Package ‘TestDimorph’

January 30, 2020

Type Package
Title Analysis Of The Interpopulation Difference In Degree of Sexual Dimorphism Using Summary Statistics
Version 0.3.0
Maintainer Bassam A. Abulnoor <bas12@fayoum.edu.eg>
Description Provides two approaches of comparison; the univariate and the multivariate analysis in two or more populations. Since the main obstacle of performing systematic comparisons in anthropological studies is the absence of raw data, the current package offer a solution for this problem by allowing the use of published summary statistics of metric data (mean, standard deviation and sex specific sample size) as illustrated by the works of Greene, D. L. (1989) <doi:10.1002/ajpa.1330790113> and Konigsberg, L. W. (1991) <doi:10.1002/ajpa.1330840110>.

Imports Rfast,plyr,stats,utils,reshape2,purrr,caret,rlang,MASS,klaR,mda,corrplot,truncnorm,stringr,ggplot2,plotROC,DescTools,tibble,tidyr,multcompView,tmvtnorm,randomForest
Suggests testthat (>= 2.1.0), AnthropMMD, Rdpack
Depends R (>= 2.10)
RdMacros Rdpack
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.0.2
Language en-US
URL https://github.com/bassam-abulnoor/TestDimorph
BugReports https://github.com/bassam-abulnoor/TestDimorph/issues
NeedsCompilation no
Author Bassam A. Abulnoor [aut, cre] (https://orcid.org/0000-0003-4351-2754), MennattAllah H. Attia [aut] (https://orcid.org/0000-0002-2304-532X), Lyle W. Konigsberg [ctb, dtc] (https://orcid.org/0000-0003-4052-1575)
Repository CRAN
Date/Publication 2020-01-30 19:30:02 UTC
AccuModel

R topics documented:

- AccuModel ... 2
- aovSS ... 4
- baboon.parms_df 5
- baboon.parms_list 6
- extract_sum 7
- Howells .. 8
- multivariate 9
- R ... 10
- RawGen .. 11
- Tg ... 12
- univariate 15

Index

<table>
<thead>
<tr>
<th>AccuModel</th>
<th>Evaluation Of Sex-prediction Accuracy</th>
</tr>
</thead>
</table>

Description

Testing and visualization of the accuracy of different sex prediction models using the `confusionMatrix` and roc curves

Usage

```r
AccuModel(
  f,
  x,
  y,
  Sex = 1,
  Pop = 2,
  byPop = TRUE,
  method = "lda",
  plot = FALSE,
  cutoff = 0.5,
  ref. = "F",
  post. = "M",
  ...
)
```

Arguments

- **f**
 Formula in the form `groups ~ x1 + x2 + ...`. The grouping factor is placed to the left hand side while the numerical measurements are placed to the right hand side.

- **x**
 Data frame to be fitted to the model.

- **y**
 New data frame to be tested.
AccuModel

<table>
<thead>
<tr>
<th>Sex</th>
<th>Number of the column containing sex 'M' for male and 'F' for female, Default: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pop</td>
<td>Number of the column containing populations' names, Default: 2</td>
</tr>
<tr>
<td>byPop</td>
<td>Logical; if TRUE returns the accuracy in different populations of the new data frame, Default: TRUE</td>
</tr>
<tr>
<td>method</td>
<td>Different methods of modeling see details, Default:'lda'</td>
</tr>
<tr>
<td>plot</td>
<td>Logical; if TRUE returns an roc curve for model accuracy, Default: FALSE</td>
</tr>
<tr>
<td>cutoff</td>
<td>cutoff value when using logistic regression, Default: 0.5</td>
</tr>
<tr>
<td>ref.</td>
<td>reference category in the grouping factor, Default: 'F'</td>
</tr>
<tr>
<td>post.</td>
<td>positive category in the grouping factor, Default: 'M'</td>
</tr>
<tr>
<td>...</td>
<td>additional arguments that can passed to modeling, confusionMatrix function and roc curve generated by geom_roc</td>
</tr>
</tbody>
</table>

Details

Tibble/data frames to be entered as input need to be arranged in a similar manner to Howells dataset. Methods used for modeling are:

- **lda** linear discriminant analysis
- **qda** quadratic discriminant analysis
- **mda** mixture discriminant analysis
- **fda** flexible discriminant analysis
- **rda** regularized discriminant analysis
- **glm** binomial logistic regression
- **raf** random forest

Value

Visual and numerical accuracy parameters for the tested model

See Also

`lda, qda, mda, fda, rda, randomForest, GeomRoc, confusionMatrix`

Examples

```r
#Splitting Howells dataset into training and test datasets
smp_size <- floor(0.5 * nrow(Howells))
set.seed(123)
train_ind <- sample(seq_len(nrow(Howells)), size = smp_size)
train <- Howells[train_ind, ]
test <- Howells[-train_ind, ]
library(TestDimorph)
AccuModel(
  Sex ~ GOL + NOL + BNL,
  x = train,
  ...  
)```

aovSS

Sex-Specific One-way ANOVA From Summary statistics

Description

Calculates sex specific one-way ANOVA followed by from summary statistics.

Usage

aovSS(
    x,
    Pop = 1,
    pairwise = TRUE,
    letters = FALSE,
    es = FALSE,
    digits = 4,
    method = "hsd",
    sig.level = 0.05
)

Arguments

x Tibble/data frame containing summary statistics, Default: NULL
Pop Number of the column containing populations’ names, Default: 1
pairwise Logical; if TRUE runs multiple pairwise comparisons on different populations using post hoc test of choice, Default: TRUE
letters Logical; if TRUE returns letters for pairwise comparisons where significantly different populations are given different letters, Default: FALSE
es Logical; if TRUE effect size is included in the output, Default: FALSE
digits Number of significant digits, Default: 4
method Type of post hoc test implemented by PostHocTest, Default: 'hsd'
sig.level Critical p.value, Default: 0.05

Details

Data is entered as a tibble/data frame of summary statistics where the column containing population names is chosen by position (first by default), other columns of summary data should have specific names (case sensitive) similar to baboon.parms_df
Value

Sex specific ANOVA tables and pairwise comparisons in tidy format.

See Also

PostHocTest

Examples

```r
Comparisons of femur head diameter in four populations
library(TestDimorph)
m <- c(150.00, 82.00, 36.00, 34.00)
f <- c(150.00, 58.00, 34.00, 24.00)
M.mu <- c(49.39, 48.33, 46.99, 45.20)
F.mu <- c(42.91, 42.89, 42.44, 40.90)
M.sdev <- c(3.01, 2.53, 2.47, 2.00)
F.sdev <- c(2.90, 2.84, 2.26, 2.90)

df <- cbind.data.frame(
 Pop = c('Turkish', 'Bulgarian', 'Greek', 'Portuguese'),
 m,
 f,
 M.mu,
 F.mu,
 M.sdev,
 F.sdev,
 stringsAsFactors = TRUE)
aovSS(x = df)
```

Description

A dataset containing summary statistics for low density lipoprotein (LDL) and apolipoprotein-B (apo-B) levels in 604 baboons measured on two different diets: a basal diet 'chow' and a high cholesterol, saturated fat diet 'pink' (HCSF). The baboons were classified into one of three subspecies (Papio hamadryas anubis, P.h. cynocephalus, or anubistcynocephalus hybrid). Each animal was measured on each of the two diets.

Usage

baboon.parms_df
Format

A data frame with 12 rows and 8 variables

**Trait** Type of apolipoprotein

**Sub** Type of species

**M.mu** Means of lipoproteins in different species for males

**F.mu** Means of lipoproteins in different species for females

**m** Male sample sizes

**f** Female sample sizes

**M.sdev** Standard deviations for males

**F.sdev** Standard deviations for females

Note

The baboon data collection were supported by NIH grant HL28972 and NIH contract HV53030 to the Southwest Foundation for Biomedical Research (Now: Texas Biomedical Research Institute), and funds from the Southwest Foundation for Biomedical Research

References


baboon.parms_list Summary statistics of baboon data collection-data frame

Description

A dataset containing summary statistics for low density lipoprotein (LDL) and apolipoprotein-B (apo-B) levels in 604 baboons measured on two different diets: a basal diet ‘chow’ and a high cholesterol, saturated fat diet ‘pink’ (HCSF). The baboons were classified into one of three subspecies (Papio hamadryas anubis, P.h. cynocephalus, or anubistcynocephalus hybrid). Each animal was measured on each of the two diets.

Usage

baboon.parms_list

Format

A list of 7 matrices.

**R.res** pooled within group correlation matrix

**M.mu** Means of lipoproteins in different species for males

**F.mu** Means of lipoproteins in different species for females
**extract_sum**

m Male sample sizes
f Female sample sizes
M.sdev Standard deviations for males
F.sdev Standard deviations for females

**Note**

The baboon data collection were supported by NIH grant HL28972 and NIH contract HV53030 to the Southwest Foundation for Biomedical Research (Now: Texas Biomedical Research Institute), and funds from the Southwest Foundation for Biomedical Research

**References**


---

**extract_sum**

*Summary Statistics Extraction*

**Description**

Extract summary data needed for other functions from raw data.

**Usage**

`extract_sum(x, Sex = 1, Pop = 2, firstX = 3, test = 1, run = TRUE, ...)`

**Arguments**

- **x**: Tibble/data frame containing raw data.
- **Sex**: Number of the column containing sex 'M' for male and 'F' for female, Default: 1
- **Pop**: Number of the column containing populations’ names, Default: 2
- **firstX**: Number of column containing measured parameters (First of multiple in case of multivariate analysis), Default: 3
- **test**: 1 for Greene t-test `Tg`, 2 for `univariate`, 3 for sex specific ANOVA `aovSS`, and 4 for `multivariate`, Default: 1
- **run**: Logical; if TRUE runs the corresponding test after data extraction, Default: TRUE
- **...**: Additional arguments that could be passed to the test of choice

**Details**

Raw data is entered in a wide format tibble/data frame similar to Howells data set. The first two columns contain sex Sex (M for male and F for female) (Default: 1) and populations’ names Pop (Default: 2). Starting from `firstX` column (Default: 3), measured parameters are entered each in a separate column.
Value

Input for other functions.

Examples

# for multivariate test
library(TestDimorph)
extract_sum(Howells,test=4)
# for univariate test on a specific parameter
library(TestDimorph)
extract_sum(Howells, test = 2,firstX = 4)

Description

A subset of a dataset that consists of 82 craniometric measurements taken from approximately two
thousands and half human crania from 28 geographically diverse populations.

Usage

Howells

Format

A data frame with 441 rows and 10 variables:

Sex  'M' for male and 'F' for female
Pop  Populations' names
GOL  Glabello occipital length
NOL  Nasio occipital length
BNL  Bastion nasion length
BBH  Basion bregma height
XCB  Maximum cranial breadth
XFB  Max frontal breadth
ZYB  Bizygomatic breadth
AUB  Biauricular breadth
References


---

**multivariate**

**Multivariate Analysis Of Sexual Dimorphism**

**Description**

Multivariate extension of Greene t-test $T_g$

**Usage**

```r
multivariate(
 x,
 R.res = NULL,
 Parms = 1,
 Pop = 2,
 es = FALSE,
 univariate = FALSE,
 padjust = "none",
 ...
 lower.tail = FALSE,
 digits = 4
)
```

**Arguments**

- **x**
  - Tibble/Data frame or list containing summary statistics for multiple parameters measured in both sexes in two or more populations.
- **R.res**
  - Pooled within correlational matrix, Default: NULL
- **Parms**
  - Number of the column containing names of measured parameters, Default: 1
- **Pop**
  - Number of the column containing populations’ names, Default: 2
- **es**
  - Logical; if TRUE effect size is included in the output, Default: FALSE
- **univariate**
  - Logical; if TRUE conducts multiple univariate analyses on different parameters separately, Default: FALSE
padjust  Method of p.value adjustment for multiple comparisons following p.adjust.methods, Default: 'none'
...   Additional arguments that could be passed to the univariate function
lower.tail Logical; if TRUE probabilities are \( P[X \leq x] \), otherwise, \( P[X > x] \)., Default: FALSE
digits Number of significant digits, Default: 4

Details
Data can be entered either as a tibble/data frame of summary statistics as in baboon.parms_df. In that case the pooled within correlational matrix R.res should be entered as a separate argument as in R. Another acceptable format is a named list of matrices containing different summary statistics as well as the correlational matrix as in baboon.parms_list. By setting the option univariate to TRUE, multiple ANOVAs can be run on each parameter independently with the required p value correction using p.adjust.methods.

Value
Tibble of MANOVA results

References

Examples
# x is a data frame with separate correlational matrix
library(TestDimorph)
multivariate(baboon.parms_df, R.res = R)
# x is a list with the correlational matrix included
library(TestDimorph)
multivariate(baboon.parms_list, univariate = TRUE, padjust = 'bonferroni')

R

Pooled within group correlation matrix for baboon data

Description
Pooled within group correlation matrix for baboon data

Usage
R

Format
A 4*4 numerical matrix
RawGen

Description
Generates raw data from summary statistics using uni/multivariate log/truncated normal distribution

Usage
```r
RawGen(
 x,
 Parms = 1,
 Pop = 2,
 R.res = NULL,
 dist = "trunc",
 lower = -Inf,
 upper = Inf,
 format = "wide",
 complete_cases = FALSE
)
```

Arguments
- `x` Tibble/Data frame or list containing summary statistics for multiple parameters measured in both sexes in two or more populations.
- `Parms` Number of the column containing names of measured parameters, Default: 1
- `Pop` Number of the column containing populations’ names, Default: 2
- `R.res` Pooled within correlational matrix, Default: NULL
- `dist` univariate distribution used for data generation either log for log-normal or trunc for truncated, Default: 'trunc'
- `lower` vector of lower bounds, Default: -Inf
- `upper` vector of upper bounds, Default: Inf
- `format` form of the resultant tibble either 'long' or 'wide', Default: 'wide'
- `complete_cases` Logical; if TRUE rows with missing values will be removed, Default: FALSE

Details
If data generation is desired using multivariate distribution data is entered in the form of a list of summary statistics and pooled within correlational matrix as in `baboon.parms_list`, or the summary statistics are entered separately in the form of a data frame/tibble as in `baboon.parms_df` with a separate correlational matrix as in `R`. If data frame/tibble is entered without a correlational matrix, data generation is carried out using univariate distribution. N.B: Transformation of raw summary data to logged data is only possible for univariate distribution and if multivariate log-normal distribution is desired logged values should be entered directly with `dist` set to trunc.
Value
tibble of raw data

References

Examples
# Data generation using univariate distribution
library(TestDimorph)
RawGen(baboon.parms_df)
# Data generation using multivariate distribution
library(TestDimorph)
RawGen(baboon.parms_list)

Tg

Greene t-test of Sexual Dimorphism

Description
Calculation and visualization of the differences in degree sexual dimorphism between two populations using summary statistics as input.

Usage
Tg(
  x = NULL,
  Pop = 1,
  es = FALSE,
  plot = FALSE,
  ...

  alternative = "two.sided",
  padjust = "none",
  letters = FALSE,
  digits = 4,
  sig.level = 0.05,
  N = NULL,
  m = NULL,
  m2 = NULL,
  f = NULL,
  f2 = NULL,
  M.mu = NULL,
  M.mu2 = NULL,
  F.mu = NULL,
F.mu2 = NULL,
M.sdev = NULL,
M.sdev2 = NULL,
F.sdev = NULL,
F.sdev2 = NULL
)

Arguments

- **x**: Tibble/data frame containing summary statistics, Default: NULL
- **Pop**: Number of the column containing populations’ names, Default: 1
- **es**: Logical; if TRUE effect size is included in the output, Default: FALSE
- **plot**: Logical; if TRUE graphical matrix of p-values, Default: TRUE
- **alternative**: a character string specifying the alternative hypothesis, must be one of "two.sided", "greater" or "less", Default: 'two.sided'
- **padjust**: Method of p.value adjustment for multiple comparisons following p.adjust.methods, Default: 'none'
- **letters**: Logical; if TRUE returns letters for pairwise comparisons where significantly different populations are given different letters, Default: FALSE'
- **digits**: Number of significant digits, Default: 4
- **sig.level**: Critical p.value, Default: 0.05
- **N**: Number of pairwise comparisons for p.adjust.methods, if left NULL it will follow the formula n(n-1)/2 where n is the number of populations, Default: NULL
- **m**: Number of male sample size in the first population, Default: NULL
- **m2**: Number of male sample size in the second population, Default: NULL
- **f**: Number of female sample size in the first population, Default: NULL
- **f2**: Number of female sample size in the second population, Default: NULL
- **M.mu**: Means for males in the first population, Default: NULL
- **M.mu2**: Means for males in the second population, Default: NULL
- **F.mu**: Means for females in the first population, Default: NULL
- **F.mu2**: Means for females in the second population, Default: NULL
- **M.sdev**: Standard deviation for males in the first population, Default: NULL
- **M.sdev2**: Standard deviation for males in the second population, Default: NULL
- **F.sdev**: Standard deviation for females in the first population, Default: NULL
- **F.sdev2**: Standard deviation for females in the second population, Default: NULL

Details

Summary statistics can be entered directly as arguments in case of comparing two populations or as a tibble/data frame of summary statistics where the column containing population names is chosen by position (first by default), other columns of summary data should have specific names (case sensitive) similar to baboon.parms_df
Value

Tibble of t.test results

References


See Also

`multcompLetters` `corrplot`

Examples

```r
#Comparisons of femur head diameter in four populations
library(TestDimorph)
m <- c(150.00, 82.00, 36.00, 34.00)
f <- c(150.00, 58.00, 34.00, 24.00)
M.mu <- c(49.39, 48.33, 46.99, 45.20)
F.mu <- c(42.91, 42.89, 42.44, 40.90)
M.sdev <- c(3.01, 2.53, 2.47, 2.00)
F.sdev <- c(2.90, 2.84, 2.26, 2.90)
df <- cbind.data.frame(
 Pop = c('Turkish', 'Bulgarian', 'Greek', 'Portuguese'),
 m, f, M.mu, F.mu, M.sdev, F.sdev,
stringsAsFactors = TRUE)
Tg(df, plot = TRUE, method = 'ellipse', type = 'lower',
col = c('#AEB6E5',
 '#B1A0DB',
 '#B788CD',
 '#BC6EB9',
 '#BC569E',
 '#B6407D',
 '#A93154'
),
tl.cex = 0.8,
```
univariate

univariate Analysis Of Sexual Dimorphism

Description

Calculation and visualization of the differences in degree sexual dimorphism between multiple populations using a modified one-way ANOVA and summary statistics as input

Usage

univariate(
  x,
  Pop = 1,
  es = FALSE,
  pairwise = FALSE,
  padjust = "none",
  ...
)

Arguments

x Tibble/data frame containing summary statistics, Default: NULL
Pop Number of the column containing populations' names, Default: 1
es Logical; if TRUE effect size is included in the output, Default: FALSE
pairwise Logical; if TRUE runs multiple pairwise comparisons on different populations using Tg test, Default: FALSE
padjust Method of p.value adjustment for multiple comparisons following p.adjust.methods, Default: 'none'
... Additional arguments that could be passed to the Tg function
lower.tail Logical; if TRUE probabilities are \( P[X \leq x] \), otherwise, \( P[X > x] \)., Default: FALSE
N Number of pairwise comparisons for p.adjust.methods, if left NULL it will follow the formula \( n(n-1)/2 \) where \( n \) is the number of populations, Default: NULL
digits Number of significant digits, Default: 4
Details

Data is entered as a tibble/data frame of summary statistics where the column containing population names is chosen by position (first by default), other columns of summary data should have specific names (case sensitive) similar to `baboon.parms_df`

Value

Tibble of ANOVA results

References


Examples

```r
Comparisons of femur head diameter in four populations
library(TestDimorph)
m <- c(150.00, 82.00, 36.00, 34.00)
f <- c(150.00, 58.00, 34.00, 24.00)
M.mu <- c(49.39, 48.33, 46.99, 45.20)
F.mu <- c(42.91, 42.89, 42.44, 40.90)
M.sdev <- c(3.01, 2.53, 2.47, 2.00)
F.sdev <- c(2.90, 2.84, 2.26, 2.00)
df <-
 cbind.data.frame(
 Pop = c("Turkish", "Bulgarian", "Greek", "Portuguese"),
 m, f, M.mu, F.mu, M.sdev, F.sdev,
 stringsAsFactors = TRUE
)
univariate(df, pairwise = TRUE, padjust = 'bonferroni')
```
Index

*Topic datasets
  baboon.parms_df, 5
  baboon.parms_list, 6
  Howells, 8
  R, 10

AccuModel, 2
aovSS, 4, 7

baboon.parms_df, 4, 5, 10, 11, 13, 16
baboon.parms_list, 6, 10, 11

confusionMatrix, 2, 3
corrplot, 13, 14

extract_sum, 7

fda, 3
geom_roc, 3
GeomRoc, 3
glm, 3

Howells, 3, 7, 8

lda, 3

mda, 3
multcompLetters, 14
multivariate, 7, 9

p.adjust.methods, 10, 13, 15
PostHocTest, 4, 5

qda, 3

R, 10, 10, 11
raf, 3
randomForest, 3
RawGen, 11
rda, 3

Tg, 7, 9, 12, 15

univariate, 7, 10, 15