Package ‘alookr’

February 22, 2021

Type Package

Title Model Classifier for Binary Classification

Version 0.3.4

Description A collection of tools that support data splitting, predictive modeling, and model evaluation. A typical function is to split a dataset into a training dataset and a test dataset. Then compare the data distribution of the two datasets. Another feature is to support the development of predictive models and to compare the performance of several predictive models, helping to select the best model.

Depends R (>= 3.2.0), ggplot2 (>= 3.0.0), randomForest

Imports caTools, cli (>= 1.1.0), dlookr, dplyr (>= 0.7.6), future, ggmosaic, MASS, MLmetrics, methods, party, purrr, ROCR, ranger, rlang, rpart, stats, tibble, tidyeval, tidyselect, unbalanced, xgboost

Suggests knitr, ISLR, mice, mlbench

Author Choonghyun Ryu [aut, cre]

Maintainer Choonghyun Ryu <choonghyun.ryu@gmail.com>

BugReports https://github.com/choonghyunryu/alookr/issues

License GPL-2 | file LICENSE

Encoding UTF-8

LazyData true

VignetteBuilder knitr

RoxygenNote 7.1.1

Language en-US

NeedsCompilation no

Repository CRAN

Date/Publication 2021-02-22 14:40:02 UTC
R topics documented:

cleanse.data.frame 2
cleanse.split_df 4
compare_diag 5
compare_performance 7
compare_plot 8
compare_target_category 9
compare_target_numeric 11
extract_set 12
matthews .. 13
performance_metric 14
plot_cutoff 16
plot_performance 17
run_models .. 19
run_performance 21
run_predict .. 23
sampling_target 25
split_by ... 27
summary.split_df 28
treatment_corr 29

Index 31

cleanse.data.frame Cleansing the dataset for classification modeling

Description

The cleanse() cleanse the dataset for classification modeling

Usage

S3 method for class 'data.frame'
cleanse(
 .data,
 uniq = TRUE,
 uniq_thres = 0.1,
 char = TRUE,
 missing = FALSE,
 verbose = TRUE,
 ...
)

cleanse(.data, ...)

Cleanse.data.frame

Arguments

.data a data.frame or a tbl_df.
uniq logical. Set whether to remove the variables whose unique value is one.
uniq_thres numeric. Set a threshold to removing variables when the ratio of unique values (number of unique values / number of observation) is greater than the set value.
char logical. Set the change the character to factor.
missing logical. Set whether to removing variables including missing value
char logical. Set whether to echo information to the console at runtime.
... further arguments passed to or from other methods.

Details

This function is useful when fit the classification model. This function does the following.: Remove the variable with only one value. And remove variables that have a unique number of values relative to the number of observations for a character or categorical variable. In this case, it is a variable that corresponds to an identifier or an identifier. And converts the character to factor.

Value

An object of data.frame or train_df. and return value is an object of the same type as the .data argument.

Examples

```r
# create sample dataset
set.seed(123L)
id <- sapply(1:1000, function(x)
  paste(c(sample(letters, 5), x), collapse = ""))
year <- "2018"
set.seed(123L)
count <- sample(1:10, size = 1000, replace = TRUE)
set.seed(123L)
alpha <- sample(letters, size = 1000, replace = TRUE)
set.seed(123L)
flag <- sample(c("Y", "N"), size = 1000, prob = c(0.1, 0.9), replace = TRUE)
dat <- data.frame(id, year, count, alpha, flag, stringsAsFactors = FALSE)
# structure of dataset
str(dat)
# cleansing dataset
newDat <- cleanse(dat)
# structure of cleansing dataset
```
str(newDat)

cleansing dataset
newDat <- cleanse(dat, uniq = FALSE)

structure of cleansing dataset
str(newDat)

cleansing dataset
newDat <- cleanse(dat, uniq_thres = 0.3)

structure of cleansing dataset
str(newDat)

cleansing dataset
newDat <- cleanse(dat, char = FALSE)

structure of cleansing dataset
str(newDat)

cleanse.split_df
Cleansing the dataset for classification modeling

Description
Diagnosis of similarity between datasets splitted by train set and set included in the "split_df" class, and cleansing the "split_df" class

Usage
```r
## S3 method for class 'split_df'
cleanse(.data, add_character = FALSE, uniq_thres = 0.9, missing = FALSE, ...)
```

Arguments
- `.data` an object of class "split_df", usually, a result of a call to split_df().
- `add_character` logical. Decide whether to include text variables in the compare of categorical data. The default value is FALSE, which also not includes character variables.
- `uniq_thres` numeric. Set a threshold to removing variables when the ratio of unique values(number of unique values / number of observation) is greater than the set value.
- `missing` logical. Set whether to removing variables including missing value
- `...` further arguments passed to or from other methods.

Details
Remove the detected variables from the diagnosis using the compare_diag() function.
compare_diag

Value

An object of class "split_df".

Examples

```r
library(dplyr)

# Credit Card Default Data
head(ISLR::Default)

# Generate data for the example
sb <- ISLR::Default %>%
  split_by(default)

sb %>%
cleanse
```

Description

Diagnosis of similarity between datasets splitted by train set and test set included in the "split_df" class.

Usage

```r
compare_diag(
  .data,
  add_character = FALSE,
  uniq_thres = 0.01,
  miss_msg = TRUE,
  verbose = TRUE
)
```

Arguments

- `.data` an object of class "split_df", usually, a result of a call to split_df()
- `add_character` logical. Decide whether to include text variables in the compare of categorical data. The default value is FALSE, which also not includes character variables.
- `uniq_thres` numeric. Set a threshold to removing variables when the ratio of unique values(number of unique values / number of observation) is greater than the set value.
- `miss_msg` logical. Set whether to output a message when diagnosing missing value.
- `verbose` logical. Set whether to echo information to the console at runtime.
Details
In the two split datasets, a variable with a single value, a variable with a level not found in any dataset, and a variable with a high ratio to the number of levels are diagnosed.

Value

list. Variables of tbl_df for first component named "single_value":

- variables : character. variable name
- train_uniq : character. the type of unique value in train set. it is divided into "single" and "multi".
- test_uniq : character. the type of unique value in test set. it is divided into "single" and "multi".

Variables of tbl_df for second component named "uniq_rate":

- variables : character. categorical variable name
- train_uniqcount : numeric. the number of unique value in train set
- train_uniqrate : numeric. the ratio of unique values(number of unique values / number of observation) in train set
- test_uniqcount : numeric. the number of unique value in test set
- test_uniqrate : numeric. the ratio of unique values(number of unique values / number of observation) in test set

Variables of tbl_df for third component named "missing_level":

- variables : character. variable name
- n_levels : integer. count of level of categorical variable
- train_missing_nlevel : integer. the number of non-existent levels in the train set
- test_missing_nlevel : integer. the number of non-existent levels in the test set

Examples

library(dplyr)

Credit Card Default Data
head(ISLR::Default)
defaults <- ISLR::Default
defaults$id <- seq(NROW(defaults))

set.seed(1)
defaults[sample(seq(NROW(defaults)), 3), "student"] <- NA
set.seed(2)
defaults[sample(seq(NROW(defaults)), 10), "balance"] <- NA

sb <- defaults %>%
 split_by(default)

sb %>%
compare_performance

```r
compare_diag()
```

```r
sb %>%
  compare_diag(add_character = TRUE)
```

```r
sb %>%
  compare_diag(uniq_thres = 0.0005)
```

compare_performance Compare model performance

Description

`compare_performance()` compares the performance of a model with several model performance metrics.

Usage

```r
compare_performance(model)
```

Arguments

- `model` A `model_df` results of predicted model that created by `run_predict()`.

Value

list. results of compared model performance. list has the following components:

- `recommend_model`: character. The name of the model that is recommended as the best among the various models.
- `top_count`: numeric. The number of best performing performance metrics by model.
- `mean_rank`: numeric. Average of ranking individual performance metrics by model.
- `top_metric`: list. The name of the performance metric with the best performance on individual performance metrics by model.

The performance metrics calculated are as follows:

- `ZeroOneLoss`: Normalized Zero-One Loss (Classification Error Loss).
- `Accuracy`: Accuracy.
- `Precision`: Precision.
- `Recall`: Recall.
- `Specificity`: Specificity.
- `F1_Score`: F1 Score.
- `AUC`: Area Under the Receiver Operating Characteristic Curve (ROC AUC).
• Gini: Gini Coefficient.
• PRAUC: Area Under the Precision-Recall Curve (PR AUC).
• LiftAUC: Area Under the Lift Chart.
• GainAUC: Area Under the Gain Chart.
• KS_Stat: Kolmogorov-Smirnov Statistic.

Examples

```r
library(dplyr)

# Divide the train data set and the test data set.
sb <- rpart::kyphosis %>%
  split_by(Kyphosis)

# Extract the train data set from original data set.
train <- sb %>%
  extract_set(set = "train")

# Extract the test data set from original data set.
test <- sb %>%
  extract_set(set = "test")

# Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
train <- sb %>%
  sampling_target(seed = 1234L, method = "ubSMOTE")

# Cleaning the set.
train <- train %>%
cleanse

# Run the model fitting.
result <- run_models(.data = train, target = "Kyphosis", positive = "present")

# Predict the model.
pred <- run_predict(result, test)

# Compare the model performance
compare_performance(pred)
```

Description

Plot compare information of the train set and test set included in the "split_df" class.
Usage

```r
compare_plot(.data, ...)```

Arguments

- `.data` an object of class "split_df", usually, a result of a call to `split_df()`.
- `...` one or more unquoted expressions separated by commas. Select the variable you want to plotting. You can treat variable names like they are positions. Positive values select variables; negative values to drop variables. If the first expression is negative, `compare_target_category()` will automatically start with all variables. These arguments are automatically quoted and evaluated in a context where column names represent column positions. They support unquoting and splicing.

Details

The numerical variables are density plots and the categorical variables are mosaic plots to compare the distribution of train sets and test sets.

Value

There is no return value. Draw only the plot.

Examples

```r
library(dplyr)

Credit Card Default Data
head(ISLR::Default)

Generate data for the example
sb <- ISLR::Default %>%
 split_by(default)

sb %>%
 compare_plot("income")

sb %>%
 compare_plot()
```

Description

Compare the statistics of the categorical variables of the train set and test set included in the "split_df" class.
**compare_target_category**

**Usage**

```r
compare_target_category(.data, ..., add_character = FALSE, margin = FALSE)
```

**Arguments**

- `.data` an object of class "split_df", usually, a result of a call to `split_df()`.
- `...` one or more unquoted expressions separated by commas. Select the categorical variable you want to compare. You can treat variable names like they are positions. Positive values select variables; negative values to drop variables. If the first expression is negative, `compare_target_category()` will automatically start with all variables. These arguments are automatically quoted and evaluated in a context where column names represent column positions. They support unquoting and splicing.
- `add_character` logical. Decide whether to include text variables in the compare of categorical data. The default value is FALSE, which also not includes character variables.
- `margin` logical. Choose to calculate the marginal frequency information.

**Details**

Compare the statistics of the numerical variables of the train set and the test set to determine whether the raw data is well separated into two data sets.

**Value**

tbl_df. Variables of tbl_df for comparison:

- `variable` : character. categorical variable name
- `level` : factor. level of categorical variables
- `train` : numeric. the relative frequency of the level in the train set
- `test` : numeric. the relative frequency of the level in the test set
- `abs_diff` : numeric. the absolute value of the difference between two relative frequencies

**Examples**

```r
library(dplyr)

Credit Card Default Data
head(ISLR::Default)

Generate data for the example
sb <- ISLR::Default %>%
 split_by(default)

sb %>%
 compare_target_category()

sb %>%
 compare_target_category(add_character = TRUE)
```
**compare_target_numeric**

Comparison of numerical variables of train set and test set

**Description**

Compare the statistics of the numerical variables of the train set and test set included in the "split_df" class.

**Usage**

```r
compare_target_numeric(.data, ...)
```

**Arguments**

- **.data**
  - an object of class "split_df", usually, a result of a call to split_df().
- **...**
  - one or more unquoted expressions separated by commas. Select the numeric variable you want to compare. You can treat variable names like they are positions. Positive values select variables; negative values to drop variables. If the first expression is negative, compare_target_numeric() will automatically start with all variables. These arguments are automatically quoted and evaluated in a context where column names represent column positions. They support unquoting and splicing.

**Details**

Compare the statistics of the numerical variables of the train set and the test set to determine whether the raw data is well separated into two data sets.

**Value**

tbl_df. Variables for comparison:

- variable : character. numeric variable name
- train_mean : numeric. arithmetic mean of train set
- test_mean : numeric. arithmetic mean of test set
extract_set

- train_sd : numeric. standard deviation of train set
- test_sd : numeric. standard deviation of test set
- train_z : numeric. the arithmetic mean of the train set divided by the standard deviation
- test_z : numeric. the arithmetic mean of the test set divided by the standard deviation

Examples

library(dplyr)

# Credit Card Default Data
head(ISLR::Default)

# Generate data for the example
sb <- ISLR::Default %>%
  split_by(default)

sb %>%
  compare_target_numeric()

sb %>%
  compare_target_numeric(balance)

extract_set(x, set = c("train", "test"))

Arguments

x an object of class "split_df", usually, a result of a call to split_df()
set character. Specifies whether the extracted data is a train set or a test set. You can
use "train" or "test".

Details

Extract the train or test sets based on the parameters you defined when creating split_df with
split_by().

Value

an object of class "tbl_df".
Examples

```r
library(dplyr)

Credit Card Default Data
head(ISLR::Default)

Generate data for the example
sb <- ISLR::Default %>%
 split_by(default)

train <- sb %>%
 extract_set(set = "train")

test <- sb %>%
 extract_set(set = "test")
```

---

**matthews**  
*Compute Matthews Correlation Coefficient*

**Description**

compute the Matthews correlation coefficient with actual and predict values.

**Usage**

```r
matthews(predicted, y, positive)
```

**Arguments**

- `predicted` numeric. the predicted value of binary classification
- `y` factor or character. the actual value of binary classification
- `positive` level of positive class of binary classification

**Details**

The Matthews Correlation Coefficient has a value between -1 and 1, and the closer to 1, the better the performance of the binary classification.

**Value**

numeric. The Matthews Correlation Coefficient.
Examples

# simulate actual data
set.seed(123L)
actual <- sample(c("Y", "N"), size = 100, prob = c(0.3, 0.7), replace = TRUE)
actual

# simulate predict data
set.seed(123L)
pred <- sample(c("Y", "N"), size = 100, prob = c(0.2, 0.8), replace = TRUE)
pred

# simulate confusion matrix
table(pred, actual)

matthews(pred, actual, "Y")

---

performance_metric  Calculate metrics for model evaluation

Description

Calculate some representative metrics for binary classification model evaluation.

Usage

performance_metric(
  pred,  
  actual,  
  positive,  
  metric = c("ZeroOneLoss", "Accuracy", "Precision", "Recall", "Sensitivity", 
             "Specificity", "F1_Score", "Fbeta_Score", "LogLoss", "AUC", "Gini", "PRAUC", 
             "LiftAUC", "GainAUC", "KS_Stat", "ConfusionMatrix"),  
  cutoff = 0.5,  
  beta = 1  
)

Arguments

pred    numeric. Probability values that predicts the positive class of the target variable.
actual  factor. The value of the actual target variable.
positive character. Level of positive class of binary classification.
metric  character. The performance metrics you want to calculate. See details.
cutoff  numeric. Threshold for classifying predicted probability values into positive and negative classes.
beta    numeric. Weight of precision in harmonic mean for F-Beta Score.
Details

The cutoff argument applies only if the metric argument is "ZeroOneLoss", "Accuracy", "Precision", "Recall", "Sensitivity", "Specificity", "F1_Score", "Fbeta_Score", "ConfusionMatrix".

Value

numeric or table object. Confusion Matrix return by table object, and otherwise is numeric.: The performance metrics calculated are as follows.:

- ZeroOneLoss: Normalized Zero-One Loss(Classification Error Loss).
- Accuracy: Accuracy.
- Precision: Precision.
- Recall: Recall.
- Sensitivity: Sensitivity.
- Specificity: Specificity.
- F1_Score: F1 Score.
- Fbeta_Score: F-Beta Score.
- AUC: Area Under the Receiver Operating Characteristic Curve (ROC AUC).
- Gini: Gini Coefficient.
- PRAUC: Area Under the Precision-Recall Curve (PR AUC).
- LiftAUC: Area Under the Lift Chart.
- GainAUC: Area Under the Gain Chart.
- KS_Stat: Kolmogorov-Smirnov Statistic.
- ConfusionMatrix: Confusion Matrix.

Examples

library(dplyr)

# Divide the train data set and the test data set.
sb <- rpart::kyphosis %>%
  split_by(Kyphosis)

# Extract the train data set from original data set.
train <- sb %>%
  extract_set(set = "train")

# Extract the test data set from original data set.
test <- sb %>%
  extract_set(set = "test")

# Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
train <- sb %>%
  sampling_target(seed = 1234L, method = "ubSMOTE")
# Cleaning the set.
train <- train %>% cleanse

# Run the model fitting.
result <- run_models(.data = train, target = "Kyphosis", positive = "present")
result

# Predict the model.
pred <- run_predict(result, test)
pred

# Calculate Accuracy.
performance_metric(attr(pred$predicted[[1]], "pred_prob"), test$Kyphosis, "present", "Accuracy")

# Calculate Confusion Matrix.
performance_metric(attr(pred$predicted[[1]], "pred_prob"), test$Kyphosis, "present", "ConfusionMatrix")

# Calculate Confusion Matrix by cutoff = 0.55.
performance_metric(attr(pred$predicted[[1]], "pred_prob"), test$Kyphosis, "present", "ConfusionMatrix", cutoff = 0.55)

---

**plot_cutoff**  
*Visualization for cut-off selection*

**Description**

`plot_cutoff()` visualizes a plot to select a cut-off that separates positive and negative from the probabilities that are predictions of a binary classification, and suggests a cut-off.

**Usage**

```r
plot_cutoff(
 predicted,
 y,
 positive,
 type = c("mcc", "density", "prob"),
 measure = c("mcc", "cross", "half")
)
```

**Arguments**

- **predicted**: numeric. the predicted value of binary classification
- **y**: factor or character. the actual value of binary classification
- **positive**: level of positive class of binary classification
- **type**: character. Visualization type. "mcc" draw the Matthews Correlation Coefficient scatter plot, "density" draw the density plot of negative and positive, and "prob" draws line or points plots of the predicted probability.
**plot_performance**

*Visualization for ROC curve*

**Description**

`plot_performance()` visualizes a plot to ROC curve that separates model algorithm.

**Usage**

`plot_performance(model)`
Arguments

model A model_df. results of predicted model that created by run_predict().

Details

The ROC curve is output for each model included in the model_df class object specified as a model argument.

Value

There is no return value. Only the plot is drawn.

Examples

library(dplyr)

# Divide the train data set and the test data set.
sb <- rpart::kyphosis %>%
  split_by(Kyphosis)

# Extract the train data set from original data set.
train <- sb %>%
  extract_set(set = "train")

# Extract the test data set from original data set.
test <- sb %>%
  extract_set(set = "test")

# Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
train <- sb %>%
  sampling_target(seed = 1234L, method = "ubSMOTE")

# Cleaning the set.
train <- train %>%
  cleanse

# Run the model fitting.
result <- run_models(.data = train, target = "Kyphosis", positive = "present")

# Predict the model.
pred <- run_predict(result, test)

# Plot ROC curve
plot_performance(pred)
run_models

---

### Description

Fit some representative binary classification models.

### Usage

```r
run_models(
 .data,
 target,
 positive,
 models = c("logistic", "rpart", "ctree", "randomForest", "ranger", "xgboost")
)
```

### Arguments

- **.data**: A train_df. Train data to fit the model. It also supports tbl_df, tbl, and data.frame objects.
- **target**: character. Name of target variable.
- **positive**: character. Level of positive class of binary classification.
- **models**: character. Algorithm types of model to fit. See details. Default value is c("logistic", "rpart", "ctree", "randomForest", "ranger").

### Details

Supported models are functions supported by the representative model package used in R environment. The following binary classifications are supported:

- "logistic": logistic regression by glm() in stats package.
- "rpart": recursive partitioning tree model by rpart() in rpart package.
- "ctree": conditional inference tree model by ctree() in party package.
- "randomForest": random forest model by randomForest() in randomForest package.
- "ranger": random forest model by ranger() in ranger package.
- "xgboost": XGBoosting model by xgboost() in xgboost package.

run_models() executes the process in parallel when fitting the model. However, it is not supported in MS-Windows operating system and RStudio environment.
Value

`model_df` results of fitted model. `model_df` is composed of tbl_df and contains the following variables:

- `step` : character. The current stage in the model fit process. The result of calling `run_models()` is returned as "1.Fitted".
- `model_id` : character. Type of fit model.
- `target` : character. Name of target variable.
- `is_factor` : logical. Indicates whether the target variable is a factor.
- `positive` : character. Level of positive class of binary classification.
- `negative` : character. Level of negative class of binary classification.
- `fitted_model` : list. Fitted model object.

Examples

```r
library(dplyr)

Divide the train data set and the test data set.
sb <- rpart::kyphosis %>%
 split_by(Kyphosis)

Extract the train data set from original data set.
train <- sb %>%
 extract_set(set = "train")

Extract the test data set from original data set.
test <- sb %>%
 extract_set(set = "test")

Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
train <- sb %>%
 sampling_target(seed = 1234L, method = "ubSMOTE")

Cleaning the set.
train <- train %>%
 cleanse

Run the model fitting.
result <- run_models(.data = train, target = "Kyphosis", positive = "present")
result

Run the several kinds model fitting by dplyr
train %>%
 run_models(target = "Kyphosis", positive = "present")

Run the logistic model fitting by dplyr
train %>%
 run_models(target = "Kyphosis", positive = "present", models = "logistic")
```
run_performance

Apply calculate performance metrics for model evaluation

Description

Apply calculate performance metrics for binary classification model evaluation.

Usage

run_performance(model, actual = NULL)

Arguments

- **model**: A model_df. results of predicted model that created by run_predict().
- **actual**: factor. A data of target variable to evaluate the model. It supports factor that has binary class.

Details

-run_performance() is performed in parallel when calculating the performance evaluation index. However, it is not supported in MS-Windows operating system and RStudio environment.

Value

- model_df. results of predicted model. model_df is composed of tbl_df and contains the following variables:.
  - **step**: character. The current stage in the model fit process. The result of calling run_performance() is returned as "3.Performanceed".
  - **model_id**: character. Type of fit model.
  - **target**: character. Name of target variable.
  - **positive**: character. Level of positive class of binary classification.
  - **fitted_model**: list. Fitted model object.
  - **predicted**: list. Predicted value by individual model. Each value has a predict_class class object.
  - **performance**: list. Calculate metrics by individual model. Each value has a numeric vector.

The performance metrics calculated are as follows:.

- **ZeroOneLoss**: Normalized Zero-One Loss(Classification Error Loss).
- **Accuracy**: Accuracy.
- **Precision**: Precision.
- **Recall**: Recall.
- **Sensitivity**: Sensitivity.
- **Specificity**: Specificity.
• F1_Score : F1 Score.
• Fbeta_Score : F-Beta Score.
• LogLoss : Log loss / Cross-Entropy Loss.
• AUC : Area Under the Receiver Operating Characteristic Curve (ROC AUC).
• Gini : Gini Coefficient.
• PRAUC : Area Under the Precision-Recall Curve (PR AUC).
• LiftAUC : Area Under the Lift Chart.
• GainAUC : Area Under the Gain Chart.
• KS_Stat : Kolmogorov-Smirnov Statistic.

Examples

library(dplyr)

# Divide the train data set and the test data set.
sb <- rpart::kyphosis %>%
  split_by(Kyphosis)

# Extract the train data set from original data set.
train <- sb %>%
  extract_set(set = "train")

# Extract the test data set from original data set.
test <- sb %>%
  extract_set(set = "test")

# Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
train <- sb %>%
  sampling_target(seed = 1234L, method = "ubSMOTE")

# Cleaning the set.
train <- train %>%
cleanse

# Run the model fitting.
result <- run_models(.data = train, target = "Kyphosis", positive = "present")
result

# Predict the model. (Case 1)
pred <- run_predict(result, test)
pred

# Calculate performance metrics. (Case 1)
perf <- run_performance(pred)
perf
  perf$performance

# Predict the model. (Case 2)
pred <- run_predict(result, test[, -1])
run_predict

pred

# Calculate performance metrics. (Case 2)
perf <- run_performance(pred, pull(test[, 1]))
perf
perf$performance

# Convert to matrix for compare performance.
sapply(perf$performance, "c")

---

run_predict  Predict binary classification model

Description

Predict some representative binary classification models.

Usage

run_predict(model, .data, cutoff = 0.5)

Arguments

model  A model_df. results of fitted model that created by run_models().
.data  A tbl_df. The data set to predict the model. It also supports tbl, and data.frame objects.
cutoff  numeric. Cut-off that determines the positive from the probability of predicting the positive.

Details

Supported models are functions supported by the representative model package used in R environment. The following binary classifications are supported:

- "logistic" : logistic regression by predict.glm() in stats package.
- "rpart" : recursive partitioning tree model by predict.rpart() in rpart package.
- "ctree" : conditional inference tree model by predict() in stats package.
- "randomForest" : random forest model by predict.randomForest() in randomForest package.
- "ranger" : random forest model by predict.ranger() in ranger package.

run_predict() is executed in parallel when predicting by model. However, it is not supported in MS-Windows operating system and RStudio environment.
model_df. results of predicted model. model_df is composed of tbl_df and contains the following variables:

- **step**: character. The current stage in the model fit process. The result of calling run_predict() is returned as “2.Predicted”.
- **model_id**: character. Type of fit model.
- **target**: character. Name of target variable.
- **is_factor**: logical. Indicates whether the target variable is a factor.
- **positive**: character. Level of positive class of binary classification.
- **negative**: character. Level of negative class of binary classification.
- **fitted_model**: list. Fitted model object.
- **predicted**: list. Predicted value by individual model. Each value has a predict_class class object.

### Examples

```r
library(dplyr)

Divide the train data set and the test data set.
sb <- rpart::kyphosis %>%
 split_by(Kyphosis)

Extract the train data set from original data set.
train <- sb %>%
 extract_set(set = "train")

Extract the test data set from original data set.
test <- sb %>%
 extract_set(set = "test")

Sampling for unbalanced data set using SMOTE(synthetic minority over-sampling technique).
train <- sb %>%
 sampling_target(seed = 1234L, method = "ubSMOTE")

Cleaning the set.
train <- train %>%
 cleanse

Run the model fitting.
result <- run_models(.data = train, target = "Kyphosis", positive = "present")
result

Predict the model.
pred <- run_predict(result, test)
pred

Run the several kinds model predict by dplyr
result %>%
```

run_predict(test)

---

**sampling_target**

*Extract the data to fit the model*

---

**Description**

To solve the imbalanced class, perform sampling in the train set of split_df.

**Usage**

```r
sampling_target(
 .data,
 method = c("ubUnder", "ubOver", "ubSMOTE"),
 seed = NULL,
 perc = 50,
 k = ifelse(method == "ubSMOTE", 5, 0),
 perc.over = 200,
 perc.under = 200
)
```

**Arguments**

- **.data**
  - an object of class "split_df", usually, a result of a call to split_df().
- **method**
  - character. sampling methods. "ubUnder" is under-sampling, and "ubOver" is over-sampling, "ubSMOTE" is SMOTE(Synthetic Minority Over-sampling T Technique).
- **seed**
  - integer. random seed used for sampling
- **perc**
  - integer. The percentage of positive class in the final dataset. It is used only in under-sampling. The default is 50. perc can not exceed 50.
- **k**
  - integer. It is used only in over-sampling and SMOTE. If over-sampling and if K=0: sample with replacement from the minority class until we have the same number of instances in each class. under-sampling and if K>0: sample with replacement from the minority class until we have k-times the original number of minority instances. If SMOTE, the number of neighbours to consider as the pool from where the new examples are generated
- **perc.over**
  - integer. It is used only in SMOTE. per.over/100 is the number of new instances generated for each rare instance. If perc.over < 100 a single instance is generated.
- **perc.under**
  - integer. It is used only in SMOTE. perc.under/100 is the number of "normal" (majority class) instances that are randomly selected for each smoted observation.
Details

In order to solve the problem of imbalanced class, sampling is performed by under sampling, over sampling, SMOTE method.

Value

An object of train_df.

attributes of train_df class

The attributes of the train_df class are as follows:

- sample_seed : integer. random seed used for sampling
- method : character. sampling methods.
- perc : integer. perc argument value
- k : integer. k argument value
- perc.over : integer. perc.over argument value
- perc.under : integer. perc.under argument value
- binary : logical. whether the target variable is a binary class
- target : character. target variable name
- minority : character. the level of the minority class
- majority : character. the level of the majority class

Examples

library(dplyr)

# Credit Card Default Data
head(ISLR::Default)

# Generate data for the example
sb <- ISLR::Default %>%
  split_by(default)

# under-sampling with random seed
under <- sb %>%
  sampling_target(seed = 1234L)

under %>%
  count(default)

# under-sampling with random seed, and minority class frequency is 40%
under40 <- sb %>%
  sampling_target(seed = 1234L, perc = 40)

under40 %>%
  count(default)
# over-sampling with random seed
over <- sb %>%
    sampling_target(method = "ubOver", seed = 1234L)

over %>%
    count(default)

# over-sampling with random seed, and k = 10
over10 <- sb %>%
    sampling_target(method = "ubOver", seed = 1234L, k = 10)

over10 %>%
    count(default)

# SMOTE with random seed
smote <- sb %>%
    sampling_target(method = "ubSMOTE", seed = 1234L)

smote %>%
    count(default)

# SMOTE with random seed, and perc.under = 250
smote250 <- sb %>%
    sampling_target(method = "ubSMOTE", seed = 1234L, perc.under = 250)

smote250 %>%
    count(default)

---

**split_by**  

_Split Data into Train and Test Set_

**Description**

The `split_by()` splits the data.frame or tbl_df into a train set and a test set.

**Usage**

```r
split_by(.data, ...)
S3 method for class 'data.frame'
split_by(.data, target, ratio = 0.7, seed = NULL, ...)
```

**Arguments**

- `.data` a data.frame or a `tbl_df`.
- `...` further arguments passed to or from other methods.
- `target` unquoted expression or variable name. the name of the target variable
- `ratio` numeric. the ratio of the train dataset. default is 0.7
- `seed` random seed used for splitting
The split_df class is created, which contains the split information and criteria to separate the training and the test set.

An object of split_by.

The attributes of the split_df class are as follows:

- split_seed : integer. random seed used for splitting
- target : character. the name of the target variable
- binary : logical. whether the target variable is binary class
- minority : character. the name of the minority class
- majority : character. the name of the majority class
- minority_rate : numeric. the rate of the minority class
- majority_rate : numeric. the rate of the majority class

library(dplyr)

# Credit Card Default Data
head(ISLR::Default)

# Generate data for the example
sb <- ISLR::Default %>%
  split_by(default)

sb

summary.split_df

Summary method for "split_df" class.

## S3 method for class 'split_df'

summary(object, ...)
Arguments

object: an object of class "split_df", usually, a result of a call to split_df().

Details

summary.split_df provides information on the number of two split data sets, minority class and majority class.

Value

NULL is returned. However, the split train set and test set information are displayed. The output information is as follows:

• Random seed
• Number of train sets and test sets
• Name of target variable
• Target variable minority class and majority class information (label and ratio)

Examples

library(dplyr)

# Credit Card Default Data
head(ISLR::Default)

# Generate data for the example
sb <- ISLR::Default %>%
  split_by(default)

sb
summary(sb)
treatment_corr

Arguments

- `.data` a data.frame or a `tbl_df`.
- `corr_thres` numeric. Set a threshold to detecting variables when correlation greater than threshold.
- `treat` logical. Set whether to removing variables
- `verbose` logical. Set whether to echo information to the console at runtime.

Details

The correlation coefficient of pearson is obtained for continuous variables and the correlation coefficient of spearman for categorical variables.

Value

An object of data.frame or train_df. and return value is an object of the same type as the `.data` argument. However, several variables can be excluded by correlation between variables.

Examples

```r
numerical variable
x1 <- 1:100
set.seed(12L)
x2 <- sample(1:3, size = 100, replace = TRUE) * x1 + rnorm(1)
set.seed(1234L)
x3 <- sample(1:2, size = 100, replace = TRUE) * x1 + rnorm(1)

categorical variable
x4 <- factor(rep(letters[1:20], time = 5))
set.seed(100L)
x5 <- factor(rep(letters[1:20 + sample(1:6, size = 20, replace = TRUE)], time = 5))
set.seed(200L)
x6 <- factor(rep(letters[1:20 + sample(1:3, size = 20, replace = TRUE)], time = 5))
set.seed(300L)
x7 <- factor(sample(letters[1:5], size = 100, replace = TRUE))

exam <- data.frame(x1, x2, x3, x4, x5, x6, x7)
str(exam)
head(exam)

default case
treatment_corr(exam)

not removing variables
treatment_corr(exam, treat = FALSE)

Set a threshold to detecting variables when correlation greater then 0.9
treatment_corr(exam, corr_thres = 0.9, treat = FALSE)

not verbose mode
treatment_corr(exam, verbose = FALSE)
```
Index

cleanse (cleanse.data.frame), 2

cleanse.data.frame, 2

cleanse.split_df, 4

compare.diag, 5

compare.performance, 7

compare.plot, 8

compare_target_category, 9

compare_target_numeric, 11

extract.set, 12

matthews, 13

performance_metric, 14

plot_cutoff, 16

plot_performance, 17

run_models, 19

run_performance, 21

run.predict, 23

sampling_target, 25

split_by, 27

summary.split_df, 28

tbl_df, 3, 27, 30

treatment_corr, 29