <https://www.myroms.org/> for more information about 'ROMS'.
Depends R (>= 3.3.0), raster
License GPL-3
LazyData true
Imports nabor, ncdf4, proj4, sp, spbabel
RoxygenNote 6.0.1
Suggests testthat, covr
URL https://github.com/mdsumner/angstroms
BugReports https://github.com/mdsumner/angstroms/issues
NeedsCompilation no
Author Michael D. Sumner [aut, cre]
Maintainer Michael D. Sumner <mdsumner@gmail.com>
Repository CRAN
Date/Publication 2017-05-01 10:35:22 UTC

R topics documented:

angstoms .. 2
antarctica ... 2
coords_points ... 2
croproms ... 3
ice_fake .. 4
rawdata ... 4
romsboundary .. 5
romscoords .. 5
romsdata ... 6
romshcoords ... 7
romsmap ... 8
Index

angstroms

Tools for ROMS model output.

Description

Facilities for easy access to Regional Ocean Modeling System (ROMS) output.

Details

coords_points

croproms

rawdata

romsdata read data layers from 4D variables by arbitrary slice

romsboundary

romscoords

romshcoords

romsmap

produce sp::SpatialPoints from ROMS coordinate arrays
create a raster::extent by cropping a ROMS data layer
read raw NetCDF variables by name

generate the spatial boundary of the ROMS data set in x-y coordinates
extract the x-y (long-lat) coordinates
extract the multi-layer "h"eight grid with S-coordinate stretching applied
re-map a spatial layer (polygons, lines, points) into ROMS grid

antarctica

Antarctica simple coastline.

Description

Taken from "rnaturalearth::countries110"

coords_points

Create SpatialPoints.

Description

Convenience wrapper around SpatialPoints for a two layer brick with longitude and latitude coordinate arrays.

Usage

coords_points(x, ...)
Arguments

x two layer RasterBrick with longitude and latitude values
...

Value

SpatialPoints

Examples

```r
## library(raadtools)
##coords_points(romscoords(cpolarfiles()$fullname[1]))

pts <- coords_points(ice_coords)
```

croproms

Crop a ROMS layer

Description

Crop a ROMS data layer from romsdata with a raster extent.

Usage

croproms(x, ext, ...)

Arguments

x ROMS xy-coordinates, see romscoords
ext raster::extent in the coordinate system of x
...

Details

The spatial crop is performed in the coordinate space of roms data.

Examples

```r
## notice that extent is in long-lat, but ice_local is in the grid
## space of ice_coords
ice_local <- croproms(ice_coords, extent(100, 120, -75, -60))
plot(ice_coords[[2]], col = grey(seq(0, 1, length = 20)))
plot(crop(ice_fake, ice_local), add = TRUE)
```
ice_fake

Fake model data.

Description

ice_coords and ice_fake are generated from a projected map of southern Ocean sea ice data.

Details

The coords layer is the longitude and latitude values for the centres of the polar cells. This is very loosely analogous to the coordinate arrays used by ROMS data, included here for working examples, illustration and code tests.

The proper metadata for these layers is " -3950000, 3950000, -3950000, 4350000 (xmin, xmax, ymin, ymax)"

"+proj=stere +lat_0=-90 +lat_ts=-70 +lon_0=0 +k=1 +x_0=0 +y_0=0 +a=6378273 +b=6356889.449 +units=m +no_def"
romsboundary

Boundary polygon from raster of coordinates.

Description

Create a boundary polygon by tracking around coordinates stored in a RasterStack.

Usage

romsboundary(cds)

Arguments

cds two-layer Raster

Details

The first layer in the stack is treated as the X coordinate, second as Y.

Examples

ice_grid_boundary <- romsboundary(ice_coords)
plot(antarctica)
does not make sense in this space
plot(ice_grid_boundary, add = TRUE, border = "grey")

ok in this one
#library(rgdal)
proj4string(ice_grid_boundary) <- CRS("+init=epsg:4326")
pweird <- "+proj=laea +lon_0=147 +lat_0=-42 +ellps=WGS84"
laea_world <- spTransform(antarctica, pweird)
plot(extent(laea_world) + 8e6, type = "n", asp = 1)
plot(laea_world, add = TRUE)
plot(spTransform(ice_grid_boundary, pweird), add = TRUE, border = "darkgrey")

romscoords

Extract coordinate arrays from ROMS.

Description

Returns a RasterStack of the given variable names.

Usage

romscoords(x, spatial = c("lon_u", "lat_u"), ncdf = TRUE,
 transpose = FALSE, ...)
Arguments

x
ROMS file name

spatial
names of coordinate variables (e.g. lon_u, lat_u)

ncdf
default to NetCDF no matter what file name

transpose
the extents (ROMS is FALSE, Access is TRUE)

Details

The two layers from the model output are used to define the real-world space. This is used to create a boundary `romsboundary`, to map real-world objects into grid space `romscoords` and to generate graticules for mapping into the grid space with `graphics::contour`.

Value

RasterStack with two layers of the 2D-variables

Examples

```r
## Not run:
coord <- romscoord("roms.nc")

## End(Not run)
## with in-built fake data
plot(ice_fake, asp = 0.5)
contour(ice_coords[[1]], add = TRUE, levels = seq(-165, 165, by = 15))
contour(ice_coords[[2]], add = TRUE)
```

rmosdata

ROMS single slice 2D layer Extract a data layer from ROMS by name and 4-D slice.

Description

`rmosdata` always works in the first two dimensions (x-y), the more specialist functions will work in the space indicated by their name `rmos_xy`, `rmos_xt` and so on.

Usage

```r
rmos_xy(x, varname, slice = c(1L, 1L), transpose = TRUE, ...)
rmos_xz(x, varname, slice = c(1L, 1L), transpose = TRUE, ...)
rmos_xt(x, varname, slice = c(1L, 1L), transpose = TRUE, ...)
rmos_yz(x, varname, slice = c(1L, 1L), transpose = TRUE, ...)
```
romshcoords

```
roms_yt(x, varname, slice = c(1L, 1L), transpose = TRUE, ...)
roms_zt(x, varname, slice = c(1L, 1L), transpose = TRUE, ...)
romsdata(x, varname, slice = c(1L, 1L), ncdf = TRUE, transpose = TRUE, ...)

Arguments

x ROMS file name
varname name of ROMS variable
slice index in w and t (depth and time), defaults to first encountered
transpose the extents (ROMS is FALSE, Access is TRUE)
ncdf default to TRUE, set to FALSE to allow raster format detection brick

Value

RasterLayer

Examples

#x <- raadtools:::cpolarfiles()$fullname[1]
#plot(roms_xy(x, "u"))
#plot(roms_xz(x, "u", slice = c(392L,1L)), asp = NA)
#plot(roms_xt(x, "u", slice = c(392L,1L)), asp = NA)

#plot(roms_yz(x, "u"))
#plot(roms_yt(x, "u", slice = c(1L,1L)), asp = NA)
#plot(roms_zt(x, "u", slice = c(1L, 392L)), asp = NA)
```

romshcoords

Coordinates at depth

Description

Extract the multi-layer 'h'eight grid with S-coordinate stretching applied

Usage

```
romshcoords(x, S = "Cs_r", depth = "h")
```

Arguments

```
x ROMS file name
S of S-coordinate stretching curve at RHO-points
depth depth thing
```
Details

S and h are the names of the appropriate variables

Value

RasterStack with a layer for every depth

romsmap
Remap an object to the ROMS grid.

Description

Find the nearest-neighbour coordinates of x in the coordinate arrays of coords.

Usage

```r
romsmap(x, ...)  
## S3 method for class 'SpatialPolygonsDataFrame'
romsmap(x, coords, crop = FALSE,  
lonlat = TRUE, ...)

## S3 method for class 'SpatialLinesDataFrame'
romsmap(x, coords, crop = FALSE,  
lonlat = TRUE, ...)

## S3 method for class 'SpatialPointsDataFrame'
romsmap(x, coords, crop = FALSE,  
lonlat = TRUE, ...)
```

Arguments

- **x**
 object to transform to the grid space, e.g. a Spatial object

- **...**
 unused

- **coords**
 romscoords RasterStack

- **crop**
 logical, if TRUE crop x to the extent of the boundary of the values in coords

- **lonlat**
 logical, if TRUE check for need to back-transform to longitude/latitude and do it

Details

The input coords is assumed to be a 2-layer RasterStack or RasterBrick and using `nabor::knn` the nearest matching position of the coordinates of x is found in the grid space of coords. The motivating use-case is the curvilinear longitude and latitude arrays of ROMS model output. No account is made for the details of a ROMS cell, though this may be included in future. We tested only with the "lon_u" and "lat_u" arrays.
Value
input object with coordinates transformed to space of the coords

Note
Do not use this for extraction purposes without checking the output, this is best used for exploration and visualization. Re-mapping ROMS data is better done by looking up the coords_points within spatial objects, and transferring via the grid index.

Examples
ant_ice_coords <- romsmap(antarctica, ice_coords)
plot(ice_fake, main = "sea ice in pure grid space")
plot(ant_ice_coords, add = TRUE)
Index

angstoms, 2
angstoms-package (angstoms), 2
antarctica, 2

coords_points, 2, 2
croproms, 2, 3

ice_coords (ice_fake), 4
ice_fake, 4

raster::extent, 2
rawdata, 2, 4
roms_xt (romsdata), 6
roms_xy (romsdata), 6
roms_xz (romsdata), 6
roms_yt (romsdata), 6
roms_yz (romsdata), 6
roms_zt (romsdata), 6
romsboundary, 2, 5
romscoords, 2, 5
romsdata, 2, 6
romshcoords, 2, 7
romsmap, 2, 8

sp::SpatialPoints, 2
Spatial, 8