Package ‘agricolaeplotr’

January 17, 2024

Type Package
Title Visualization of Design of Experiments from the 'agricolae' Package
Version 0.5.0
Maintainer Jens Harbers <jensharbers@gmail.com>
Description Visualization of Design of Experiments from the 'agricolae' package with 'ggplot2' framework.
The user provides an experiment design from the 'agricolae' package, calls the corresponding function and will receive a visualization with 'ggplot2' based functions that are specific for each design. As there are many different designs, each design is tested on its type. The output can be modified with standard 'ggplot2' commands or with other packages with 'ggplot2' function extensions.
License GPL (>= 3)
Encoding UTF-8
Imports ggplot2, agricolae, raster, sp (>= 2.0.0), methods, FieldHub, utils, tibble, sf, dplyr, tidyr, stplanr, ggspatial
RoxygenNote 7.2.3
Language en-US
Suggests testthat (>= 3.0.0), knitr, rmarkdown, leaflet
Config/testthat/edition 3
BugReports https://github.com/jensharbers/agricolaeplotr/issues
URL https://github.com/jensharbers/agricolaeplotr
Depends R (>= 4.0)
VignetteBuilder knitr
Note 'None'
NeedsCompilation no
Author Jens Harbers [aut, cre] (<https://orcid.org/0000-0001-6634-623X>)
Repository CRAN
Date/Publication 2024-01-17 16:42:04 UTC
<table>
<thead>
<tr>
<th>R topics documented:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>citations</td>
<td>3</td>
</tr>
<tr>
<td>DOE_obj</td>
<td>3</td>
</tr>
<tr>
<td>full_control_positions</td>
<td>4</td>
</tr>
<tr>
<td>make_polygons</td>
<td>6</td>
</tr>
<tr>
<td>plot_alpha</td>
<td>7</td>
</tr>
<tr>
<td>plot_bib</td>
<td>8</td>
</tr>
<tr>
<td>plot_cyclic</td>
<td>10</td>
</tr>
<tr>
<td>plot_dau</td>
<td>11</td>
</tr>
<tr>
<td>plot_design.factorial_crd</td>
<td>12</td>
</tr>
<tr>
<td>plot_design.factorial_lsd</td>
<td>13</td>
</tr>
<tr>
<td>plot_design.factorial_rcbd</td>
<td>15</td>
</tr>
<tr>
<td>plot_design_crd</td>
<td>16</td>
</tr>
<tr>
<td>plot_fieldhub</td>
<td>17</td>
</tr>
<tr>
<td>plot_graeco</td>
<td>19</td>
</tr>
<tr>
<td>plot_latin_square</td>
<td>20</td>
</tr>
<tr>
<td>plot_lattice_simple</td>
<td>21</td>
</tr>
<tr>
<td>plot_lattice_triple</td>
<td>22</td>
</tr>
<tr>
<td>plot_longest_diagonal</td>
<td>24</td>
</tr>
<tr>
<td>plot_rcdb</td>
<td>25</td>
</tr>
<tr>
<td>plot_split_crd</td>
<td>26</td>
</tr>
<tr>
<td>plot_split_lsd</td>
<td>27</td>
</tr>
<tr>
<td>plot_split_rcbd</td>
<td>29</td>
</tr>
<tr>
<td>plot_strip</td>
<td>30</td>
</tr>
<tr>
<td>plot_youden</td>
<td>31</td>
</tr>
<tr>
<td>protective_layers</td>
<td>33</td>
</tr>
<tr>
<td>sample_locations</td>
<td>34</td>
</tr>
<tr>
<td>serpentine</td>
<td>35</td>
</tr>
<tr>
<td>summary</td>
<td>35</td>
</tr>
<tr>
<td>test_input_extend</td>
<td>36</td>
</tr>
<tr>
<td>test_input_ncols</td>
<td>37</td>
</tr>
<tr>
<td>test_input_nrows</td>
<td>37</td>
</tr>
<tr>
<td>test_input_reverse</td>
<td>38</td>
</tr>
<tr>
<td>test_input_shift</td>
<td>38</td>
</tr>
<tr>
<td>test_names_design</td>
<td>39</td>
</tr>
<tr>
<td>test_name_in_column</td>
<td>39</td>
</tr>
<tr>
<td>test_string</td>
<td>40</td>
</tr>
<tr>
<td>theme_gi</td>
<td>40</td>
</tr>
<tr>
<td>theme_poster</td>
<td>41</td>
</tr>
<tr>
<td>theme_pres</td>
<td>42</td>
</tr>
<tr>
<td>to_table</td>
<td>42</td>
</tr>
</tbody>
</table>

Index 44
citations

Citation

Description
Generates citations of all loaded packages

Usage

citations(includeURL = TRUE, bibtex = TRUE)

Arguments
- **includeURL**: boolean, Should the URL be returned?
- **bibtex**: boolean, Should the citations be returned as bibtex?

Value
printed output to console

Examples

library(ggplot2)
library(agricolaeplotr)
library(agricolae)
library(raster)
citations()

DOE_obj

Measures of a Field Design

Description
Returns a list with several useful information about the experiment

Usage

DOE_obj(p)

Arguments
- **p**: ggplot object containing the data of the plot

Value
a list with several useful information about the experiment and the field
Examples

```r
library(agricolae)
library(agricolaeplotr)
trt <- c(2,3,4,5,6)
outdesign1 <- design.crd(trt, r=5, serie=2,2543,'Mersenne-Twister')
p <- plot_design_crd(outdesign1,
  ncols = 7,
  nrows = 4,
  width = 10,
  height = 10,
  reverse_y = TRUE)
stats <- DOE_obj(p)
stats
```

Description

This function provides full control about the plotting. The user also may shift the coordinates as liked.

Usage

```r
full_control_positions(
  design,
  x = "col",
  y = "row",
  factor_name = "trt",
  labels = "plots",
  width = 1,
  height = 1,
  space_width = 0.95,
  space_height = 0.85,
  reverse_y = FALSE,
  reverse_x = FALSE,
  way_x = 0,
  way_y = 0,
  shift_x = 0,
  dist_x = 1,
  dist_y = 1,
  shift_y = 0,
  start_origin = FALSE
)
```
Arguments

design data.frame containing the row and columns of an experiment
x Describes the x coordinates of a experiment design
y Describes the y coordinates of a experiment design
factor_name string Which factor should be used for plotting, needs to be a column in outdesign$book
labels string Describes the column from that the plots are taken to display them
width numeric value, describes the width of a plot in an experiment
height numeric value, describes the height of a plot in an experiment
space_width numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of width
space_height numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of height
reverse_y boolean, should the plots of the experiment be changed in reverse order in Row direction? use reverse_y=TRUE to have same sketch as in agricolae. default:reverse_y=FALSE
reverse_x boolean, should the plots of the experiment be changed in reverse order in column direction? default:reverse_x=FALSE
way_x numeric vector indicates the shift of the nth-plot in x-axis.
way_y numeric vector indicates the shift of the nth-plot in y-axis.
shift_x numeric indicates the shift in units in x-axis.
shift_y numeric indicates the shift in units for the y-axis.
dist_x numeric indicates the shift in plots in x-axis.
dist_y numeric indicates the shift in plots for the y-axis.
start_origin boolean. Should the design start at the origin (00)?

Value

ggplot graphic that can be modified, if wished

Examples

```r
library(agricolaeplotr)
library(agricolae)
library(ggplot2)
varieties<-c("perricholi","yungay","maria bonita","tomasa")
outdesign <-design.youden(varieties,r=2,serie=2,seed=23)
design <- outdesign$book
design
p <- full_control_positions(design,"col","row","varieties","plots",
width=3,height=4.5,
space_width=0.5,space_height=0.5,
shift_x=(-0.5*3) + (-0.5*3*0.5),shift_y=-0.5*4.5 + (-0.5*4.5*0.5))
p
```
p <- full.control.positions(design,"col","row","varieties","plots",
 width=3,height=4.5,
 space_width=0.13,space_height=0.445,
 shift_x=(-0.5*3) + (-0.5*3*(1-0.13)),shift_y=-0.5*4.5 + (-0.5*4.5*(1-0.445)))

varieties<-LETTERS[1:12]
outdesign <-design.youden(varieties,r=12,serie=2,seed=23)
design <- outdesign$book
p <- full.control.positions(design,"col","row","varieties","plots",
 width=3,height=4.5,
 space_width=1,space_height=1,
 shift_x=-0.5*3,shift_y=-0.5*4.5)

p <- full.control.positions(design,"col","row","varieties","plots",
 width=3,height=4.5,
 space_width=0.93,space_height=0.945,
 start_origin = TRUE)

p <- full.control.positions(design,"col","row","varieties","plots",
 width=3,height=4.5,
 space_width=0.93,space_height=0.945,way_x = c(2,6,8,10,12),way_y=c(3,8),dist_x=2,dist_y=4,
 start_origin = TRUE, reverse_y = FALSE, reverse_x = FALSE)p

p <- full.control.positions(design,"col","row","varieties","plots",
 width=3,height=4.5,
 space_width=0.93,space_height=0.945,way_x = c(2,4,6,8,10,12),way_y=c(3,8),
 start_origin = FALSE, reverse_y = FALSE, reverse_x = FALSE);p

Description

This function coerces all rectangles from a `ggplot` object to `SpatialPolygonDataFrame`

Usage

```r
make_polygons(  
    ggplot_object,  
    north = 3454206.89,  
    east = 5939183.21,  
    projection_input = "+init=epsg:31467",  
    projection_output = "+init=epsg:4326"
)
```
plot_alpha

Arguments

- `ggplot_object` saved ggplot object, containing the coordinates of the rectangles of a 'ggplot' object of the first two layers
- `north` float added to the rows to have a northing ordinate
- `east` float added to the rows to have an easting ordinate
- `projection_input` string defines in which EPSG projection the ggplot object should be converted to a raster object? a projection with a metric unit is highly recommended
- `projection_output` string defines in which EPSG projection the SpatialPolygonDataFrame should be exported.

Value

a SpatialPolygonDataFrame object

Examples

library(agricoleaplotr)
library(agricolae)
trt = c(2,3,4)
outdesign1 <- design.crd(trt,r=5,serie=2,2543,'Mersenne-Twister')
plt <- plot_design_crd(outdesign1,ncols = 13,nrows = 3)
spat_df <- make_polygons(plt)

plot_alpha

Plot Alpha design Experiments

Description

Plot a design of an experiment with an alpha design from agricolae design.alpha

Usage

plot_alpha(
 design,
 x = "cols",
 y = "block",
 factor_name = "trt",
 labels = "plots",
 width = 1,
 height = 1,
 space_width = 0.95,
 space_height = 0.85,
 reverse_y = FALSE,
 reverse_x = FALSE
)
plot_bib

Plot Randomized Balanced Incomplete Block Designs

Description

Plot a design of an experiment with an Randomized Balanced Incomplete Block Designs (BIB) from design.bib

Arguments

- **design**
 - outdesign from agricolae package

- **x**
 - Describes the x coordinates of a experiment design

- **y**
 - Describes the y coordinates of a experiment design

- **factor_name**
 - Which factor should be used for plotting, needs to be a column in outdesign$book

- **labels**
 - Describes the column from that the plots are taken to display them

- **width**
 - numeric value, describes the width of a plot in an experiment

- **height**
 - numeric value, describes the height of a plot in an experiment

- **space_width**
 - numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of width

- **space_height**
 - numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of height

- **reverse_y**
 - boolean, should the plots of the experiment be changed in reverse order in Row direction? use reverse_y=TRUE to have same sketch as in agricolae. default:reverse_y=FALSE

- **reverse_x**
 - boolean, should the plots of the experiment be changed in reverse order in column direction? default:reverse_x=FALSE

Value

- ggplot graphic that can be modified, if wished

Examples

```r
library(agricolaeplotr)
library(agricolae)
trt<-1:30
t <- length(trt)
# size block k
k<-3
# Blocks s
s<-t/k
# replications r
r <- 2
outdesign<- design.alpha(trt,k,r,serie=2)
plot_alpha(outdesign)
```
plot_bib

Usage

plot_bib(
 design,
 y = "block",
 factor_name = "trt",
 labels = "plots",
 width = 1,
 height = 1,
 space_width = 0.95,
 space_height = 0.85,
 reverse_y = FALSE,
 reverse_x = FALSE
)

Arguments

design outdesign from agricolae package
y Describes the y coordinates of a experiment design
factor_name Which factor should be used for plotting, needs to be a column in outdesign$book
labels Describes the column from that the plots are taken to display them
width numeric value, describes the width of a plot in an experiment
height numeric value, describes the height of a plot in an experiment
space_width numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of width
space_height numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of height
reverse_y boolean, should the plots of the experiment be changed in reverse order in Row direction? use reverse_y=TRUE to have same sketch as in agricolae. default:reverse_y=FALSE
reverse_x boolean, should the plots of the experiment be changed in reverse order in column direction? default:reverse_x=FALSE

Value

ggplot graphic that can be modified, if wished

Examples

library(agricolaeplotr)
library(agricolae)
trt<-c("A", "B", "C", "D")
k<-3
outdesign<-design.bib(trt,k,serie=2,seed =41,kinds ="Super-Duper") # seed = 41
plot_bib(outdesign)
#now let us change position of the columns
plot_bib(outdesign,reverse_x = TRUE)
plot_cyclic

Plot Cyclic Design

Description
Plot a design of an experiment with a cyclic design from agricolae design.cyclic

Usage
plot_cyclic(
 design,
 y = "block",
 factor_name = "trt",
 labels = "plots",
 width = 1,
 height = 1,
 space_width = 0.95,
 space_height = 0.85,
 reverse_y = FALSE,
 reverse_x = FALSE
)

Arguments
- design: outdesign from agricolae package
- y: Describes the y coordinates of an experiment design
- factor_name: Which factor should be used for plotting, needs to be a column in outdesign$book
- labels: Describes the column from that the plots are taken to display them
- width: numeric value, describes the width of a plot in an experiment
- height: numeric value, describes the height of a plot in an experiment
- space_width: numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of width
- space_height: numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of height
- reverse_y: boolean, should the plots of the experiment be changed in reverse order in Row direction? use reverse_y=TRUE to have same sketch as in agricolae. default: reverse_y=FALSE
- reverse_x: boolean, should the plots of the experiment be changed in reverse order in column direction? default: reverse_x=FALSE

Value
- ggplot graphic that can be modified, if wished
Examples

```r
library(agricolaeplotr)
library(agricolae)
k <- 2
r <- 6
trt <- c('CIP-101', 'CIP-201', 'CIP-301', 'CIP-401', 'CIP-501', LETTERS[1:2])
outdesign <- design.cyclic(trt, k = k, r = r, serie = 3, rowcol = TRUE)
plot_cyclic(outdesign, factor_name = 'trt')
```

Description

Plot a design of an experiment with an augmented block design from agricolae design.dau

Usage

```r
plot_dau(
  design,
  y = "block",
  factor_name = "trt",
  labels = "plots",
  width = 1,
  height = 1,
  space_width = 0.95,
  space_height = 0.85,
  reverse_y = FALSE,
  reverse_x = FALSE
)
```

Arguments

- `design`: outdesign from agricolae package
- `y`: Describes the y coordinates of a experiment design
- `factor_name`: Which factor should be used for plotting, needs to be a column in outdesign$book
- `labels`: Describes the column from that the plots are taken to display them
- `width`: numeric value, describes the width of a plot in an experiment
- `height`: numeric value, describes the height of a plot in an experiment
- `space_width`: numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of width
- `space_height`: numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of height
reverse_y boolean, should the plots of the experiment be changed in reverse order in Row direction? use reverse_y=TRUE to have same sketch as in agricolae. default: reverse_y=FALSE

reverse_x boolean, should the plots of the experiment be changed in reverse order in column direction? default: reverse_x=FALSE

Value

ggplot graphic that can be modified, if wished

Examples

library(agricoleplotr)
library(agricolae)
T1 <- c('A', 'B', 'C', 'D', 'E', 'F')
T2 <- letters[19:26]
outdesign <- design.dau(T1, T2, r=5, serie=2)
plot_dau(outdesign)
plot_dau(outdesign, reverse_y = TRUE)

plot_design.factorial_crd

Plot Factorial Complete Randomized Designs (crd)

Description

Plot a design of a factorial experiment with completely randomized design (crd) from design.ab

Usage

plot_design.factorial_crd(
 design,
 ncols,
 nrows,
 y = "row",
 factor_name = "A",
 labels = "plots",
 width = 1,
 height = 1,
 space_width = 0.95,
 space_height = 0.85,
 reverse_y = FALSE,
 reverse_x = FALSE
)
Arguments

- **design**
 - outdesign from agricolae package
- **ncols**
 - integer value, choose the number of columns to which the experiment should be plotted
- **nrows**
 - integer value, choose the number of rows to which the experiment should be plotted
- **y**
 - Describes the y coordinates of a experiment design, default is row
- **factor_name**
 - Which factor should be used for plotting, needs to be a column in outdesign$book
- **labels**
 - string indicates the column of which the labels should be displayed
- **width**
 - numeric value, describes the width of a plot in an experiment
- **height**
 - numeric value, describes the height of a plot in an experiment
- **space_width**
 - numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of width
- **space_height**
 - numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of height
- **reverse_y**
 - boolean, should the plots of the experiment be changed in reverse order in Row direction? use reverse_y=TRUE to have same sketch as in agricolae. default: reverse_y=FALSE
- **reverse_x**
 - boolean, should the plots of the experiment be changed in reverse order in column direction? default: reverse_x=FALSE

Value

- ggplot graphic that can be modified, if wished

Examples

```r
library(agricolaeplotr)
library(agricolae)
trt<-c(3,2) # factorial 3x2
outdesign <- design.ab(trt, r=3, serie=2, design = 'crd')
plot_design.factorial_crd(outdesign,ncols = 8,nrows = 6)
plot_design.factorial_crd(outdesign,reverse\_y = TRUE,ncols = 8,nrows = 6)
plot_design.factorial_crd(outdesign,reverse\_y = TRUE,reverse\_x = TRUE,ncols = 8,nrows = 6)
```

Description

Plot a design of a factorial experiment with latin square design (lsd) design from agricolae design.ab
Usage

plot_design.factorial_lsd(
 design,
 x = "col",
 y = "row",
 factor_name = "A",
 labels = "plots",
 width = 1,
 height = 1,
 space_width = 0.95,
 space_height = 0.85,
 reverse_y = FALSE,
 reverse_x = FALSE
)

Arguments

design outdesign from agricolae package
x Describes the x coordinates of an experiment design
y Describes the y coordinates of an experiment design
factor_name Which factor should be used for plotting, needs to be a column in outdesign$book
labels Describes the column from that the plots are taken to display them
width numeric value, describes the width of a plot in an experiment
height numeric value, describes the height of a plot in an experiment
space_width numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of width
space_height numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of height
reverse_y boolean, should the plots of the experiment be changed in reverse order in Row direction? use reverse_y=TRUE to have same sketch as in agricolae. default:reverse_y=FALSE
reverse_x boolean, should the plots of the experiment be changed in reverse order in column direction? default:reverse_x=FALSE

Value

ggplot graphic that can be modified, if wished

Examples

library(agricolaeplotr)
library(agricolae)
trt<-c(3,2) # factorial 3x2
outdesign <-design.ab(trt, r=3, serie=2, design = 'lsd')
plot_design.factorial_lsd(outdesign,factor_name = 'B',reverse_x = TRUE)
plot_design.factorial_rcbd

Plot Factorial Designs with rcbd Design

Description

Plot a design of a factorial experiment with randomized complete block design (rcbd) from design.ab

Usage

```r
plot_design.factorial_rcbd(
  design,
  y = "row",
  factor_name = "A",
  width = 1,
  height = 1,
  space_width = 0.95,
  space_height = 0.85,
  reverse_x = FALSE,
  reverse_y = FALSE
)
```

Arguments

- **design**: outdesign from agricolae package
- **y**: Describes the y coordinates of a experiment design
- **factor_name**: Which factor should be used for plotting, needs to be a column in outdesign$book
- **width**: numeric value, describes the width of a plot in an experiment
- **height**: numeric value, describes the height of a plot in an experiment
- **space_width**: numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of width
- **space_height**: numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of height
- **reverse_x**: boolean, should the plots of the experiment be changed in reverse order in column direction? default: reverse_x=FALSE
- **reverse_y**: boolean, should the plots of the experiment be changed in reverse order in Row direction? use reverse_y=TRUE to have same sketch as in agricolae. default: reverse_y=FALSE

Value

`ggplot` graphic that can be modified, if wished
Examples

```r
library(agricolaeplotr)
library(agricolae)
trt<-c(2,4)
k=6
outdesign<-design.ab(trt, r=k, serie=3, design='rcbd')
plot_design.factorial_rcbd(design=outdesign,factor_name = 'B')
plot_design.factorial_rcbd(outdesign,reverse_y = TRUE,reverse_x = TRUE)
```

plot_design_crd

Plot Complete Randomized Design

Description

Plot a design of a factorial experiment with randomized complete block design from `agricolae_design.ab`

Usage

```r
plot_design_crd(
  design,
  ncols,
  nrows,
  y = "row",
  factor_name = "trt",
  labels = "plots",
  width = 1,
  height = 1,
  space_width = 0.95,
  space_height = 0.85,
  reverse_y = FALSE,
  reverse_x = FALSE
)
```

Arguments

- `design`: outdesign from `agricolae` package
- `ncols`: integer value, choose the number of columns to which the experiment should be plotted
- `nrows`: integer value, choose the number of rows to which the experiment should be plotted
- `y`: Describes the y coordinates of a experiment design, default is row
- `factor_name`: Which factor should be used for plotting, needs to be a column in outdesign$book
- `labels`: Describes the column from that the plots are taken to display them
plot_fieldhub

width numeric value, describes the width of a plot in an experiment
height numeric value, describes the height of a plot in an experiment
space_width numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of width
space_height numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of height
reverse_y boolean, should the plots of the experiment be changed in reverse order in Row direction? use reverse_y=TRUE to have same sketch as in agricolae. default:reverse_y=FALSE
reverse_x boolean, should the plots of the experiment be changed in reverse order in column direction? default:reverse_x=FALSE

Value

ggplot graphic that can be modified, if wished

Examples

```r
library(agricolaeplotr)
library(agricolae)
trt = c(2,3,4,5,6)
outdesign1 <- design.crd(trt,r=5,serie=2,2543,\'Mersenne-Twister\')
plot_design_crd(outdesign1,ncols = 13,nrows = 3)
```

plot_fieldhub

Plot FieldHub Design

Description

Plots designs from FieldHub package

Usage

```r
plot_fieldhub(
  design,
  x = "COLUMN",
  y = "ROW",
  labels = "PLOT",
  factor_name = "TREATMENT",
  width = 1,
  height = 1,
  space_width = 0.95,
  space_height = 0.85,
  reverse_y = FALSE,
  reverse_x = FALSE,
  shift_x = 0,
  shift_y = 0
)
```
Arguments

- **design**: outdesign from FielDHub package with on of the following IDs: c(9,13,14,15,16)
- **x**: Describes the x coordinates of an experiment design
- **y**: Describes the y coordinates of an experiment design
- **labels**: string Describes the column from that the plots are taken to display them
- **factor_name**: string Which factor should be used for plotting, needs to be a column in outdesign$book
- **width**: numeric value, describes the width of a plot in an experiment
- **height**: numeric value, describes the height of a plot in an experiment
- **space_width**: numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of width
- **space_height**: numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of height
- **reverse_y**: boolean, should the plots of the experiment be changed in reverse order in Row direction? default: reverse_y=FALSE
- **reverse_x**: boolean, should the plots of the experiment be changed in reverse order in column direction? default: reverse_x=FALSE
- **shift_x**: numeric indicates the shift in units in x-axis.
- **shift_y**: numeric indicates the shift in units for the y-axis.

Value

- **ggplot**: graphic that can be modified, if wished

Examples

```r
## Not run:
library(agricolaeplotr)
library(FielDHub)
H <- paste("H", 1:4, sep = "")
V <- paste("V", 1:5, sep = "")

strip1 <- FielDHub::strip_plot(Hplots = H,
                               Vplots = V,
                               b = 1,
                               l = 1,
                               plotNumber = 101,
                               planter = "serpentine",
                               locationNames = "A",
                               seed = 333)

strip1$fieldBook$ROW <- as.numeric(ordered(strip1$fieldBook$VSTRIP,
                                           levels = unique(strip1$fieldBook$VSTRIP)))
strip1$fieldBook$COLUMN <- as.numeric(ordered(strip1$fieldBook$HSTRIP,
                                             levels = unique(strip1$fieldBook$HSTRIP)))
```
levels = unique(strip1$fieldBook$HSTRIP)))

plot_fieldhub(strip1,
 x = "ROW",
 y = "COLUMN",
 labels = "HSTRIP",
 factor_name = "HSTRIP",
 width = 12,
 height = 10,
 reverse_y = FALSE,
 reverse_x = FALSE)

End(Not run)

plot_graeco

Plot Graeco Latin Square Design

Description

Plot a design of an experiment with a Graeco-latin square design from `agricolae` design.graeco

Usage

```r
plot_graeco(
    design,
    x = "col",
    y = "row",
    factor_name = "T1",
    labels = "plots",
    width = 1,
    height = 1,
    space_width = 0.95,
    space_height = 0.85,
    reverse_y = FALSE,
    reverse_x = FALSE
)
```

Arguments

- `design`: outdesign from `agricolae` package
- `x`: Describes the x coordinates of an experiment design
- `y`: Describes the y coordinates of an experiment design
- `factor_name`: Which factor should be used for plotting, needs to be a column in `outdesign$book`
- `labels`: Describes the column from that the plots are taken to display them
- `width`: numeric value, describes the width of a plot in an experiment
plot_latin_square

Description

Plot a design of a factorial experiment with a latin square design from agricolae design.lsd

Usage

```r
plot_latin_square(
  design,
  x = "col",
  y = "row",
  factor_name = "trt",
  labels = "plots",
  width = 1,
  height = 1,
  space_width = 0.95,
  space_height = 0.85,
  reverse_y = FALSE,
  reverse_x = FALSE
)
```

height

numeric value, describes the height of a plot in an experiment

space_width

numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of width

space_height

numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of height

reverse_y

boolean, should the plots of the experiment be changed in reverse order in Row direction? use reverse_y=TRUE to have same sketch as in agricolae. default:reverse_y=FALSE

reverse_x

boolean, should the plots of the experiment be changed in reverse order in column direction? default:reverse_x=FALSE

Value

`ggplot` graphic that can be modified, if wished

Examples

```r
library(agricolaeplotr)
library(agricolae)
T1<-c('a','b','c','d')
T2<-c('v','w','x','y','z','zz')
outdesign <- design.graeco(trt1=T1, trt2=T2, serie = 2, seed = 0, kinds = 'Super-Duper',randomization=TRUE)
plot_graeco(outdesign, factor_name = 'T2',reverse_y = TRUE)
plot_graeco(outdesign, factor_name = 'T2',reverse_x = TRUE)
```
plot_lattice_simple

Arguments

- **design**: outdesign from agricolae package
- **x**: Describes the x coordinates of an experiment design
- **y**: Describes the y coordinates of an experiment design
- **factor_name**: Which factor should be used for plotting, needs to be a column in outdesign$book
- **labels**: Describes the column from which the plots are taken to display them
- **width**: numeric value, describes the width of a plot in an experiment
- **height**: numeric value, describes the height of a plot in an experiment
- **space_width**: numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of width
- **space_height**: numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of height
- **reverse_y**: boolean, should the plots of the experiment be changed in reverse order in Row direction? default: reverse_y=FALSE
- **reverse_x**: boolean, should the plots of the experiment be changed in reverse order in column direction? default: reverse_x=FALSE

Value

ggplot graphic that can be modified, if wished

Examples

```r
library(agricolaeplotr)
library(agricolae)
trt<-LETTERS[1:9]
outdesign<- design.lsd(trt,serie=2)
plot_latin_square(outdesign, reverse_y = TRUE)
```

plot_lattice_simple
Plot Simple Lattice Design

Description

Plot a design of a factorial experiment with a lattice design from agricolae design.lattice with r=2

Usage

```r
plot_lattice_simple(
  design,
  y = "block",
  factor_name = "trt",
  labels = "plots",
```
width = 1,
height = 1,
 space_width = 0.95,
 space_height = 0.85,
 reverse_y = FALSE,
 reverse_x = FALSE
)

Arguments

design outdesign from agricolae package
 y Describes the y coordinates of an experiment design
factor_name Which factor should be used for plotting, needs to be a column in outdesign$book
labels Describes the column from that the plots are taken to display them
width numeric value, describes the width of a plot in an experiment
height numeric value, describes the height of a plot in an experiment
 space_width numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of width
 space_height numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of height
 reverse_y boolean, should the plots of the experiment be changed in reverse order in Row direction? use reverse_y=TRUE to have same sketch as in agricolae. default:reverse_y=FALSE
 reverse_x boolean, should the plots of the experiment be changed in reverse order in column direction? default:reverse_x=FALSE

Value

ggplot graphic that can be modified, if wished

Examples

library(agricolaeplotr)
library(agricolae)
trt<-1:100
outdesign<-design.lattice(trt,r=2,serie=3) # simple lattice design, 10x10
plot_lattice_simple(outdesign,width = 2, height = 1)

plot_lattice_triple Plot Triple Lattice Design

Description

Plot a design of a factorial experiment with a latin square design from agricolae design.lattice with r=3
Usage

```r
plot_lattice_triple(
  design,
  y = "block",
  factor_name = "trt",
  labels = "plots",
  width = 1,
  height = 1,
  space_width = 0.95,
  space_height = 0.85,
  reverse_y = FALSE,
  reverse_x = FALSE
)
```

Arguments

- **design**: `outdesign` from `agricolae` package
- **y**: Describes the y coordinates of a experiment design
- **factor_name**: Which factor should be used for plotting, needs to be a column in `outdesign$book`
- **labels**: Describes the column from that the plots are taken to display them
- **width**: numeric value, describes the width of a plot in an experiment
- **height**: numeric value, describes the height of a plot in an experiment
- **space_width**: numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of width
- **space_height**: numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of height
- **reverse_y**: boolean, should the plots of the experiment be changed in reverse order in Row direction? use reverse_y=TRUE to have same sketch as in agricolae. default:reverse_y=FALSE
- **reverse_x**: boolean, should the plots of the experiment be changed in reverse order in column direction? default:reverse_x=FALSE

Value

`ggplot` graphic that can be modified, if wished

Examples

```r
library(agricolaeplotr)
library(agricolae)
trt<-LETTERS[1:9]
outdesign<-design.lattice(trt,r=3,serie=2)
plot_lattice_triple(design=outdesign,reverse_x=TRUE)
```
plot_longest_diagonal *Plot the longest diagonal of a field*

Description

This function takes a field and plots the longest diagonal of the field. The field is divided into segments and points are sampled from these segments.

Usage

```r
plot_longest_diagonal(
  field,
  n = 8,
  type = "random",
  n_segments = 2,
  distance_field_boundary = 3,
  width_diagonal_path = 2
)
```

Arguments

- `field`: An object of class sf representing the field.
- `n`: Integer, the number of sample points along the longest diagonal.
- `type`: Type of sampling. Default is "random".
- `n_segments`: Numeric, the number of segments to divide the longest diagonal (default is 2).
- `distance_field_boundary`: Numeric, the distance to buffer the field for creating the boundary (default is 3.0).
- `width_diagonal_path`: Numeric, the width to buffer the diagonal path (default is 2.0).

Value

- `p`: A ggplot object showing the field, the buffered field, the buffered line, and the sample points.
- `buffered_line`: A sf object representing the buffered line.
- `my_line`: A sf object representing the longest diagonal of the field.
- `sample_points`: A sf object representing the sampled points.
- `length`: A numeric value, representing the length of the longest line.

Examples

```r
library(sf)
my_sf <- st_read(system.file("shape/gfn_schlaege.shp", package="agricolaeplotr"))
st_crs(my_sf) <- 25832
field <- my_sf[my_sf$SCHLAG_NR == 170,]
plot_longest_diagonal(field)
```
Description

Plot a design of an experiment with randomized complete block design (rcbd) design from agricolae
design.rcbd

Usage

plot_rcdb(
 design,
 y = "block",
 factor_name = "trt",
 labels = "plots",
 width = 1,
 height = 1,
 space_width = 0.95,
 space_height = 0.85,
 reverse_y = FALSE,
 reverse_x = FALSE
)

Arguments

design outdesign from agricolae package
y Describes the y coordinates of a experiment design
factor_name Which factor should be used for plotting, needs to be a column in outdesign$book
labels Describes the column from that the plots are taken to display them
width numeric value, describes the width of a plot in an experiment
height numeric value, describes the height of a plot in an experiment
space_width numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of width
space_height numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of height
reverse_y boolean, should the plots of the experiment be changed in reverse order in Row direction? use reverse_y=TRUE to have same sketch as in agricolae. default:reverse_y=FALSE
reverse_x boolean, should the plots of the experiment be changed in reverse order in column direction? default:reverse_x=FALSE

Value

ggplot graphic that can be modified, if wished
Examples

```r
library(agricolaeplotr)
library(agricolae)
# 5 treatments and 6 blocks
trt<-c('A','B','C','D','E')
outdesign <-design.rcbd(trt,6,serie=2,986,'Wichmann-Hill') # seed = 986
plot_rcdb(outdesign)
plot_rcdb(outdesign,reverse_y = TRUE,reverse_x = TRUE)
```

plot_split_crd
Plot Split Plot Designs (crd)

Description

Plot a design of a split plot experiment with a complete randomized design (crd) from design.split

Usage

```r
plot_split_crd(
  design,
  nrows,
  ncols,
  factor_name_1 = "T1",
  factor_name_2 = "T2",
  labels = "plots",
  subplots = TRUE,
  width = 1,
  height = 1,
  space_width = 0.95,
  space_height = 0.85,
  reverse_y = FALSE,
  reverse_x = FALSE
)
```

Arguments

- `design` outdesign from agricolae package
- `nrows` Number of rows for the design
- `ncols` Number of columns for the design
- `factor_name_1` string Which factor should be used for plotting, needs to be a column in outdesign$book
- `factor_name_2` string Which factor should be used for plotting, needs to be a column in outdesign$book
- `labels` string Describes the column from that the plots are taken to display them
subplots should the plot function return the subplots (default) or main plots?
width numeric value, describes the width of a plot in an experiment
height numeric value, describes the height of a plot in an experiment
space_width numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of width
space_height numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of height
reverse_y boolean, should the plots of the experiment be changed in reverse order in Row direction? use reverse_y=TRUE to have same sketch as in agricolae. default:reverse_y=FALSE
reverse_x boolean, should the plots of the experiment be changed in reverse order in column direction? default:reverse_x=FALSE

Value
ggplot graphic that can be modified, if wished

Examples

```r
library(agricolaeplotr)
library(agricolae)
T1<-c('a','b','c','d','e','f','g')
T2<-c('v','w','x','y','zzz')
r <- 4
outdesign2 <- design.split(trt1=T1, trt2=T2, r=r, serie = 2, seed = 0, kinds = 'Super-Duper', randomization=TRUE,first=TRUE,design = 'crd')
plot_split_crd(outdesign2,ncols = 6,nrows=5)

outdesign2 <- design.split(trt1=T1, trt2=T2, r=r, serie = 2, seed = 0, kinds = 'Super-Duper', randomization=FALSE,first=TRUE,design = 'crd')
plot_split_crd(outdesign2,ncols = 6,nrows=5)
```

plot_split_lsd

Plot Split Plot Design lsd

Description

Plot a design of a split plot experiment with latin squared design (lsd) from design.split
Usage

plot_split_lsd(
 design,
 factor_name_1 = "T1",
 factor_name_2 = "T2",
 labels = "plots",
 subplots = TRUE,
 width = 1,
 height = 1,
 space_width = 0.95,
 space_height = 0.85,
 reverse_y = FALSE,
 reverse_x = FALSE
)

Arguments

design : outdesign from agricolae package
factor_name_1 : string Which factor should be used for plotting, needs to be a column in outdesign$book
factor_name_2 : string Which factor should be used for plotting, needs to be a column in outdesign$book
labels : string Describes the column from that the plots are taken to display them
subplots : should the plot function return the subplots (default) or main plots?
width : numeric value, describes the width of a plot in an experiment
height : numeric value, describes the height of a plot in an experiment
space_width : numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of width
space_height : numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of height
reverse_y : boolean, should the plots of the experiment be changed in reverse order in Row direction? use reverse_y=TRUE to have same sketch as in agricolae. default:reverse_y=FALSE
reverse_x : boolean, should the plots of the experiment be changed in reverse order in column direction? default:reverse_x=FALSE

Value

ggplot graphic that can be modified, if wished

Examples

library(agricolaeplotr)
library(agricolae)
T1<-c('a','b','c','d','e')
T2<-c('v','w','x','y')
```
outdesign2 <- design.split(trt1=T1, trt2=T2, r=r, serie = 2,
                         seed = 0, kinds = 'Super-Duper',
                         randomization=TRUE,first=TRUE,design = 'lsd')
plot_split_lsd(outdesign2,width = 4,height = 4)
```

plot_split_rcbd
Plot Split Plot Designs with rcbd

Description

Plot a design of a split plot experiment with randomized complete blocks design (rcbd) from design.split

Usage

```
plot_split_rcbd(design,
                y = "block",
                factor_name_1 = "T1",
                factor_name_2 = "T2",
                subplots = TRUE,
                labels = "plots",
                width = 1,
                height = 1,
                space_width = 0.95,
                space_height = 0.85,
                reverse_y = FALSE,
                reverse_x = FALSE)
```

Arguments

- `design`
 outdesign from agricolae package
- `y`
 string defines the block
- `factor_name_1`
 string Which factor should be used for plotting, needs to be a column in outdesign$book
- `factor_name_2`
 string Which factor should be used for plotting, needs to be a column in outdesign$book
- `subplots`
 should the plot function return the subplots (default) or main plots?
- `labels`
 string Describes the column from that the plots are taken to display them
- `width`
 numeric value, describes the width of a plot in an experiment
- `height`
 numeric value, describes the height of a plot in an experiment
- `space_width`
 numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of width
space_height numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of height

reverse_y boolean, should the plots of the experiment be changed in reverse order in Row direction? use reverse_y=TRUE to have same sketch as in agricolae. default:reverse_y=FALSE

reverse_x boolean, should the plots of the experiment be changed in reverse order in column direction? default:reverse_x=FALSE

Value

ggplot graphic that can be modified, if wished

Examples

library(agricolaeplotr)
library(agricolae)
T1<-c('a','b','c','d','e')
T2<-c('v','w','x','y','z','zz')
r = 3
outdesign2 <- design.split(trt1=T1, trt2=T2, r=r,serie = 2, seed = 0, kinds = 'Super-Duper',randomization=TRUE, first=TRUE,design = 'rcbd')
plot_split_rcbd(outdesign2,width = 1,height = 1)
plot_split_rcbd(outdesign2,width = 1,height = 1,reverse_y = TRUE)
plot_split_rcbd(outdesign2,width = 1,height = 1,reverse_x = TRUE,reverse_y = TRUE)

plot_strip

Description

Plot a design of an experiment with a Strip Plot design from agricolae design.strip

Usage

plot_strip(
 design,
 x = "col",
 y = "row",
 factor_name_1 = "T1",
 factor_name_2 = "T2",
 labels = "plots",
 width = 1,
 height = 1,
 space_width = 0.95,
 space_height = 0.85,
 reverse_y = FALSE,
 reverse_x = FALSE
)
Arguments

- **design**: Outdesign from agricolae package
- **x**: Describes the x coordinates of an experiment design
- **y**: Describes the y coordinates of an experiment design
- **factor_name_1**: Which factor should be used for plotting, needs to be a column in outdesign$book
- **factor_name_2**: Which factor should be used for plotting, needs to be a column in outdesign$book
- **labels**: Describes the column from which the plots are taken to display them
- **width**: Numeric value, describes the width of a plot in an experiment
- **height**: Numeric value, describes the height of a plot in an experiment
- **space_width**: Numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of width
- **space_height**: Numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of height
- **reverse_y**: Boolean, should the plots of the experiment be changed in reverse order in Row direction? Default: reverse_y=FALSE
- **reverse_x**: Boolean, should the plots of the experiment be changed in reverse order in column direction? Default: reverse_x=FALSE

Value

- **ggplot**: Graphic that can be modified, if wished

Examples

```r
library(agricolaeplotr)
library(agricolae)
T1<-c('a','b','c','d')
T2<-c('v','w','x','y','z')
r = 3
outdesign <- design.strip(trt1=T1, trt2=T2, r=r, serie = 2, seed = 0, kinds = 'Super-Duper', randomization=TRUE)
plot_strip(outdesign,factor_name_1 = "T1",factor_name_2="T2")
plot_strip(outdesign,factor_name_1 = "T1",factor_name_2="T2",reverse_x = TRUE)
```

Description

Plot a Youden experiment design from agricolae design.youden
Usage

plot_youden(
 design,
 x = "col",
 y = "row",
 factor_name = "varieties",
 labels = "plots",
 width = 1,
 height = 1,
 space_width = 0.95,
 space_height = 0.85,
 reverse_y = FALSE,
 reverse_x = FALSE
)

Arguments

design outdesign from agricolae package
x Describes the x coordinates of an experiment design
y Describes the y coordinates of an experiment design
factor_name string Which factor should be used for plotting, needs to be a column in outdesign$book
labels string Describes the column from that the plots are taken to display them.
width numeric value, describes the width of a plot in an experiment
height numeric value, describes the height of a plot in an experiment
space_width numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of width
space_height numeric value, describes the share of the space of the plots. 0=only space, 1=no space between plots in term of height
reverse_y boolean, should the plots of the experiment be changed in reverse order in Row direction? Use reverse_y=TRUE to have same sketch as in agricolae. default:reverse_y=FALSE
reverse_x boolean, should the plots of the experiment be changed in reverse order in column direction? default:reverse_x=FALSE

Value

ggplot graphic that can be modified, if wished

Examples

library(agricolaeplotr)
library(agricolae)
varieties<-c('perricholi','yungay','maria bonita','tomasa')
outdesign <- design.youden(varieties,r=2,serie=2,seed=23)
plot_youden(outdesign, labels = 'varieties')
Create Protective Layers for Design of Experiments (DOEs)

Description

This function generates protective layers around the polygons of an experiment. These layers can be used to plot boundaries, for example, to protect agricultural on-farm experiments from accidental harvesting.

Usage

```
protective_layers(design, borders = c(0, 3, 5, 10))
```

Arguments

- **design**: An `sf` object containing the polygons of the experiment. The coordinate reference system (crs) of the data needs to be in metric distance, not degrees.
- **borders**: A numeric vector specifying the distances (in meters) for which protective layers should be created. The layers will be created with decreasing distances, starting from the largest.

Value

An `sf` object representing the protective layers around the experiment polygons.

Examples

```
library(agricolaeplotr)
library(sf)
library(ggplot2)
example("make_polygons")
polygo <- make_polygons(plt, north = 13454206.89, east = 7939183.21)
polygo <- st_transform(polygo, 25832)
pl <- protective_layers(polygo)
# plot experiment shape
ggplot(pl) + geom_sf(fill=c("black","orange","blue","red"))+ theme_minimal()
# write them to kml for Google Maps
# st_write(pl, "boundaries2.kml", append = FALSE)
```
sample_locations Sample Locations

Description

Returns locations to sample for each plot.

Usage

sample_locations(design, n, plot = TRUE, ...)

Arguments

design Your experiment design of plot layouts.

n Number of samples per plot (integer).

plot Logical, indicating whether to visualize the sample locations as a ggplot2-based map.

... further options for 'st_sample' and 'make_polygons'

Details

This function takes an experiment design (plot layout) and returns random sample locations within each plot. The function uses the 'sf' package to generate spatial polygons for the plots and then samples points within each polygon. Optionally, it can also display the sample locations as a ggplot2-based map.

Value

An 'sf' object containing the sample locations within each plot.

Examples

library(agricolaeplotr)
library(agricolae)
library(ggplot2)
trt <- c('A', 'B', 'C', 'D')
k <- 3
outdesign <- design.bib(trt, k, serie = 2, seed = 41, kinds = 'Super-Duper')
plot_bib(outdesign)
p <- plot_bib(outdesign)
sample_locations(p, 3, TRUE, projection_output = 25832)
serpentine

Description

This function produces a serpentine array of integers beginning by one

Usage

serpentine(n, times, m = 1)

Arguments

- \(n\) integer value indicating the upper cap of a numeric sequence
- \(times\) integer number of replications
- \(m\) integer value indicating the lower cap of a numeric sequence

Value

vector containing the serpentine sequence

Examples

serpentine(n=20, times = 15)
serpentine(n=20, times = 15, m=4)

summary

summary of a field Layout

Description

print a summary of a FieldLayout object

Usage

summary(object, unit = "m", part = "net_plot", ...)

Arguments

- \(object\) an object, created by DOE_obj with a FieldLayout class
- \(unit\) a string that corresponds to measure unit (default is m)
- \(part\) which part of the summary are you interested? Choose one of the following: "net_plot", "gross_plot", "field", "experiment", "all"
- ... further arguments passed to or from other methods
Examples

```r
car <- c('perricholi', 'yungay', 'maria bonita', 'tomasa')
outdesign <- design.youden(car, r = 2, serie = 2, seed = 23)
p <- plot_youden(outdesign, labels = 'car')
stats <- DOE_obj(p)
# print plot summary for net plot (plots without space)
summary(stats, part = 'net_plot')
# print plot summary for gross plot (plots with space)
summary(stats, part = 'gross_plot')
# print plot summary for entire field
summary(stats, part = 'field')
# print plot summary for design summary
summary(stats, part = 'experiment')
# print plot summary for all information shown above in one output
summary(stats, part = 'all')
```

test_input_extend

Test if input for width and height is numeric

Description

Test if input is numeric for field width and height

Usage

```r
test_input_extend(x)
```

Arguments

x
input to be tested

Value

error

Examples

```r
car <- c('perricholi', 'yungay', 'maria bonita', 'tomasa')
outdesign <- design.youden(car, r = 2, serie = 2, seed = 23)
p <- plot_youden(outdesign, labels = 'car')
stats <- DOE_obj(p)
# print plot summary for net plot (plots without space)
summary(stats, part = 'net_plot')
# print plot summary for gross plot (plots with space)
summary(stats, part = 'gross_plot')
# print plot summary for entire field
summary(stats, part = 'field')
# print plot summary for design summary
summary(stats, part = 'experiment')
# print plot summary for all information shown above in one output
summary(stats, part = 'all')
```
test_input_ncols
checks matrix column input

Description
checks if input is suitable for matrix column indication

Usage
test_input_ncols(x)

Arguments
x input to be tested

Value
error

Examples
library(agricolaeplotr)
test_input_ncols(9)

test_input_nrows
checks matrix rows input

Description
checks if input is suitable for matrix row indication

Usage
test_input_nrows(x)

Arguments
x input to be tested

Value
error

Examples
library(agricolaeplotr)
test_input_nrows(10)
test_input_reverse

Test if input is a logical

Description

Test if input is a logical

Usage

```r
test_input_reverse(x)
```

Arguments

- `x` - input to be tested

Value

`error`

Examples

```r
library(agricolaeplotr)
test_input_reverse(TRUE)
```

test_input_shift

Test if input for shift parameter is numeric

Description

Test if input is numeric for shift parameter

Usage

```r
test_input_shift(x)
```

Arguments

- `x` - input to be tested

Value

`error`

Examples

```r
library(agricolaeplotr)
test_input_shift(0.5)
```
test_names_design
Test of experimental design

Description

Test if the outdesign file contains book and parameter list

Usage

```r
test_names_design(design)
```

Arguments

- `design`
 design from `agricolae` package

Value

error

Examples

```r
library(agricolaeplotr)
library(agricolae)
trt<-c(2,4)
k=6
outdesign<-design.ab(trt, r=k, serie=3, design='rcbd')
test_names_design(outdesign)
```

test_name_in_column
Test if input column names

Description

Test if input is in column names of a table

Usage

```r
test_name_in_column(x, design)
```

Arguments

- `x`
 string input
- `design`
 design from `agricolae` package

Value

error
Examples

```r
library(agricolaeplotr)
library(agricolae)
trt=c(2,4)
k=6
outdesign<-design.ab(trt, r=k, serie=3, design="rcbd")
test_name_in_column('B', outdesign)
```

test_string
 Test if input is a string

Description

Test if input is a string

Usage

```r
test_string(x)
```

Arguments

- `x`: input to be tested

Value

`error`

Examples

```r
library(agricolaeplotr)
library(agricolae)
test_string('smallstring')
```

theme_gi
 theme_gi

Description

Creates a theme for 'ggplot' based graphics to ensure to meet formal requirements for conferences of the Gesellschaft fuer Informatik

Usage

```r
theme_gi()
```

Value

a 'ggplot' graph with a modified theme
Examples

```r
# example borrowed from ggplot2
library(ggplot2)

# Create a data frame
df <- data.frame(
  gp = factor(rep(letters[1:3], each = 10)),
  y = rnorm(30))

# Create a plot
p <- ggplot() + geom_point(data = df, aes(gp, y))
p <- p + theme_gi();p
```

Description

This theme is designed to increase font size to ensure readability on poster presentations.

Usage

```r
theme_poster()
```

Value

ggplot2 theme

Examples

```r
library(agricolaeplotr)
library(agricolae)

T1 <- c("a", "b", "c", "d", "e", "f", "g")
T2 <- c("v", "w", "x", "y", "z")
r <- 4
outdesign2 <- design.split(trt1=T1, trt2=T2, r=r,
  serie = 2, seed = 0, kinds = "Super-Duper",
  randomization=FALSE,first=TRUE,design = 'crd')
plot_split_crd(outdesign2,ncols = 6,nrows=5)+
  theme_poster()
```
theme_pres ggplot2 theme for outdoor presentation

Description
This theme is designed to increase font size to ensure readability on outdoor used devices

Usage
theme_pres()

Value
ggplot2 theme

Examples
library(agricolaeplotr)
library(agricolae)
T1<-c('a','b','c','d','e','f','g')
T2<-c('v','w','x','y','z')
r <- 4
outdesign2 <- design.split(trt1=T1, trt2=T2, r=r,
serie = 2, seed = 0, kinds = 'Super-Duper',
randomization=FALSE,first=TRUE,design = 'crd')
plot_split_crd(outdesign2,ncols = 6,nrows=5)+
theme_pres()

to_table to_table

Description
Write field experiment information to a dataframe.

Usage
to_table(object, part = "net_plot", unit = "m", digits = 3, ...)

Arguments

object an object, created by DOE_obj with a FieldLayout class
part which part of the summary are you interested? Choose one of the following:
"net_plot","gross_plot","field","experiment"
unit a string that corresponds to measure unit (default is m)
digits integer indicating the number of decimal places (round) or significant digits (signif) to be used. Negative values are allowed
...

further arguments passed to or from other methods
Value

dataframe with corresponding information about the experiment

Examples

library(agricolaeplotr)
library(agricolae)
varieties<-c('perricholi','yungay','maria bonita','tomasa')
outdesign <- design.youden(varieties,r=2,serie=2,seed=23)
p <- plot.youden(outdesign, labels = 'varieties', width=4, height=3)
stats <- DOE_obj(p)
r <- to_table(stats,part = "net_plot", digits = 2)
r
r <- to_table(stats,part = "gross_plot", digits = 2)
r
r <- to_table(stats,part = "field", digits = 2)
r
r <- to_table(stats,part = "experiment", digits = 2)
r
r
r
r
r
Index

citations, 3
DOE_obj, 3
full_control_positions, 4
make_polygons, 6
plot_alpha, 7
plot_bib, 8
plot_cyclic, 10
plot_dau, 11
plot_design.factorial_crd, 12
plot_design.factorial_lsd, 13
plot_design.factorial_rcbd, 15
plot_design_crd, 16
plot_fieldhub, 17
plot_graeco, 19
plot_latin_square, 20
plot_lattice_simple, 21
plot_lattice_triple, 22
plot_longest_diagonal, 24
plot_rcdb, 25
plot_split_crd, 26
plot_split_lsd, 27
plot_split_rcbd, 29
plot_strip, 30
plot_youden, 31
protective_layers, 33
sample_locations, 34
serpentine, 35
summary, 35
test_input_extend, 36
test_input_ncols, 37
test_input_nrows, 37
test_input_reverse, 38
test_input_shift, 38
test_name_in_column, 39
test_names_design, 39
test_string, 40
theme_hi, 40
theme_poster, 41
theme_pres, 42
to_table, 42