Package ‘TSsmoothing’

July 15, 2019

Type Package
Title Trend Estimation of Univariate and Bivariate Time Series with Controlled Smoothness
Version 0.1.0
Description It performs the smoothing approach provided by penalized least squares for univariate and bivariate time series, as proposed by Guerrero (2007) and Gerrero et al. (2017). This allows to estimate the time series trend by controlling the amount of resulting (joint) smoothness.

Depends R (>= 3.5.0)
Imports ggplot2 (>= 3.2.0), MASS (>= 7.3.0), gridExtra (>= 2.3.0), Matrix (>= 1.2.0)
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
NeedsCompilation no
Author L. Leticia Ramirez-Ramirez [aut, cre], Alejandro Islas-Camargo [aut], Victor M. Guerrero [aut]
Maintainer L. Leticia Ramirez-Ramirez <leticia.ramirez@cimat.mx>
Repository CRAN
Date/Publication 2019-07-15 10:50:03 UTC

R topics documented:
cormvc ... 2
templ_agr ... 2
corrmvc | Correlation from a 2d covariance matrix.

Description
Computes the correlation given a covariance matrix of a bivariate variable.

Usage
corrmvc(mat)

Arguments
mat is a 2x2 covariance matrix

Value
The empirical correlation for the two series

emp_agr | Employment in agriculture

Description
Dataset of the

Usage
emp_agr

Format
A ts vector a length of 25 observations from 1991 to 2015.
graph_trend

Source

https://databank.worldbank.org/source/jobs#

graph_trend

Plot of original and smoothed time series.

Description

It plots the univariate or bivariate. This function is not intended for users but to be called by trend_estimate.

Usage

graph_trend(dat, N, tau, dvar, label = NULL, jump = 1:N, bands = TRUE, las, bivariate = TRUE)

Arguments

dat is a 2x2 covariance matrix
N the number of observations
tau the smoothed time series
dvar the estimated variance for tau
label the vectors of characters associated to the time points to appear in the axis
jump if label is too long, jump thin them on the axis
bands is TRUE to draw the approximately 95% confidence bands around tau
las is 1 and 2 if the asis should appear vertical and horizontal, respectively
bivariate is FALSE if dat is a univariate time series

Value

The empirical correlation for the two series
lambda_value
Calculation of the lambda value.

Description

Obtains the lambda value for specific values of the smoothing level, correlation and length.

Usage

```r
calculate_lambda_value(s, rho, N)
```

Arguments

- `s` is a scalar that specifies the smoothing level.
- `rho` is the estimated correlation of the two time series. If the time series is univariate, `rho` should be 0.
- `N` the length of the bivariate time series.

Value

The value of lambda `lambda_value` that corresponds to a smoothing level `s`

A flag to indicate if the lambda value was read from `ltable`

ltable
Lambda values table.

Description

An array that presents the lambda values according to time series (N), the smoothing value (s), and the ts correlation (rho).

Usage

```r
read_ltable()
```

Format

A 3d array with dimension 393 x 12 x 11, where dimensions are:

- `N` with values from 8 to 400
- `s` with smoothing values c(0.5, 0.6, 0.7, 0.75, 0.8, 0.825, 0.85, 0.875, 0.9, 0.925, 0.95, 0.975)
- `rho` with values c(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95)
plot_trend

Details

3d array of float number that correspond to the lambda values that correspond to the specified values of the length of the

Source

http://www.diamondse.info/

plot_trend

Plot for the time series and its smoothed version in ggplot

Description

It plots the univariate or bivariate time series and its smoothed version (trend) using ggplot. It directly uses the output of trend_estimate.

Usage

plot_trend(smoothedTS, title = NULL, xlab = "Time",
 ylab = names(dat)[1:2])

Arguments

smoothedTS Is an object generated by the function trend_estimate
title Main title of the graph
xlab Common x label
ylab A 2-length vector of characters.

Value

The ggplot of the original time series, their trend and its approximated 95

positive_definite

Checks if a squared matrix is positive definite and turn it to positive defined if necessary

Description

Checks if a squared matrix is positive definite and turn it to positive defined if necessary

Usage

positive_definite(m, c = NULL)
Arguments

- \(m \)
 Is a 2x2 matrix.
- \(c \)
 Is a small nonnegative number.

Value

The same matrix (if positive definite) or its modification that is positive definite.

Preliminary smoothing

Description

Obtains the preliminary smoothed series, based on the preliminary lambda value and empirical estimates for Sigma_eta and Sigma_epsilon. This function is called by trend_estimate as part of the smoothing process.

Usage

`preliminar(dat)`

Arguments

- `dat`
 is a 2-column matrix with the observations of a bivariate time series. Each row correspond to the values at a given time.

Value

The preliminary smoothen series ptau.

The final estimate for sigma.eta

The time series correlation given by sigma.eta, rho.eta.

The preliminary estimation for sigma_epsilon, sigma.epsilon,

A suggested value for lambda given by the empirical estimations.

The empirical time series correlation (preliminar to rho.eta), emp_rho.

The time series length N.
psigma_estimates

Description
It computes the preliminary estimates of Sigma_epsilon and Sigma_eta

Usage

```
psigma_estimates(dat)
```

Arguments
- `dat` is a 2 column matrix with for the bivariate time series observations. Each column correspond to the values at a given time.

Value
- Sigma epsilon
- Sigma eta

sigma_zf

Empirical cross-covariance.

Description
Function that calculates the empirical cross-covariance of order h for a bivariate time series.

Usage

```
sigma_zf(h, vec1, vec2, N)
```

Arguments
- `h` the lag value.
- `vec1` observations for the first variable of the bivariate time series.
- `vec2` observations for the second variable of the bivariate time series.
- `N` the common length of vec1 and vec2.

Value
The value of lambda that corresponds to a smoothing level s.
smoothing_level

Description

Function that reports the smoothing level for a given value of lambda, N and rho (=0 if univariate).

Usage

```r
smoothing_level(lambda, rho, n)
```

Arguments

- `lambda` : a nonnegative number.
- `rho` : the correlation of the time series.
- `n` : the length of the observations.

Value

- `S`

trade

Description

A dataset (matrix) containing the annual trade for USA and Mexico.

Usage

```r
trade
```

Format

An object of class `matrix` with 49 rows and 2 columns.

Source

trend_estimate

Trend estimation with controlled smoothing.

Description

This is the main function that estimates the trend for univariate or bivariate time series for a specified smoothing level.

Usage

trend_estimate(dat, smoothing_level = NULL, lambda = NULL, plot = TRUE, label = time(dat), jump = NULL, las = 2, bands = TRUE)

Arguments

dat is a 2x2 matrix with the two time series. Each column correspond to the values at a given time.

smoothing_level is a scalar between 0 and 1 that specifies the smoothing of the resulting time series tau.

lambda Alternative, the function directly accepts the lambda value that corresponds to the desired smoothing level.

plot is TRUE when we cant to plot of the original agaist the resulting series.

label vector of characters that corresponds to the labels for each time point in the serie.

jump is a vector of integers that specifies which values of labels should appear in the x labels.

las is 1(2) if the x labels should be vertical (horizontal).

bands is TRUE tolo include 95% confidence bands in the plots.

Value

The smoothed series tau.
The orginal data dat.
The estimation for sigma_eta, sigma.eta
The length of the time series N.
The lambda value corresponding to the smoothing level.
The diagonal values of the estimated variance of tau, diag.var.tau
A flag that indicates if data is a bivariate time series.
Examples

Employment in agriculture (\% of total employment) (modeled ILO estimate) in OCDE members
data(emp_agr) # It is a ts object with one single time series
sts<-trend_estimate(emp_agr, 0.7)
plot_trend(sts, title="Employment in agriculture in OCDE members", xlab = "Years")

Data Trade (\% of GDP) for USA and Mexico downloaded from
data(trade) # It is a numeric matrix with two columns
sts<-trend_estimate(trade, 0.7)
plot_trend(sts, title="Trade in\% of GDP", xlab="years")

ts_trade<-ts(trade, start=1969, end=2017) # We transform trade to a ts object
sts<-trend_estimate(ts_trade, 0.7)
plot_trend(sts, title="Trade in\% of GDP", xlab="years")
Index

*Topic datasets
 emp_agr, 2
 ltable, 4
 trade, 8

 corrmvc, 2
 emp_agr, 2
 graph_trend, 3
 lambda_value, 4
 ltable, 4
 plot_trend, 5
 positive_definite, 5
 preliminar, 6
 psigma_estimates, 7
 sigma_zf, 7
 smoothing_level, 8
 trade, 8
 trend_estimate, 9