Package ‘Trading’

February 14, 2024

Type Package
Title CCR, Advanced Correlation & Beta Estimates, Betting Strategies
Version 3.0
Date 2024-02-12
Author Tasos Grivas
Maintainer Tasos Grivas <info@openriskcalculator.com>
Description Contains performance analysis metrics of track records including entropy-based
correlation and dynamic beta based on the Kalman filter. The normalized sample entropy method
has been implemented which produces accurate entropy estimation even on smaller datasets while for
the dynamic beta calculation the Kalman filter methodology has been utilized.
On a separate stream, trades from the five major assets classes and also
functionality to use pricing curves, rating tables, CSAs and add-on tables. The
implementation follows an object oriented logic whereby each trade inherits from
more abstract classes while also the curves/tables are objects. Furthermore, odds calculators
and P&L back-
testing functionality has been implemented for the most widely used betting/trading
strategies including martingale, DAlembert, Labouchere and Fibonacci. Back-
testing has also been included for the EuroMillions and EuroJackpot lotteries.
Furthermore, some basic functionality about climate risk has been included.

Imports methods, reticulate, PerformanceAnalytics,
data.table,ggplot2,readxl, RcppAlgos

URL https://openriskcalculator.com/
License GPL-3

Collate 'AngularDistance.R' 'Future.R' 'Swap.R' 'Vol.R' 'Option.R'
 'Trade.R' 'IRD.R' 'Bond.R' 'CSA.R' 'Chebyshev_distance.R'
 'Collateral.R' 'Commodity.R' 'Credit.R' 'CrossSampleEntropy.R'
 'Curve.R' 'DynamicBeta.R' 'Equity.R' 'FX.R' 'GetTradeDetails.R'
 'HashTable.R' 'InformationAdjustedBeta.R'
 'InformationAdjustedCorr.R' 'NormXASampEn.R' 'Other.R'
 'ParseTrades.R' 'SampleEntropy.R' 'SelectDerivatives.R'
 'VariationOfInformation.R' 'capped_fibonacci_seq.R' 'cf.R'
 'ci.R' 'martingale_strategy_calculator.R' 'onLoad.R'
'roulette_pl_calculator_Labouchere.R'
'roulette_pl_calculator_dalembert.R'
'roulette_pl_calculator_fibonacci.R'
'roulette_pl_calculator_martingale.R'
'roulette_pl_calculator_specific_number.R'
'tce.R' 'waci.R'
'globals.R' 'EuroJackpotResults.R' 'euromillionsExample.R'
'EuroMillionsResults.R' 'EuroLotteryBacktesting.R' 'top5.R'
'OuterJoinMerge.R' 'EuroLotteryAllCombinations.R'
'CalcEuroLotteryPnL.R' 'eurojackpotExample.R'

RoxygenNote 7.2.3

NeedsCompilation no

Repository CRAN

Repository/R-Forge/Project ccr

Repository/R-Forge/Revision 71

Repository/R-Forge/DateTimeStamp 2024-02-13 11:38:34

Date/Publication 2024-02-14 10:33:19 UTC

R topics documented:

AngularDistance ... 3
Bond-class .. 4
BondFuture-class ... 5
CalcEuroLotteryPnL .. 6
capped_fibonacci_seq .. 7
Carbon_Footprint ... 7
Carbon_Intensity ... 8
CDOTranche-class ... 9
CDS-class .. 10
CDX-class ... 11
Chebyshev_distance .. 11
Collateral-class ... 12
Commodity-class ... 13
CommodityForward-class ... 14
CommSwap-class ... 15
CrossSampleEntropy .. 15
CSA-class ... 16
Curve-class .. 17
DynamicBeta ... 18
Equity-class .. 19
EquityIndexFuture-class .. 19
EquityOptionIndex-class ... 20
EquityOptionSingle-class ... 21
EuroJackpotExample .. 22
EuroJackpotResults .. 22
EuroLotteryAllCombinations 23
EuroLotteryBacktesting ... 23
AngularDistance

Description

Calculates the angular distance between a matrix of the track records of various assets/strategies. The sign of the correlation can be ignored for long/short portfolios.

Usage

AngularDistance(returns_matrix, long_short = FALSE)

Arguments

returns_matrix a matrix containing the track records of the underlying assets/strategies.
long_short a boolean value which results in the sign of the correlation being ignored, default value is FALSE
Value

A matrix containing the angular distance values.

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Examples

```r
## calling AngularDistance() without an argument loads the historical edhec data
## for the "Short Selling" and "Convertible Arbitrage" strategies
returns_matrix = PerformanceAnalytics::edhec[,c("Short Selling","Convertible Arbitrage")]
angular_distance = AngularDistance(returns_matrix, long_short=FALSE)
```

Bond-class

Bond Class

Description

Creates a Bond object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notional</td>
<td>The notional amount of the trade</td>
</tr>
<tr>
<td>MTM</td>
<td>The mark-to-market valuation of the trade</td>
</tr>
<tr>
<td>Currency</td>
<td>The currency set that the trade belongs to</td>
</tr>
<tr>
<td>Si</td>
<td>The number of years that the trade will take to start (zero if already started)</td>
</tr>
<tr>
<td>BuySell</td>
<td>Takes the values of either 'Buy' or 'Sell'</td>
</tr>
<tr>
<td>yield</td>
<td>The yield of the Bond</td>
</tr>
<tr>
<td>ISIN</td>
<td>The ISIN of the Bond</td>
</tr>
<tr>
<td>payment_frequency</td>
<td>the frequency that the bond pays coupon (Quarter, SA etc)</td>
</tr>
<tr>
<td>maturity_date</td>
<td>the maturity date of the bond</td>
</tr>
<tr>
<td>coupon_type</td>
<td>The coupon type of the bond (fixed, floating, flipper etc)</td>
</tr>
<tr>
<td>credit_risk_weight</td>
<td>The percentage weight of the exposure of the bond that should be attributed to the 'Credit' asset class</td>
</tr>
<tr>
<td>Issuer</td>
<td>The issuer of the bond</td>
</tr>
</tbody>
</table>
Value

An object of type Bond

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

Examples

```r
tr1 = Bond(Notional=10000,MTM=30,Currency="EUR",Si=0,maturity_date="2026-04-04", BuySell='Buy',payment_frequency="SA", credit_risk_weight=0.2,coupon_type="Fixed",Issuer="FirmA",ISIN = "XS0943423")
```

Description

 Creates a Bond Future object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notional</td>
<td>The notional amount of the trade</td>
</tr>
<tr>
<td>MTM</td>
<td>The mark-to-market valuation of the trade</td>
</tr>
<tr>
<td>Currency</td>
<td>The currency set that the trade belongs to</td>
</tr>
<tr>
<td>Si</td>
<td>The number of years that the trade will take to start (zero if already started)</td>
</tr>
<tr>
<td>Ei</td>
<td>The number of years that the trade will expire</td>
</tr>
<tr>
<td>BuySell</td>
<td>Takes the values of either 'Buy' or 'Sell'</td>
</tr>
<tr>
<td>yield</td>
<td>The yield of the Underlying Bond</td>
</tr>
<tr>
<td>isin</td>
<td>The ISIN of the Underlying Bond,</td>
</tr>
<tr>
<td>payment_frequency</td>
<td>the frequency that the bond pays coupon (Quarter, SA etc)</td>
</tr>
<tr>
<td>maturity_date</td>
<td>the maturity date of the bond</td>
</tr>
<tr>
<td>coupon_type</td>
<td>The coupon type of the bond (fixed, floating, flipper etc)</td>
</tr>
<tr>
<td>Issuer</td>
<td>The issuer of the bond</td>
</tr>
</tbody>
</table>

Value

An object of type Bond

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>
CalcEuroLotteryPnL

Examples

```r
example_trades = ParseTrades()
bondfuture_trade = example_trades[[17]]
tr1 = BondFuture(Notional=10000, MtM=30, Currency="EUR", Si=0, Ei=10, BuySell='Buy',
payment_frequency="SA", coupon_type="Fixed", Issuer="CountryA", ISIN = "XS0943423")
```

CalcEuroLotteryPnL

PnL calculation for EuroMillions/EuroJackpot backtesting

Description

Calculates the PnL for a pay out structure created during backtesting

Usage

```r
CalcEuroLotteryPnL(backtested_results, plot_results = FALSE)
```

Arguments

- `backtested_results`
 The EuroMillions/EuroJackpot results backtested against the user input
- `plot_results`
 (Optional) If TRUE, the P&L historical graphs are plotted, default FALSE

Value

PnL figures

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

Examples

```r
euromillions_results = EuroMillionsResults()
user_input = c(10,20,30,40,50,5,10)
backtested_results = EuroLotteryBacktesting(euromillions_results, '2005-01-01', user_input)
pnl_result = CalcEuroLotteryPnL(backtested_results, plot_results = TRUE)
```
capped_fibonacci_seq

Fibonacci sequence up to a specified maximum number

Description
Generates the Fibonacci sequence up to a specified maximum number.

Usage
\[\text{capped_fibonacci_seq(max_number)} \]

Arguments
max_number The maximum number up to which the sequence should be generated

Value
A vector containing the Fibonacci sequence

Author(s)
Tasos Grivas \(<\text{tasos@openriskcalculator.com}>\)

References
https://en.wikipedia.org/wiki/Fibonacci_number

Examples
\[\text{fibonacci_seq = capped_fibonacci_seq(max_number = 6000)} \]

Carbon_Footprint

Carbon Footprint

Description
Returns the Total carbon emissions for a portfolio normalized by the market value of the portfolio, expressed in tons CO2e / $M invested. Scope 1 and Scope 2 GHG emissions are allocated to investors based on an equity.

Usage
\[\text{Carbon_Footprint(portfolio_exposure, \text{emissions_capitalization_data})} \]
Carbon Intensity

Arguments

portfolio_exposure
 The exposure per issuer in the portfolio

emissions_capitalization_data
 The capitalization and the Scope 1 & 2 GHG emissions per issuer

Value

Total carbon emissions for a portfolio normalized by the market value of the portfolio, expressed in tons CO2e / $M invested.

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

https://www.tcfdhub.org/Downloads/pdfs/E09

Examples

```r
portfolio_exposure = data.table::data.table(Issuers = c('A', 'B', 'C'),
   exposures = c(100, 200, 50))
emissions_capitalization_data = data.table::data.table(Issuers = c('A', 'B', 'C'),
   emissions = c(1000, 5000, 6000), Capitalization = c(20000, 10000, 30000))
Carbon_Footprint(portfolio_exposure, emissions_capitalization_data)
```

Carbon Intensity

Description

Returns the Volume of carbon emissions per million dollars of revenue expressed in tons CO2e / $M revenue. Scope 1 and Scope 2 GHG emissions are allocated to investors based on an equity ownership approach. The company’s (or issuer’s) revenue is used to adjust for company size to provide a measurement of the efficiency of output.

Usage

```
Carbon_Intensity(portfolio_exposure, emissions_capitalization_revenue_data)
```

Arguments

portfolio_exposure
 The exposure per issuer in the portfolio

emissions_capitalization_revenue_data
 The capitalization, revenue and the Scope 1 & 2 GHG emissions per issuer
Value

Volume of carbon emissions per million dollars of revenue expressed in tons CO2e / $M revenue.

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

https://www.tcfdhub.org/Downloads/pdfs/E09

Examples

```r
portfolio_exposure = data.table::data.table(Issuers = c('A', 'B', 'C'),
   exposures = c(100, 200, 50))
emissions_capitalization_revenue_data = data.table::data.table(Issuers = c('A', 'B', 'C'),
   emissions = c(1000, 5000, 6000), revenue = c(2000, 5000, 3000), Capitalization =
   c(20000, 10000, 15000))
Carbon_Intensity (portfolio_exposure, emissions_capitalization_revenue_data)
```

\[
CDOTranche-class \quad CDO tranche Class
\]

Description

Creates a CDO tranche Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notional</td>
<td>The notional amount of the trade</td>
</tr>
<tr>
<td>MTM</td>
<td>The mark-to-market valuation of the trade</td>
</tr>
<tr>
<td>Currency</td>
<td>The currency set that the belongs</td>
</tr>
<tr>
<td>Si</td>
<td>The number of years after which the trade will start (zero if already started)</td>
</tr>
<tr>
<td>Ei</td>
<td>The number of years that the trade will expire</td>
</tr>
<tr>
<td>BuySell</td>
<td>Takes the values of either 'Buy' or 'Sell'</td>
</tr>
<tr>
<td>attach_point</td>
<td>The attachment point of the tranche</td>
</tr>
<tr>
<td>detach_point</td>
<td>The detachment point of the tranche</td>
</tr>
</tbody>
</table>

Value

An object of type CDOTranche
Examples

```r
## a CDO trance object
tr3 = CDOTranche(Notional=10000, MtM=0, Currency="USD", Si=0, Ei=5,
                 BuySell='Buy', SubClass='IG', RefEntity='CDX.IG',
                 cdo_attach_point=0.3, cdo_detach_point=0.5)
```

CDS-class

CDS Class

Description

Creates a CDS Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

- **Notional**: The notional amount of the trade
- **MTM**: The mark-to-market valuation of the trade
- **Currency**: The currency set that the trade belongs to
- **Si**: The number of years that the trade will take to start (zero if already started)
- **Ei**: The number of years that the trade will expire
- **BuySell**: Takes the values of either 'Buy' or 'Sell'
- **SubClass**: Specifies the rating of the underlying entity (possible values are A, AA, BB etc)
- **RefEntity**: The name of the underlying entity

Value

An object of type CDS

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures
http://www.bis.org/publ/bcbs279.htm

Examples

```r
## the CDS trade given in the Basel regulation Credit example
tr1 = CDS(Notional=10000, MtM=20, Currency="USD", Si=0, Ei=3, BuySell='Buy',
          SubClass='AA', RefEntity='FirmA')
```
CDX-class

CDX Class

Description

Creates a Credit Index Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

- **Notional**: The notional amount of the trade
- **MTM**: The mark-to-market valuation of the trade
- **Currency**: The currency set that the belongs
- **Si**: The number of years after which the trade will start (zero if already started)
- **Ei**: The number of years that the trade will expire
- **BuySell**: Takes the values of either 'Buy' or 'Sell'
- **SubClass**: Specifies if the underlying Index is investment grade or not (possible values are IG & SG)
- **RefEntity**: The name of the underlying Index

Value

An object of type CDX

Examples

```r
## the CDX trade given in the Basel regulation Credit example
tr3 = CDX(Notional=10000,MtM=0,Currency="USD",Si=0,Ei=5,
           BuySell='Buy',SubClass='IG',RefEntity='Portfolio_1')
```

Chebyshev_distance

Description

Calculates the Chebyshev distance

Usage

```r
Chebyshev_distance(x, y)
```
Arguments

x a vector containing the track record of the underlying asset/strategy
y a vector containing the track record of the underlying asset/strategy

Value
The Chebyshev distance of the two vectors

Author(s)
Tasos Grivas <tasos@openriskcalculator.com>

References

Examples

x = rnorm(1000)
y = rnorm(1000)

chebyshev_dist = Chebyshev_distance(x, y)

Collateral-class Collateral Class

Description
Creates a Collateral amount object which needs to be linked with a CSA ID

Arguments

ID The ID of each object
Amount The collateral amount
csa_id The csa_id that this object is linked with
type Describes the type of the collateral: can be "ICA", "VariationMargin" etc

Value
An object of type Collateral

Author(s)
Tasos Grivas <tasos@openriskcalculator.com>
Commodity-class

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures
http://www.bis.org/publ/bcbs279.htm

Examples

colls = list()
coll_raw = read.csv(system.file("extdata", "coll.csv", package = "Trading"), header=TRUE, stringsAsFactors = FALSE)

for(i in 1:nrow(coll_raw))
{
colls[[i]] = Collateral()
colls[[i]]$PopulateViaCSV(coll_raw[i,])
}

<table>
<thead>
<tr>
<th>Commodity-class</th>
<th>Commodity Class</th>
</tr>
</thead>
</table>

Description

Creates a Commodity Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

- **Notional**: The notional amount of the trade
- **MTM**: The mark-to-market valuation of the trade
- **Currency**: The currency set that the trade belongs to
- **Si**: The number of years that the trade will take to start (zero if already started)
- **BuySell**: Takes the values of either 'Buy' or 'Sell'
- **commodity_type**: Takes the values of 'Oil/Gas', 'Silver', 'Electricity' etc.

Value

An object of type Commodity

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures
http://www.bis.org/publ/bcbs279.htm
CommodityForward-class

Commodity Forward Class

Description

Creates a Commodity Forward Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

- **Notional**: The notional amount of the trade
- **MTM**: The mark-to-market valuation of the trade
- **Currency**: The currency set that the trade belongs to
- **Si**: The number of years that the trade will take to start (zero if already started)
- **Ei**: The number of years that the trade will expire
- **BuySell**: Takes the values of either 'Buy' or 'Sell'
- **commodity_type**: Takes the values of 'Oil','Gas','Silver','Electricity' etc.
- **SubClass**: Defines the relevant hedging set. Possible values: 'Energy','Agriculture','Metal','Other','Climatic'

Value

An object of type Commodity Forward

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Examples

```r
# the Commodity Forward trade given in the Basel regulation Commodity example
tr1 = CommodityForward(Notional=10000,MtM=-50, Si=0,Ei=0.75, BuySell='Buy',SubClass='Energy',commodity_type='Oil')
```
CommSwap-class

Commodity Swap Class

Description

Creates a Commodity Swap Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Value

An object of type CommSwap

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures http://www.bis.org/publ/bcbs279.htm

CrossSampleEntropy

Angular distance metrics

Description

Calculates the cross sample entropy between two track records of various assets/strategies.

Usage

CrossSampleEntropy(returns_matrix, m = 2, r = 0.2)

Arguments

returns_matrix a matrix containing the track records of the underlying assets/strategies. These will be normalized during the algorithm

m an integer value defining the embedding dimension , default value is 2

r a double value defining the tolerance, default value is 0.2

Value

The value of cross sample entropy

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>
References

Examples

```r
## calling CrossSampleEntropy() without an argument loads the historical edhec data
## for the "Short Selling" and "Convertible Arbitrage" strategies
returns_matrix = PerformanceAnalytics::edhec[,c("Short Selling","Convertible Arbitrage")]
Cross_Sample_Entropy = CrossSampleEntropy(returns_matrix,m=2,r=0.2)
```

CSA-class

CSA Class

Description

Creates a collateral agreement Object containing all the relevant data and methods regarding the maturity factor and the calculation of the exposures after applying the relevant threshold.

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>The ID of the CSA ID</td>
</tr>
<tr>
<td>Counterparty</td>
<td>The counterparty the CSA is linked to</td>
</tr>
<tr>
<td>Currency</td>
<td>The currency that the CSA applies to (can be a list of different currencies)</td>
</tr>
<tr>
<td>TradeGroups</td>
<td>The trade groups that the CSA applies to</td>
</tr>
<tr>
<td>Values_type</td>
<td>The type of the numerical values (can be "Actual" or "Perc" whereby the values are percentages of the MtM)</td>
</tr>
<tr>
<td>thres_cpty</td>
<td>The maximum exposure that the counterparty can generate before collateral will need to be posted</td>
</tr>
<tr>
<td>thres_PO</td>
<td>The maximum exposure that the processing organization can generate before collateral will need to be posted</td>
</tr>
<tr>
<td>MTA_cpty</td>
<td>The minimum transfer amount for the counterparty</td>
</tr>
<tr>
<td>MTA_PO</td>
<td>The minimum transfer amount for the processing organization</td>
</tr>
<tr>
<td>IM_cpty</td>
<td>The initial margin that is posted by the counterparty</td>
</tr>
<tr>
<td>IM_PO</td>
<td>The initial margin that is posted by the processing organization</td>
</tr>
<tr>
<td>mpor_days</td>
<td>The margin period of risk in days</td>
</tr>
<tr>
<td>remargin_freq</td>
<td>The frequency of re-margining the exposure in days</td>
</tr>
<tr>
<td>rounding</td>
<td>The rounding amount of the transfers</td>
</tr>
</tbody>
</table>

Value

An object of type CSA
Curve-class

Author(s)
Tasos Grivas <tasos@openriskcalculator.com>

References
Basel Committee: The standardised approach for measuring counterparty credit risk exposures
http://www.bis.org/publ/bcbs279.htm

Examples

csa_raw = read.csv(system.file("extdata", "CSA.csv", package = "Trading"),
 header=TRUE,stringsAsFactors = FALSE)

csas = list()
for(i in 1:nrow(csa_raw))
{
 csas[[i]] = CSA()
 csas[[i]]$PopulateViaCSV(csa_raw[i,])
}

Curve-class
Curve Class

Description
Creates a Curve Object containing pairs of Tenors with relevant rates and the interpolation function. Also, methods for populating the object via a .csv file and the generation of the interpolation function via cubic splines are included.

Arguments
Tenors The Tenors of the curve
Rates The rates on the corresponding tenors
interp_function
 (Optional) The interpolation function of the curve. Can be populated via the 'CalcInterpPoints' method

Value
An object of type Curve

Author(s)
Tasos Grivas <tasos@openriskcalculator.com>
DynamicBeta

Examples

generating a curve either directly or through a csv -
the spot_rates.csv file can be found on the extdata folder in the installation library path
funding_curve = Curve(Tenors=c(1,2,3,4,5,6,10),Rates=c(4,17,43,47,76,90,110))
spot_rates = Curve()
spot_rates$PopulateViaCSV('spot_rates.csv')
time_points = seq(0,5,0.01)
spot_curve = spot_rates$CalcInterpPoints(time_points)

DynamicBeta Time Varying Beta via Kalman filter & smoother

Description

Calculates the beta of an investment strategy or stock by applying the Kalman filter & smoother. Apart from the beta timeseries, the state covariances are also returned so as to provide an estimate of the uncertainty of the results. The python package "Pykalman" is used for the calculations given its proven stability.

Usage

DynamicBeta(csvfilename, do_not_set_to_true = FALSE)

Arguments

csvfilename the name of csv file containing the track record of the fund & the benchmark
do_not_set_to_true function returns zero when TRUE - used only so as to pass the CRAN tests where pykalman couldn’t be installed

Value

A list of beta values based on Kalman Filter & smoother and the respective covariance matrices

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

Examples

calling DynamicBeta() without an argument loads a test file containing a sample track
record and a benchmark index
ATTENTION!!: set do_not_set_to_true to FALSE when running the example
##-- this is only used to pass CRAN tests whereby
pykalman was not installable!
dyn_beta_values = DynamicBeta(do_not_set_to_true = TRUE)
Equity-class

Description

Creates an Equity object

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notional</td>
<td>The notional amount of the trade</td>
</tr>
<tr>
<td>MTM</td>
<td>The mark-to-market valuation of the trade</td>
</tr>
<tr>
<td>Currency</td>
<td>The currency set that the trade belongs to</td>
</tr>
<tr>
<td>BuySell</td>
<td>Takes the values of either 'Buy' or 'Sell'</td>
</tr>
<tr>
<td>ISIN</td>
<td>the ISIN of the Equity</td>
</tr>
<tr>
<td>traded_price</td>
<td>the price that trade was done</td>
</tr>
<tr>
<td>Issuer</td>
<td>the issuer of the stock</td>
</tr>
</tbody>
</table>

Value

An object of type Equity

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

Examples

```python
tr1 = Equity(external_id="ext1", Notional=10000, MtM=30, Currency="EUR", BuySell='Buy', traded_price = 10, ISIN = "XS04340432", Issuer='FirmA')
```

EquityIndexFuture-class

Description

Creates an Equity Index Future object with the relevant info needed to calculate the Exposure-at-Default (EAD)
EquityOptionIndex-class

Arguments

Notional The notional amount of the trade
MTM The mark-to-market valuation of the trade
Currency The currency set that the trade belongs to
Si The number of years that the trade will take to start (zero if already started)
Ei The number of years that the trade will expire
BuySell Takes the values of either 'Buy' or 'Sell'
traded_price the price that trade was done

Value

An object of type EquityIndexFuture

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

Examples

```r
example_trades = ParseTrades()
Equity_Index_Future_trade = example_trades[[18]]
```

EquityOptionIndex-class

Equity Option Index Class

Description

Creates an Equity Option Index object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional The notional amount of the trade
MTM The mark-to-market valuation of the trade
Currency The currency set that the trade belongs to
Si The number of years that the trade will take to start (zero if already started)
Ei The number of years that the trade will expire
BuySell Takes the values of either 'Buy' or 'Sell'
traded_price the price that trade was done
EquityOptionSingle-class

Value

An object of type EquityOption

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

EquityOptionSingle-class

Equity Option Single Class

Description

Creates an Equity Option Single object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional The notional amount of the trade
MTM The mark-to-market valuation of the trade
Currency The currency set that the trade belongs to
Si The number of years that the trade will take to start (zero if already started)
Ei The number of years that the trade will expire
BuySell Takes the values of either ’Buy’ or ’Sell’
traded_price the price that trade was done

Value

An object of type EquityOption

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>
EuroJackpotExample
Eurojackpot analysis example

Description
Displays how the functionality related to the eurojackpot analysis can be utilized

Usage
```python
EuroJackpotExample()
```

Value
The final results

Author(s)
Tasos Grivas <tasos@openriskcalculator.com>

Examples
```python
final_results = EuroJackpotExample()
```

EuroJackpotResults
Returns all the EuroJackpot results until the end of 2023

Description
Returns all the EuroJackpot results since the first draw on Feb 2004 until the end of 2023

Usage
```python
EuroJackpotResults()
```

Value
A dataframe with all the EuroJackpot results

Author(s)
Tasos Grivas <tasos@openriskcalculator.com>

Examples
```python
eurojackpot_results = EuroJackpotResults()
```
EuroLotteryAllCombinations

Description

Returns all the possible number combinations for EuroMillions/EuroJackpot

Usage

EuroLotteryAllCombinations()

Value

PnL figures

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

Examples

returns all the 139,838,160 possible combinations, can create memory issues.
all_combinations = EuroLotteryAllCombinations()

EuroLotteryBacktesting

Euromillions/EuroJackpot Backtesting

Description

Backtests the numbers the user has selected against the full (or the specified) history of Euromillions/EuroJackpot results

Usage

EuroLotteryBacktesting(euroLottery_results, date_since, user_input)

Arguments

euroLottery_results
 The full list of EuroMillions/EuroJackpot results
date_since
 The date after which the analysis is to be performed, i.e. 2022-12-22
user_input
 The seven numbers the user has selected
Value

The backtested results

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

Examples

euromillions_results = EuroMillionsResults()
user_input = c(10,20,30,40,50,5,10)
backtested_results = EuroLotteryBacktesting(euromillions_results, '2005-01-01', user_input)

description

Displays how the functionality related to the euromillions analysis can be utilized

Usage

EuroMillionsExample()

Value

The final results

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

Examples

final_results = EuroMillionsExample()
EuroMillionsResults

Returns all the EuroMillions results until the end of 2023

Description

Returns all the EuroMillions results since the first draw on Feb 2004 until the end of 2023

Usage

```r
euroMillionsResults()
```

Value

A dataframe with all the EuroMillions results

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

Examples

```r
euromillions_results = EuroMillionsResults()
```

FxForward-class

FX Forward Class

Description

Creates a FX Forward Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

- **Notional**: The notional amount of the trade
- **MTM**: The mark-to-market valuation of the trade
- **Currency**: The currency that the input amounts are in
- **ccyPair**: The currency Pair of the trade
- **Si**: The number of years that the trade will take to start (zero if already started)
- **Ei**: The number of years that the trade will expire
- **BuySell**: Takes the values of either 'Buy' or 'Sell'
- **traded_price**: the price that trade was done
FxSwap-class

Fx Swap Class

Description

Creates an FX Swap object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

- **Notional**: The notional amount of the trade
- **MTM**: The mark-to-market valuation of the trade
- **Currency**: The currency that the input amounts are in
- **ccyPair**: The currency Pair of the trade
- **Si**: The number of years that the trade will take to start (zero if already started)
- **Ei**: The number of years that the trade will expire
- **BuySell**: Takes the values of either 'Buy' or 'Sell'
- **traded_price**: the price that trade was done
- **fx_near_leg_fields**: (Optional) In case the near leg hasn’t settled yet, its notional, MtM, settlement date should be provided separated via a semicolon

Value

An object of type FX Forward

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures
http://www.bis.org/publ/bcbs279.htm

Examples

```r
## an FX Forward trade
tr1 = FxForward(Notional=10000, MTM=-50, Si=0, Ei=0.75, BuySell='Buy', ccyPair="EUR/USD")
## a dynamic version of the same trade
tr2 = FxForward(MTM=-50, Si=0, Ei=0.75, ccy_paying="USD", amount_paying=10000,
               ccy_receiving="EUR", amount_receiving=9900)
tr2$base_ccy="EUR"
tr2$setFXDynamic()
```
Value

An object of type FXSwap

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures
http://www.bis.org/publ/bcbs279.htm

Examples

```python
t1 = FxSwap(Notional=10000, MtM=30, ccyPair="EUR/USD", Si=0, Ei=10,
BuySell='Buy', fx_near_leg_fields='1000; -20; 2020-02-11')
```

Description

Returns a list with the populated fields of a Trade Object

Usage

```python
GetTradeDetails(trade)
```

Arguments

- **trade**: A trade Object

Value

A list of fields

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

Examples

```python
example_trades = ParseTrades()
Equity_Index_Future_trade = example_trades[18]
populated_fields = GetTradeDetails(Equity_Index_Future_trade)
```
HashTable-class

Hashtable Class

Description

Creates a hashtable-like object so as to represent data with a key structure (for exampleaddon tables, rating-based factors etc). Also, it includes methods for populating the object via a .csv file and finding a value based on a specific key on an interval of keys For examples of the format of the CSVs files, please view RatingsMapping.csv or AddonTable.csv on the extdata folder in the installation folder of the library

Arguments

- `keys`: A vector of keys
- `values`: A vector of values mapping to the keys
- `keys_type`: The type of the keys
- `values_type`: The type of the values

Value

An object of type HashTable

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

Examples

```r
# loading a ratings' mapping matrix from the extdata folder
rating_table = HashTable('RatingsMapping.csv', "character","numeric")
reg_weight = rating_table$FindValue("AAA")
```

InformationAdjustedBeta

Information Adjusted Beta

Description

Calculates the Information-Adjusted Beta between the track records of two assets/strategies which covers for cases whereby the 'typical' linearity and Gaussian I.I.D assumptions do not hold. The normalized cross sample entropy has been utilized for the mutual information estimation.
Usage

InformationAdjustedBeta(x, y, m = 2, r = 0.2)

Arguments

x a vector containing the track record of the underlying asset/strategy (can be a data.table, data.frame, vector etc)
y a vector containing the track record of the underlying asset/strategy (can be a data.table, data.frame, vector etc)
m an integer value defining the embedding dimension for the sample entropy calculation, default value is 2
r a double value defining the tolerance for the sample entropy calculation, default value is 0.2

Value

The information adjusted Beta

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Examples

x = PerformanceAnalytics::edhec[,c("Short Selling")]
y = PerformanceAnalytics::edhec[,c("Convertible Arbitrage")]
Information_Adjusted_Beta = InformationAdjustedBeta = function(x, y, m=2, r=0.2)

InformationAdjustedCorr

Information Adjusted Correlation

Description

Calculates the Information-Adjusted Correlation between the track records of various assets/strategies which covers for cases whereby the 'typical' Pearson's correlation assumptions do not hold. The normalized cross sample entropy has been utilized for the mutual information estimation.

Usage

InformationAdjustedCorr(x, y, m = 2, r = 0.2)
Arguments

x a vector containing the track record of the underlying asset/strategy (can be a data.table, data.frame, vector etc)
y a vector containing the track record of the underlying asset/strategy (can be a data.table, data.frame, vector etc)
m an integer value defining the embedding dimension for the sample entropy calculation, default value is 2
r a double value defining the tolerance for the sample entropy calculation, default value is 0.2

Value

The information adjusted correlation

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Examples

x = PerformanceAnalytics::edhec[,c("Short Selling")]
y = PerformanceAnalytics::edhec[,c("Convertible Arbitrage")]
Information_Adjusted_Corr = InformationAdjustedCorr(x, y, m=2, r=0.2)

Description

Creates an IRD Future Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional The notional amount of the trade
MTM The mark-to-market valuation of the trade
Currency The currency set that the trade belongs to
Si The number of years that the trade will take to start (zero if already started)
Ei The number of years that the trade will expire
BuySell Takes the values of either 'Buy' or 'Sell'
IRDSwap-class

Value

An object of type IRDFuture

Description

Creates an IRD Swap Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

Notional The notional amount of the trade
MTM The mark-to-market valuation of the trade
Currency The currency set that the trade belongs to
Si The number of years that the trade will take to start (zero if already started)
Ei The number of years that the trade will expire
BuySell Takes the values of either 'Buy' or 'Sell'

Value

An object of type IRDSwap

Examples

the IRD Swap trade given in the Basel regulation IRD example
tr1 = IRDSwap(Notional=10000,MtM=30,Currency="USD",Si=0,Ei=10,BuySell='Buy')

IRDSwaption-class

IRD Swaption Class

Description

Creates an IRD Swaption Object with the relevant info needed to calculate the Exposure-at-Default (EAD)
Arguments

- **Notional**: The notional amount of the trade
- **MTM**: The mark-to-market valuation of the trade
- **Currency**: The currency set that the trade belongs to
- **Si**: The number of years that the trade will take to start (zero if already started)
- **Ei**: The number of years that the trade will expire
- **BuySell**: Takes the values of either 'Buy' or 'Sell'
- **OptionType**: Takes the values of either 'Put' or 'Call'
- **UnderlyingPrice**: The current price of the underlying
- **StrikePrice**: The strike price of the option

Value

An object of type IRDSwaption

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures
http://www.bis.org/publ/bcbs279.htm

Examples

```r
# the Swaption trade given in the Basel regulation IRD example
tr3 = IRDSwaption(Notional=5000,MTM=50,Currency="EUR",Si=1,Ei=11,BuySell='Sell',
                  OptionType='Put',UnderlyingPrice=0.06,StrikePrice=0.05)
```

IRDSwapVol-class
IRD Swap Volatility Class

Description

Creates an IRD Swap Volatility-based Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Value

An object of type IRDSwapVol
Description

Calculates the number of repetitions needed for a specific number of consecutive failed trades/bets to appear. This can apply to roulette betting but also trading algorithms which use the same logic on doubling down after a failed trade.

Usage

```r
martingale_strategy_repetitions(
  length_of_targeted_sequence,
  prob_of_success = 18/37,
  simulations_num,
  trials_per_sim,
  quantile_perc
)
```

Arguments

- `length_of_targeted_sequence`
 The number of consecutive failed trades/bets that we try to calculate the expected number of repetitions for
- `prob_of_success`
 The probability of a successful trade/bet
- `simulations_num`
 The number of simulations to be run
- `trials_per_sim`
 The number of trials in each simulation
- `quantile_perc` (Optional) When set, the number of repetitions expected with such probability is returned.

Value

A list containing the number of repetitions needed to reach the targeted sequence for the first time in each simulation (will be zero if the sequence is not found) and, when the `quantile_perc` is set, the above number of repetitions.

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

https://en.wikipedia.org/wiki/Roulette#Betting_strategies_and_tactics
Examples

This software is covered by GPL license and provided strictly for educational
reasons (no actual investment or betting decisions should be taken based on this)
On top of these, the below example contains a tiny number of simulations and
trials just to pass CRAN tests - the user would have to highly increase both
variables when running these.
repetitions_for_failed_sequence = martingale_strategy_repetitions(length_of_targeted_sequence = 8,
prob_of_success = 18/37, simulations_num = 1000, trials_per_sim = 10000, quantile_perc = 0.1)
repetitions_for_failed_sequence$relevant_quantile
summary(repetitions_for_failed_sequence$num_of_trials_needed)

NormXASampEn
Normalized Cross Sample Entropy

Description
Calculates the Normalized Cross Sample Entropy of the track records of two assets/strategies based
on the sample entropy.

Usage
NormXASampEn(x, y, m = 2, r = 0.2)

Arguments
- **x**: a vector containing the track record of the underlying asset/strategy, this will be
 normalized during the algorithm
- **y**: a vector containing the track record of the underlying asset/strategy, this will be
 normalized during the algorithm
- **m**: an integer value defining the embedding dimension, default value is 2
- **r**: a double value defining the tolerance, default value is 0.2

Value
A value containing the NormXASampEn

Author(s)
Tasos Grivas <tasos@openriskcalculator.com>

References
Lopez de Prado, Marcos, Codependence (Presentation Slides) (January 2, 2020). Available at
SSRN: https://ssrn.com/abstract=3512994
Examples

x = PerformanceAnalytics::edhec[,c("Short Selling")]
y = PerformanceAnalytics::edhec[,c("Convertible Arbitrage")]
Normalized_Cross_Sample_Entropy = NormXASampEn(x, y, m=2, r=0.2)

Description

Creates a OtherExposure Object with the relevant info needed to calculate the Exposure-at-Default (EAD)

Arguments

- **Notional**: The notional amount of the trade
- **MTM**: The mark-to-market valuation of the trade
- **Currency**: The currency set that the trade belongs to
- **Si**: The number of years that the trade will take to start (zero if already started)
- **Ei**: The number of years that the trade will expire
- **BuySell**: Takes the values of either 'Buy' or 'Sell'
- **SubClass**: Defines the hedging set the relevant trade will belong to

Value

An object of type OtherExposure

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Examples

tr1 = OtherExposure(Notional=10000, MtM=-50, Si=0, Ei=10, BuySell='Buy', SubClass='Other_1')
OuterJoinMerge

Returns all possible combinations of two dataframes

Description

Returns all possible combinations of two dataframes

Usage

`OuterJoinMerge(df_a, df_b)`

Arguments

- `df_a` : The first dataframe
- `df_b` : The second dataframe

Value

A dataframe with all combinations

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

Examples

```r
df_a = data.frame(matrix(seq(1,20),nrow = 5, ncol = 4))
df_b = data.frame(matrix(seq(21,40),nrow = 5, ncol = 4))
joined_df = OuterJoinMerge(df_a, df_b)
```

ParseTrades

Parse trades through a .csv file.

Description

Parse trades through a .csv file. In case no file name is given, an example file is automatically loaded containing trades corresponding to Basel’s SA-CCR regulation (the example trades file can be found on the extdata folder in the installation library path)

Usage

`ParseTrades(csvfilename)`

Arguments

- `csvfilename` : the name of csv file containing the trades
Value
A list of trades

Author(s)
Tasos Grivas <tasos@openriskcalculator.com>

Examples

```r
## calling ParseTrades() without an argument loads a test file containing all
## the different trade types supported
example_trades = ParseTrades()
```

Description
Calculates the potential profit or loss when someone is betting in the roulette based on the D’Alembert Betting System

Usage

```r
roulette_pl_calculator_dalembert(
  bet_minimum,
  bet_maximum,
  initialCapital,
  simulations_num,
  trials_per_sim
)
```

Arguments

- `bet_minimum`: The minimum betting amount that the casino allows
- `bet_maximum`: The maximum betting amount that the casino allows
- `initialCapital`: The initial capital to be used
- `simulations_num`: The number of simulations to be run
- `trials_per_sim`: The number of trials in each simulation

Value
A list containing the minimum, the maximum and the final balance for each simulation. Also the P&L graph for the last simulation will be plotted.
Author(s)
Tasos Grivas <tasos@openriskcalculator.com>

References
https://en.wikipedia.org/wiki/Roulette#Betting_strategies_and_tactics

Examples

This software is covered by GPL license and provided strictly for educational
reasons (no actual investment/betting decisions should be taken based on this)
On top of these, the below example contains a tiny number of simulations and
trials just to pass CRAN tests - the user would have to highly increase both
variables when running these.
pl_results = roulette_pl_calculator_dalembert(bet_minimum = 0.1 , bet_maximum = 3276.8,
initial_capital = 20000, simulations_num = 100, trials_per_sim = 100)
summary(pl_results$min_capital)
summary(pl_results$max_capital)
summary(pl_results$final_capital)

Description
Calculates the potential profit or loss when someone is betting in the roulette based on the Fibonacci
Betting System.

Usage
roulette_pl_calculator_fibonacci(
 bet_minimum,
 bet_maximum,
 initial_capital,
 simulations_num,
 trials_per_sim
)

Arguments
bet_minimum The minimum betting amount that the casino allows
bet_maximum The maximum betting amount that the casino allows
initial_capital The initial capital to be used
The number of simulations to be run
The number of trials in each simulation

A list containing the minimum, the maximum and the final balance for each simulation. Also the P&L graph for the last simulation will be plotted.

Tasos Grivas <tasos@openriskcalculator.com>

https://en.wikipedia.org/wiki/Roulette#Betting_strategies_and_tactics

This software is covered by GPL license and provided strictly for educational reasons (no actual investment or betting decisions should be taken based on this)
On top of these, the below example contains a tiny number of simulations and trials just to pass CRAN tests - the user would have to highly increase both variables when running these.
pl_results = roulette_pl_calculator_fibonacci(bet_minimum = 0.1 , bet_maximum = 6000, initial_capital = 20000, simulations_num = 100, trials_per_sim = 100)
summary(pl_results$min_capital)
summary(pl_results$max_capital)
summary(pl_results$final_capital)

Description

Calculates the potential profit or loss when someone is betting in the roulette based on the Labouchere Betting System.

Usage

roulette_pl_calculator_labouchere(
 bet_minimum,
 bet_maximum,
 initial_capital,
 profit_target,
 profit_sequence,
Arguments

- **bet_minimum**: The minimum betting amount that the casino allows
- **bet_maximum**: The maximum betting amount that the casino allows
- **initial_capital**: The initial capital to be used
- **profit_target**: The profit amount to be earned
- **profit_sequence**:
 - (Optional) the amounts of the bets to reach this profit amount. If omitted, the minimum betting amount will be used
- **simulations_num**: The number of simulations to be run
- **trials_per_sim**: The number of trials in each simulation

Value

A list containing the minimum, the maximum and the final balance for each simulation. Also the P&L graph for the last simulation will be plotted.

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

https://en.wikipedia.org/wiki/Roulette#Betting_strategies_and_tactics

Examples

This software is covered by GPL license and provided strictly for educational
reasons (no actual investment/betting decisions should be taken based on this)
On top of these, the below example contains a tiny number of simulations and
trials just to pass CRAN tests - the user would have to highly increase both
variables when running these.
pl_results = roulette_pl_calculator_labouchere(bet_minimum = 0.1, bet_maximum = 3276.8,
initial_capital = 20000, profit_target = 100, profit_sequence = rep(10,10),
simulations_num = 100, trials_per_sim = 100)
summary(pl_results$min_capital)
summary(pl_results$max_capital)
summary(pl_results$final_capital)
Description

Calculates the potential profit or loss when someone is betting in the roulette based on the martingale system while trying to reduce the risk by 1. Starting to double after the first loss 2. Not doubling if the second number is zero.

Usage

```python
roulette_pl_calculator_martingale(
    bet_minimum,
    bet_maximum,
    initial_capital,
    simulations_num,
    trials_per_sim
)
```

Arguments

- `bet_minimum` The minimum betting amount that the casino allows
- `bet_maximum` The maximum betting amount that the casino allows
- `initial_capital` The initial capital to be used
- `simulations_num` The number of simulations to be run
- `trials_per_sim` The number of trials in each simulation

Value

A list containing the minimum, the maximum and the final balance for each simulation. Also the P&L graph for the last simulation will be plotted.

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

https://en.wikipedia.org/wiki/Roulette#Betting_strategies_and_tactics
Examples

This software is covered by GPL license and provided strictly for educational # reasons (no actual investment/betting decisions should be taken based on this) # On top of these, the below example contains a tiny number of simulations and # trials just to pass CRAN tests - the user would have to highly increase both # variables when running these.
pl_results = roulette_pl_calculator_martingale(bet_minimum = 0.1 , bet_maximum = 3276.8, initial_capital = 20000, simulations_num = 100, trials_per_sim = 100)
summary(pl_results$min_capital)
summary(pl_results$max_capital)
summary(pl_results$final_capital)

roulette_pl_calculator_specific_number

Roulette P&L betting on a specific number

Description

Calculates the potential profit or loss when someone is betting on a specific number in the roulette and keeps doubling every eighteen spins if the number hasn’t appeared yet.

Usage

roulette_pl_calculator_specific_number(
 bet_minimum,
 bet_maximum,
 initial_capital,
 targeted_number,
 simulations_num,
 trials_per_sim,
 stop_loss
)

Arguments

bet_minimum The minimum betting amount that the casino allows
bet_maximum The maximum betting amount that the casino allows
initial_capital The initial capital to be used
targeted_number The specific number that we expect to be drawn (statistically speaking, this should have zero effect on the results)
simulations_num The number of simulations to be run
SampleEntropy

trials_per_sim The number of trials in each simulation
stop_loss (Optional) The number of spins after which the betting amount will go back to
the minimum if the targeted number hasn’t appeared.

Value
A list containing the minimum, the maximum and the final balance for each simulation. Also the
P&L graph for the last simulation will be plotted.

Author(s)
Tasos Grivas <tasos@openriskcalculator.com>

References
https://en.wikipedia.org/wiki/Roulette#Betting_strategies_and_tactics

Examples

This software is covered by GPL license and provided strictly for educational
reasons (no actual investment or betting decisions should be taken based on this)
On top of these, the below example contains a tiny number of simulations and
trials just to pass CRAN tests - the user would have to highly increase both
variables when running these.
pl_results = roulette_pl_calculator_specific_number(bet_minimum =0.1 , bet_maximum = 3276.8,
initial_capital = 20000, targeted_number = 0, simulations_num = 100,
trials_per_sim = 100, stop_loss = 180)
summary(pl_results$min_capital)
summary(pl_results$max_capital)
summary(pl_results$final_capital)

SampleEntropy

Description
Calculates the sample entropy of a track record. Sample entropy is an improvement of the approx-
imate entropy and should produce accurate results for timeseries of smaller length like historical
returns of strategies

Usage
SampleEntropy(returns, m = 2, r = 0.2)
SelectDerivatives

Select the derivatives out of a trades’ list

Description

Select the derivatives out of a trades’ list which will be utilized to calculate the CCR Exposure.

Usage

SelectDerivatives(trades_list)

Arguments

trades_list the file holding the trades of the portfolio

Value

The derivatives out of a trades’ list

Arguments

returns a vector containing the track record of the underlying asset/strategy, these will be normalized during the algorithm
m an integer value defining the embedding dimension, default value is 2
r a double value defining the tolerance, default value is 0.2

Value

The sample Entropy of the input returns

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

https://en.wikipedia.org/wiki/Sample_entropy

Examples

```r
## calling SampleEntropy() without an argument loads the historical edhec
## data for the "Short Selling" strategy
returns = PerformanceAnalytics::edhec[,c("Short Selling")]
Sample_Entropy = SampleEntropy(returns,m=2,r=0.2)
```
Author(s)

Tasos Grivas <info@openriskcalculator.com>

References

top5

Top 5 most or least lucky numbers for EuroMillions/EuroJackpot

Description

Returns the top 5 most or least lucky euromillion numbers

Usage

```
top5(eurolottery_results, date_since, least_lucky = FALSE)
```

Arguments

- `eurolottery_results`: The full list of EuroMillions/EuroJackpot results
- `date_since`: The date after which the analysis is to be performed, i.e. 2022-12-22
- `least_lucky`: If TRUE, the least lucky numbers will be returned (default FALSE)

Value

Top 5 numbers

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

Examples

```
euromillions_results = EuroMillionsResults()
top_5 = top5(euromillions_results, '2022-12-22', least_lucky=TRUE)
```
Total_Carbon_Emissions

Total Carbon Emissions

Description

Returns the absolute greenhouse gas emissions associated with a portfolio, expressed in tons CO2e. Under this approach, if an investor owns 5 percent of a company’s total market capitalization, then the investor owns 5 percent of the company as well as 5 percent of the company’s GHG (or carbon) emissions.

Usage

Total_Carbon_Emissions(portfolio_exposure, emissions_capitalization_data)

Arguments

portfolio_exposure

The exposure per issuer in the portfolio

domains.capitalization_data

The capitalization and the Scope 1 & 2 GHG emissions per issuer

Value

The absolute greenhouse gas emissions associated with a portfolio, expressed in tons CO2e

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

https://www.tcfdhub.org/Downloads/pdfs/E09

Examples

portfolio_exposure = data.table::data.table(Issuers = c('A','B','C'),
 exposures = c(100, 200, 50))

domains.capitalization_data = data.table::data.table(Issuers = c('A','B','C'),
 emissions = c(1000, 5000, 6000),
 Capitalization = c(20000, 10000, 30000))

Total_Carbon_Emissions(portfolio_exposure, domains.capitalization_data)
VariationOfInformation

Variation of Information

Description
Calculates the variation of information of the track records of two assets/strategies based on the sample entropy.

Usage
VariationOfInformation(x, y, m = 2, r = 0.2, normalized = TRUE)

Arguments
- **x**: a vector containing the track record of the underlying asset/strategy, this will be normalized during the algorithm
- **y**: a vector containing the track record of the underlying asset/strategy, this will be normalized during the algorithm
- **m**: an integer value defining the embedding dimension, default value is 2
- **r**: a double value defining the tolerance, default value is 0.2
- **normalized**: a boolean value so as to bound the return value between 0 and 1, default value is TRUE

Value
A value containing the variation of information

Author(s)
Tasos Grivas <tasos@openriskcalculator.com>

References

Examples
```r
x = PerformanceAnalytics::edhec[,c("Short Selling")]
y = PerformanceAnalytics::edhec[,c("Convertible Arbitrage")]
variation_of_information = VariationOfInformation(x, y, m=2, r=0.2, normalized = TRUE)
```
Weighted_Average_Carbon_Intensity

Description

Returns the portfolio’s exposure to each issuer expressed in tons CO2e / $M revenue. Scope 1 and Scope 2 GHG emissions are allocated based on portfolio weights (the current value of the investment relative to the current portfolio value), rather than the equity ownership approach.

Usage

```
Weighted_Average_Carbon_Intensity(portfolio_exposure, emissions_revenue_data)
```

Arguments

- `portfolio_exposure`:
 - The exposure per issuer in the portfolio.
- `emissions_revenue_data`:
 - The capitalization, revenue and the Scope 1 & 2 GHG emissions per issuer.

Value

Total carbon emissions for a portfolio normalized by the market value of the portfolio, expressed in tons CO2e / $M invested.

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

https://www.tcfdhub.org/Downloads/pdfs/E09

Examples

```
portfolio_exposure = data.table::data.table(Issuers = c('A','B','C'),
                                          exposures = c(100, 200, 50))
emissions_revenue_data = data.table::data.table(Issuers = c('A','B','C'),
                                             emissions = c(1000, 5000, 2000),
                                           revenue = c(2000, 5000, 3000))
Weighted_Average_Carbon_Intensity(portfolio_exposure, emissions_revenue_data)
```
AngularDistance, 3
Bond (Bond-class), 4
Bond-class, 4
BondFuture (BondFuture-class), 5
BondFuture-class, 5
CalcEuroLotteryPnL, 6
capped_fibonacci_seq, 7
Carbon_Footprint, 7
Carbon_Intensity, 8
CDOTranche (CDOTranche-class), 9
CDOTranche-class, 9
CDS (CDS-class), 10
CDS-class, 10
CDX (CDX-class), 11
CDX-class, 11
Chebyshev_distance, 11
Collateral (Collateral-class), 12
Collateral-class, 12
Commodity (Commodity-class), 13
Commodity-class, 13
CommodityForward
 (CommodityForward-class), 14
CommodityForward-class, 14
CommSwap (CommSwap-class), 15
CommSwap-class, 15
CrossSampleEntropy, 15
CSA (CSA-class), 16
CSA-class, 16
Curve (Curve-class), 17
Curve-class, 17
DynamicBeta, 18
Equity (Equity-class), 19
Equity-class, 19
EquityIndexFuture
 (EquityIndexFuture-class), 19
EquityIndexFuture-class, 19
EquityOptionIndex
 (EquityOptionIndex-class), 20
EquityOptionIndex-class, 20
EquityOptionSingle
 (EquityOptionSingle-class), 21
EquityOptionSingle-class, 21
EuroJackpotExample, 22
EuroJackpotResults, 22
EuroLotteryAllCombinations, 23
EuroLotteryBacktesting, 23
EuroMillionsExample, 24
EuroMillionsResults, 25
FxForward (FxForward-class), 25
FxForward-class, 25
FxSwap (FxSwap-class), 26
FxSwap-class, 26
GetTradeDetails, 27
HashTable (HashTable-class), 28
HashTable-class, 28
InformationAdjustedBeta, 28
InformationAdjustedCorr, 29
IRDFuture (IRDFuture-class), 30
IRDFuture-class, 30
IRDSwap (IRDSwap-class), 31
IRDSwap-class, 31
IRDSwaption (IRDSwaption-class), 31
IRDSwaption-class, 31
IRDSwapVol (IRDSwapVol-class), 32
IRDSwapVol-class, 32
martingale_strategy_repetitions, 33
NormXASampEn, 34
OtherExposure (OtherExposure-class), 35
OtherExposure-class, 35
OuterJoinMerge, 36
ParseTrades, 36
roulette_pl_calculator_dalembert, 37
roulette_pl_calculator_fibonacci, 38
roulette_pl_calculator_labouchere, 39
roulette_pl_calculator_martingale, 41
roulette_pl_calculator_specific_number, 42
SampleEntropy, 43
SelectDerivatives, 44
top5, 45
Total_Carbon_Emissions, 46
VariationOfInformation, 47
Weighted_Average_Carbon_Intensity, 48