Package ‘TGST’

November 23, 2020

Title Targeted Gold Standard Testing

Version 1.0

Description Functions for implementing the targeted gold standard (GS) testing. You provide the true disease or treatment failure status and the risk score, tell 'TGST' the availability of GS tests and which method to use, and it returns the optimal tripartite rules. Please refer to Liu et al. (2013) <doi:10.1080/01621459.2013.810149> for more details.

Depends R (>= 3.2.0)

License GPL-3

LazyData true

Suggests rmarkdown

VignetteBuilder knitr

Imports ggplot2, methods, graphics, knitr

RoxygenNote 7.1.0

NeedsCompilation no

Author Yizhen Xu [aut, cre],
 Tao Liu [aut]

Maintainer Yizhen Xu <yizhen_xu@alumni.brown.edu>

Repository CRAN

Date/Publication 2020-11-23 09:50:05 UTC

R topics documented:

 cal.AUC ... 2
 Check.exp.tilt .. 3
 CV.TGST ... 3
 nonpar.fnr.fpr .. 4
 nonpar.rules ... 5
 Opt.nonpar.rule .. 6
 Opt.semi.par.rule .. 6
 OptimalRule .. 7
 Output-class .. 8
Description

This function gives you the AUC associated with the rules set.

Usage

```r
cal.AUC(Z, S, l, u)
```

Arguments

- **Z**: True disease status (No disease / treatment success coded as Z=0, diseased / treatment failure coded as Z=1).
- **S**: Risk score.
- **l**: Lower cutoff of all possible tripartite rules.
- **u**: Upper cutoff of all possible tripartite rules.

Value

AUC.

Examples

```r
d = Simdata
Z = d$Z # True Disease Status
S = d$S # Risk Score
phi = 0.1 #10% of patients taking viral load test
rules = nonpar.rules(Z, S, phi)
cal.AUC(Z, S, rules[,1], rules[,2])
```
Check.exp.tilt

Description

This function provides graphical assessment to the suitability of the exponential tilt model for risk score in finding optimal tripartite rules by semiparametric approach.

\[g_1(s) = \exp(\beta_0 + \beta_1 s) \ast g_0(s) \]

Usage

Check.exp.tilt(Z, S)

Arguments

- **Z**: True disease status (No disease / treatment success coded as Z=0, diseased / treatment failure coded as Z=1).
- **S**: Risk score.

Value

Plot of empirical density for risk score S, joint empirical density for (S,Z=1) and (S,Z=0), and the density under the exponential tilt model assumption for (S,Z=1) and (S,Z=0).

Examples

```r
d = Simdata
Z = d$Z # True Disease Status
S = d$S # Risk Score
Check.exp.tilt(Z, S)
```

CV.TGST

Description

This function allows you to compute the average of misdiagnoses rate for viral failure and the optimal risk under min-\(\lambda\) rules from K-fold cross-validation.

Usage

CV.TGST(Obj, lambda, K = 10)
Arguments

Obj An object of class TGST.
lambda A user-specified weight that reflects relative loss for the two types of misdiagnoses, taking value in $[0, 1]$. $Loss = \lambda \times I(FN) + (1 - \lambda) \times I(FP)$.
K Number of folds in cross validation. The default is 10.

Value

Cross-validation results.

Examples

d = Simdata
Z = d$Z # True Disease Status
S = d$S # Risk Score
phi = 0.1 #10% of patients taking viral load test
Obj = TGST(Z, S, phi, method="nonpar")
lambda = 0.8
CV.TGST(Obj, lambda, K=10)

Description

This function gives you the nonparametric FNR and FPR associated with a given tripartite rule.

Usage

nonpar.fnr.fpr(Z, S, l, u)

Arguments

Z True disease status (No disease / treatment success coded as Z=0, diseased / treatment failure coded as Z=1).
S Risk score.
l Lower cutoff of tripartite rule.
u Upper cutoff of tripartite rule.

Value

Matrix with 2 columns. Each row is a set of nonparametric (FNR, FPR) on an associated tripartite rule.
Examples

d = Simdata
Z = d$Z # True Disease Status
S = d$S # Risk Score
phi = 0.1 #10% of patients taking viral load test
rules = nonpar.rules(Z, S, phi)
nonpar.fnr.fpr(Z,S,rules[1,1],rules[1,2])

nonpar.rules Nonparametric Rules Set

Description

This function gives you all possible cutoffs \([l, u]\) for tripartite rules, by applying nonparametric search to the given data.

\[P(Sin[l, u]) \leq \phi \]

Usage

nonpar.rules(Z, S, phi)

Arguments

Z True disease status (No disease / treatment success coded as Z=0, diseased /
 treatment failure coded as Z=1).
S Risk score.
phi Percentage of patients taking viral load test.

Value

Matrix with 2 columns. Each row is a possible tripartite rule, with output on lower and upper cutoff.

Examples

d = Simdata
Z = d$Z # True Disease Status
S = d$S # Risk Score
phi = 0.1 #10% of patients taking viral load test
nonpar.rules(Z, S, phi)
Opt.nonpar.rule
Optimal Nonparametric Rule

Description

This function gives you the optimal nonparametric tripartite rule that minimizes the min-\(\lambda\) rules.

Usage

```r
Opt.nonpar.rule(Z, S, phi, lambda)
```

Arguments

- `Z`: True disease status (No disease / treatment success coded as \(Z=0\), diseased / treatment failure coded as \(Z=1\)).
- `S`: Risk score.
- `phi`: Percentage of patients taking viral load test.
- `lambda`: A user-specified weight that reflects relative loss for the two types of misdiagnoses, taking value in \([0, 1]\). \(Loss = \lambda \times I(FN) + (1 - \lambda) \times I(FP)\).

Value

Optimal nonparametric rule and its associated misclassification rates (FNR, FPR), optimal lambda risk, and total misclassification rate (TMR).

Examples

```r
d = Simdata
Z = d$Z  # True Disease Status
S = d$S  # Risk Score
phi = 0.1  #10% of patients taking viral load test
lambda = 0.5
Opt.nonpar.rule(Z, S, phi, lambda)
```

Opt.semipar.rule
Optimal Semiparametric Rule

Description

This function gives you the optimal semiparametric tripartite rule that minimizes the min-\(\lambda\) rules.

Usage

```r
Opt.semipar.rule(Z, S, phi, lambda)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>True disease status (No disease / treatment success coded as Z=0, diseased / treatment failure coded as Z=1).</td>
</tr>
<tr>
<td>S</td>
<td>Risk score.</td>
</tr>
<tr>
<td>phi</td>
<td>Percentage of patients taking viral load test.</td>
</tr>
<tr>
<td>lambda</td>
<td>A user-specified weight that reflects relative loss for the two types of misdiagnoses, taking value in [0, 1]. Loss = $\lambda \cdot I(FN) + (1 - \lambda) \cdot I(FP)$.</td>
</tr>
</tbody>
</table>

Value

Optimal semiparametric rule and its associated misclassification rates (FNR, FPR), optimal lambda risk, and total misclassification rate (TMR).

Examples

```r
d = Simdata
Z = d$Z # True Disease Status
S = d$S # Risk Score
phi = 0.1 # 10% of patients taking viral load test
lambda = 0.5
OptimalRule(Z, S, phi, lambda)
```

Description

`OptimalRule` is the main function of TGST and it gives you the optimal tripartite rule that minimizes the min-λ risk based on the type of user selected approach. The function takes the risk score and true disease status from a training data set and returns the optimal tripartite rule under the specified proportion of patients able to take gold standard test.

Usage

```r
OptimalRule(Obj, lambda)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obj</td>
<td>An object of class TGST.</td>
</tr>
<tr>
<td>lambda</td>
<td>A user-specified weight that reflects relative loss for the two types of misdiagnoses, taking value in [0, 1]. Loss = $\lambda \cdot I(FN) + (1 - \lambda) \cdot I(FP)$.</td>
</tr>
</tbody>
</table>

Value

Optimal tripartite rule.
Examples

d = Simdata
Z = d$Z # True Disease Status
S = d$S # Risk Score
phi = 0.1 #10% of patients taking viral load test
lambda = 0.5
Obj = TGST(Z, S, phi, method="nonpar")
OptimalRule(Obj, lambda)

Output-class

Constructor of Output class

Description

This class contains invisible results of OptimalRule function.

Details

phi Percentage of patients taking viral load test.
Z A vector of true disease status (Failure Status coded as Z=1).
S A vector of risk Score.
Rules A matrix of all possible tripartite rules (two cutoffs) derived from the training data set.
Nonparametric A boolean indicating if nonparametric approach should be used in calculating the
misclassification rates. If FALSE, semiparametric approach would be used.
FNR.FPR A matrix with two columns of misclassification rates, FNR and FPR.
OptRule A numeric vector with two elements, the lower and upper cutoffs of the optimal tripartite
rule.
The Output class adds optimal rule to the TGST class.

plot

plot function.

Description

This function gives visualize object of class TGST or Output.

Usage

S4 method for signature 'TGST'
plot(x)

S4 method for signature 'Output'
plot(x)
ROC.nonpar

Arguments

- **x**: Output object from TGST or `Output`.

Value

- Distribution plot.
- Distribution plot.

Description

This function performs ROC analysis for tripartite rules by nonparametric approach. If `plot = TRUE`, the ROC curve is returned.

Usage

```r
ROC.nonpar(Z, S, phi, plot = TRUE)
```

Arguments

- **Z**: True disease status (No disease / treatment success coded as Z=0, diseased / treatment failure coded as Z=1).
- **S**: Risk score.
- **phi**: Percentage of patients taking viral load test.
- **plot**: Logical parameter indicating if ROC curve should be plotted. Default is `plot=TRUE`. If false, then only AUC is calculated.

Value

- **AUC**: The area under the ROC curve.
- **FNR**: Misdiagnoses rate for viral failure (false negative rate).
- **FPR**: Misdiagnoses rate for treatment failure (false positive rate).

Examples

```r
d = Simdata
Z = d$Z # True Disease Status
S = d$S # Risk Score
phi = 0.1 # 10% of patients taking viral load test
a = ROC.nonpar( Z, S, phi, plot=TRUE)
a$AUC
a$FNR
a$FPR
```
ROC.semipar *Semiparametric ROC Analysis*

Description

This function performs ROC analysis on the rules from nonparametric approach. If `plot = TRUE`, the ROC curve is returned.

Usage

ROC.semipar(Z, S, phi, plot = TRUE)

Arguments

- **Z**: True disease status (No disease / treatment success coded as Z=0, diseased / treatment failure coded as Z=1).
- **S**: Risk score.
- **phi**: Percentage of patients taking viral load test.
- **plot**: Logical parameter indicating if ROC curve should be plotted. Default is `plot=TRUE`. If false, then only AUC is calculated.

Value

- **AUC**: The area under the ROC curve.
- **FNR**: Misdiagnoses rate for viral failure (false negative rate).
- **FPR**: Misdiagnoses rate for treatment failure (false positive rate).

Examples

```r
d = Simdata
Z = d$Z # True Disease Status
S = d$S # Risk Score
phi = 0.1 # 10% of patients taking viral load test
a = ROC.semipar(Z, S, phi, plot=TRUE)
a$AUC
a$FNR
a$FPR
```

ROCAnalysis *ROC Analysis*

Description

This function performs ROC analysis for tripartite rules. If `plot = TRUE`, the ROC curve is returned.
Semi.par.rule

Usage

ROCAnalysis(Obj, plot = TRUE)

Arguments

Obj An object of class TGST.
plot Logical parameter indicating if ROC curve should be plotted. Default is plot=TRUE. If false, then only AUC is calculated.

Value

AUC (the area under ROC curve) and ROC curve.

Examples

d = Simdata
Z = d$Z # True Disease Status
S = d$S # Risk Score
phi = 0.1 #10% of patients taking viral load test
lambda = 0.5
Obj = TGST(Z, S, phi, method="nonpar")
ROCAnalysis(Obj, plot=TRUE)

Semi.par.rule Min TMR Semiparametric Rule

Description

This function gives you the optimal semiparametric tripartite rule that minimizes TMR (total misclassification risk).

Usage

Semi.par.rule(Z, S, phi)

Arguments

Z True disease status (No disease / treatment success coded as Z=0, diseased / treatment failure coded as Z=1).
S Risk score.
phi Percentage of patients taking viral load test.

Value

Semiparametric rule and its associated TMR.
Examples

d = Simdata
Z = d$Z # True Disease Status
S = d$S # Risk Score
phi = 0.1 #10% of patients taking viral load test
Semi.par.rule(Z, S, phi)

Description

This function gives you the semiparametric FNR and FPR associated with a given tripartite rule.

Usage

semipar.fnr.fpr(Z, S, 1, u)

Arguments

Z True disease status (No disease / treatment success coded as Z=0, diseased / treatment failure coded as Z=1).
S Risk score.
1 Lower cutoff of tripartite rule.
u Upper cutoff of tripartite rule.

Value

Matrix with 2 columns. Each row is a set of semiparametric (FNR, FPR) on an associated tripartite rule.

Examples

d = Simdata
Z = d$Z # True Disease Status
S = d$S # Risk Score
phi = 0.1 #10% of patients taking viral load test
rules = nonpar.rules(Z, S, phi)
semipar.fnr.fpr(Z,S,rules[1,1],rules[1,2])
Simdata

Simulated data for package illustration

Description

A simulated dataset containing true disease status and risk score. See details for simulation setting.

Usage

data(Simdata)

Format

A data frame with 8000 simulated observations on the following 2 variables.

Z True disease status (No disease / treatment success coded as Z=0, diseased / treatment failure coded as Z=1).

S Risk score. Higher risk score indicates larger tendency of diseased / treatment failure.

Details

We first simulate viral status Z assuming $Z \sim Bernoulli(p)$ with $p = 0.25$; and then conditional on Z, simulate $S|Z = z = \text{ceiling}(W)$ with $W \sim \gamma(\eta_z, \kappa_z)$ where η and κ are shape and scale parameters. $(\eta_0, \kappa_0) = (2.3, 80)$ and $(\eta_1, \kappa_1) = (9.2, 62)$.

Examples

data(Simdata)

maybe str(Simdata) ; plot(Simdata) ...

summary

summary function.

Description

This function gives the summary of the data from TGST.

Usage

S4 method for signature 'TGST'
summary(object)

Arguments

object Output object from TGST.
Value

Percentage of treatment failure; Summary statistics (mean, standard deviation, minimum, median, maximum and IQR) of risk score by true disease status; Distribution plot.

Description

Create a TGST object, usually used as an input for optimal rule search and ROC analysis.

Usage

TGST(Z, S, phi, method = "nonpar")

Arguments

- Z: A vector of true disease status (No disease / treatment success coded as Z=0, diseased / treatment failure coded as Z=1).
- S: A vector of risk Score.
- phi: Percentage of patients taking gold standard test.
- method: Method for searching for the optimal tripartite rule, options are "nonpar" (default) and "semipar".

Value

An object of class TGST. The class contains 6 slots: phi (percentage of gold standard tests), Z (true failure status), S (risk score), Rules (all possible tripartite rules), Nonparametric (logical indicator of the approach), and FNR,FPR (misclassification rates).

Examples

d = Simdata
Z = d$Z # True Disease Status
S = d$S # Risk Score
phi = 0.1 #10% of patients taking viral load test
TGST(Z, S, phi, method="nonpar")
Description

This class contains results of a run to search for all possible rules.

Details

- **phi** Percentage of patients taking viral load test.
- **Z** A vector of true disease status (Failure Status coded as Z=1).
- **S** A vector of risk Score.
- **Rules** A matrix of all possible tripartite rules (two cutoffs) derived from the training data set.
- **Nonparametric** A boolean indicating if nonparametric approach should be used in calculating the misclassification rates. If FALSE, semiparametric approach would be used.
- **FNR.FPR** A matrix with two columns of misclassification rates, FNR and FPR.

If `res` is the result of `rankclust()`, each slot of results can be reached by `res[k]@slotname`, where `k` is the number of clusters and `slotname` is the name of the slot we want to reach (see `Output-class`). For the slots `ll`, `bic`, `icl`, `res["slotname"]` returns a vector of size `K` containing the values of the slot for each number of clusters.

Description

This function allows you to compute the percentage of diseased (equivalent to treatment failure $Z=1$) and show distribution summary of risk score (S) by the true disease status (Z).

Usage

`TGST.summ(Z, S)`

Arguments

- **Z** True disease status (No disease / treatment success coded as $Z=0$, diseased / treatment failure coded as $Z=1$).
- **S** Risk score.

Value

Percentage of treatment failure; Summary statistics (mean, standard deviation, minimum, median, maximum and IQR) of risk score by true disease status; Distribution plot.
Examples

d = Simdata
Z = d$Z # True Disease Status
S = d$S # Risk Score
TGSTsumm(Z,S)
Index

* **AUC**
 - cal.AUC, 2
 - ROC.nonpar, 9
 - ROC.semipar, 10
* **ROC**
 - ROCAnalysis, 10
* **datasets**
 - Simdata, 13
* **nonparametric**
 - nonpar.fnr.fpr, 4
 - nonpar.rules, 5
 - Opt.nonpar.rule, 6
 - ROC.nonpar, 9
* **risk**
 - CV.TGST, 3
* **rules**
 - nonpar.fnr.fpr, 4
 - nonpar.rules, 5
 - Opt.nonpar.rule, 6
 - Opt.semipar.rule, 6
 - OptimalRule, 7
 - Semi.par.rule, 11
 - semipar.fnr.fpr, 12
 - TGST, 14
* **semiparametric**
 - Check.exp.tilt, 3
 - Opt.semipar.rule, 6
 - ROC.semipar, 10
 - Semi.par.rule, 11
 - semipar.fnr.fpr, 12
* **summary**
 - TGST.summ, 15
* **validation**
 - CV.TGST, 3

 cal.AUC, 2
 Check.exp.tilt, 3
 CV.TGST, 3
 nonpar.fnr.fpr, 4
 nonpar.rules, 5
 Opt.nonpar.rule, 6
 Opt.semipar.rule, 6
 OptimalRule, 7
 Output, 9
 Output-class, 8, 15
 plot, 8
 plot,Output-method (plot), 8
 plot,TGST-method (plot), 8
 ROC.nonpar, 9
 ROC.semipar, 10
 ROCAnalysis, 10
 Semi.par.rule, 11
 semipar.fnr.fpr, 12
 Simdata, 13
 summary, 13
 summary,TGST-method (summary), 13
 TGST, 9, 13, 14
 TGST-class, 15
 TGST.summ, 15