Package ‘T4cluster’

August 16, 2021

Type Package
Title Tools for Cluster Analysis
Version 0.1.2
Encoding UTF-8
Description Cluster analysis is one of the most fundamental problems in data science. We provide a variety of algorithms from clustering to the learning on the space of partitions. See Hennig, Meila, and Rocci (2016, ISBN:9781466551886) for general exposition to cluster analysis.
License MIT + file LICENSE
Imports Rcpp (>= 1.0.5), Rdpack, Rdimtools, ADMM, MASS, fda, ggplot2, lpSolve, maotai, mclustcomp, rstiefel, scatterplot3d, stats, utils
URL https://kisungyou.com/T4cluster/
BugReports https://github.com/kisungyou/T4cluster/issues
LinkingTo Rcpp, RcppArmadillo
RdMacros Rdpack
RoxygenNote 7.1.1
Depends R (>= 2.10)
NeedsCompilation yes
Author Kisung You [aut, cre] (<https://orcid.org/0000-0002-8584-459X>)
Maintainer Kisung You <kisungyou@outlook.com>
Repository CRAN
Date/Publication 2021-08-16 07:20:06 UTC

R topics documented:

compare.adjrand .. 2
compare.rand .. 4
dpmeans .. 5
EKSS ... 6
compare.adjrand

Compute Adjusted Rand index between two clusterings. Please note that the value can yield negative value.

Usage

```
compare.adjrand(x, y)
```
compare.adjrand

Arguments

x 1st cluster label vector of length-\(n \).

y 2nd cluster label vector of length-\(n \).

Value

Adjusted Rand Index value.

See Also

compare.rand

Examples

```r
# -------------------------------------------------------------
# true label vs. clustering with 'iris' dataset
# -------------------------------------------------------------
## PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))

## CLUSTERING WITH DIFFERENT K VALUES
vec_k = 2:7
vec_cl = list()
for (i in 1:length(vec_k)){
  vec_cl[[i]] = T4cluster::kmeans(X, k=round(vec_k[i]))$cluster
}

## COMPUTE COMPARISON INDICES
vec_comp = rep(0, length(vec_k))
for (i in 1:length(vec_k)){
  vec_comp[i] = compare.adjrand(vec_cl[[i]], lab)
}

## VISUALIZE
opar <- par(no.readonly=TRUE)
plot(vec_k, vec_comp, type="b", lty=2, xlab="number of clusters",
     ylab="comparison index", main="Adjusted Rand Index with true k=3")
abline(v=3, lwd=2, col="red")
par(opar)
```
compare.rand

(+) Rand Index

Description

Compute Rand index between two clusterings. It has a value between 0 and 1 where 0 indicates two clusterings do not agree and 1 exactly the same.

Usage

compare.rand(x, y)

Arguments

x
1st cluster label vector of length-n.

y
2nd cluster label vector of length-n.

Value

Rand Index value.

References

Examples

```r
# -------------------------------------------------------------
# true label vs. clustering with 'iris' dataset
# -------------------------------------------------------------
## PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))

## CLUSTERING WITH DIFFERENT K VALUES
vec_k = 2:7
vec_cl = list()
for (i in 1:length(vec_k)){
  vec_cl[[i]] = T4cluster::kmeans(X, k=round(vec_k[i]))$cluster
}

## COMPUTE COMPARISON INDICES
vec_comp = rep(0, length(vec_k))
for (i in 1:length(vec_k)){
  vec_comp[i] = compare.rand(vec_cl[[i]], lab)
}
```
dpmeans

VISUALIZE

```r
opar <- par(no.readonly=TRUE)
plot(vec_k, vec_comp, type="b", lty=2, xlab="number of clusters",
     ylab="comparison index", main="Rand Index with true k=3")
abline(v=3, lwd=2, col="red")
par(opar)
```

doMeans <- dpmeans(data, lambda = 0.1, ...)

Description

DP-means is a non-parametric clustering method motivated by DP mixture model in that the number of clusters is determined by a parameter λ. The larger the λ value is, the smaller the number of clusters is attained. In addition to the original paper, we added an option to randomly permute an order of updating for each observation’s membership as a common heuristic in the literature of cluster analysis.

Usage

dpmeans(data, lambda = 0.1, ...)

Arguments

- **data**: an $(n \times p)$ matrix of row-stacked observations.
- **lambda**: a threshold to define a new cluster (default: 0.1).
- **...**: extra parameters including
 - `maxiter` the maximum number of iterations (default: 10).
 - `eps` the stopping criterion for iterations (default: 1e-5).
 - `permute` a logical; TRUE if random order for update is used, FALSE otherwise (default).

Value

A named list of S3 class `T4cluster` containing

- **cluster**: a length-n vector of class labels (from $1:k$).
- **algorithm**: name of the algorithm.

References

Examples

```r
#clustering with 'iris' dataset

## PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))

## EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y

## CLUSTERING WITH DIFFERENT LAMBDA VALUES
dpm1 = dpmeans(X, lambda=1)$cluster
dpm2 = dpmeans(X, lambda=5)$cluster
dpm3 = dpmeans(X, lambda=25)$cluster

## VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=dpm1, pch=19, main="dpmeans: lambda=1")
plot(X2d, col=dpm2, pch=19, main="dpmeans: lambda=5")
plot(X2d, col=dpm3, pch=19, main="dpmeans: lambda=25")
par(opar)
```

Description

Ensembles of K-Subspaces method exploits multiple runs of K-Subspace Clustering and uses consensus framework to aggregate multiple clustering results to mitigate the effect of random initializations. When the results are merged, it zeros out \(n - q \) number of values in a co-occurrence matrix. The paper suggests to use large number of runs (\(B \)) where each run may not require large number of iterations (\(\text{iter} \)) since the main assumption of the algorithm is to utilize multiple partially-correct information. At the extreme case, iteration \(\text{iter} \) may be set to 0 for which the paper denotes it as EKSS-0.

Usage

```
EKSS(data, k = 2, d = 2, q = floor(nrow(data) * 0.75), B = 500, iter = 0)
```

Arguments

- **data**: an \((n \times p)\) matrix of row-stacked observations.
- **k**: the number of clusters (default: 2).
d candidate dimension for each subspace (default: 2).
q threshold; the number of smaller values to be zeroed out (default: 0.75*n).
B the number of ensembles/runs (default: 500).
iter the number of iteration for each run (default: 0).

Value

a named list of S3 class T4cluster containing

- **cluster** a length-n vector of class labels (from 1 : k).
- **algorithm** name of the algorithm.

References

Examples

```r
## generate a toy example
set.seed(10)
tester = genLP(n=100, nl=2, np=1, iso.var=0.1)
data = tester$data
label = tester$class

## do PCA for data reduction
proj = base::eigen(stats::cov(data))$vectors[,1:2]
dat2 = data%*%proj

## run EKSS algorithm with k=2,3,4 with EKSS-0 and 5 iterations
out2zero = EKSS(data, k=2)
out3zero = EKSS(data, k=3)
out4zero = EKSS(data, k=4)

out2iter = EKSS(data, k=2, iter=5)
out3iter = EKSS(data, k=3, iter=5)
out4iter = EKSS(data, k=4, iter=5)

## extract label information
lab2zero = out2zero$cluster
lab3zero = out3zero$cluster
lab4zero = out4zero$cluster

lab2iter = out2iter$cluster
lab3iter = out3iter$cluster
lab4iter = out4iter$cluster

## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,3))
```
funhclust

Functional Hierarchical Clustering

Description

Given \(N \) curves \(\gamma_1(t), \gamma_2(t), \ldots, \gamma_N(t) : I \to \mathbb{R} \), perform hierarchical agglomerative clustering with fastcluster package’s implementation of the algorithm. Dissimilarity for curves is measured by \(L_p \) metric.

Usage

```r
funhclust(
  fdobj,
  p = 2,
  method = c("single", "complete", "average", "mcquitty", "ward.D", "ward.D2",
              "centroid", "median"),
  members = NULL
)
```

Arguments

- **fdobj** a 'fd' functional data object of \(N \) curves by the fda package.
- **p** an exponent in \(L_p \) formalism (default: 2).
- **method** agglomeration method to be used. This must be one of "single", "complete", "average", "mcquitty", "ward.D", "ward.D2", "centroid" or "median".
- **members** NULL or a vector whose length equals the number of observations. See hclust for details.

Value

an object of class hclust. See hclust for details.

References

Examples

```r
# -------------------------------------------------------------
# two types of curves
# 
# type 1 : sin(x) + perturbation; 20 OF THESE ON [0, 2*PI]
# type 2 : cos(x) + perturbation; 20 OF THESE ON [0, 2*PI]
# -------------------------------------------------------------

## PREPARE : USE 'fda' PACKAGE
# Generate Raw Data
datx = seq(from=0, to=2*pi, length.out=100)
daty = array(0,c(100, 40))
for (i in 1:20){
  daty[,i] = sin(datx) + rnorm(100, sd=0.1)
  daty[,i+20] = cos(datx) + rnorm(100, sd=0.1)
}

# Wrap as 'fd' object
mybasis <- fda::create.bspline.basis(c(0,2*pi), nbasis=10)
myfdobj <- fda::smooth.basis(datx, daty, mybasis)$fd

## RUN THE ALGORITHM
hcsingle = funhclust(myfdobj, method="single")

## VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
matplot(datx, daty[,1:20], type="l", main="Curves Type 1")
matplot(datx, daty[,21:40], type="l", main="Curves Type 2")
plot(hcsingle, main="hclust with 'single' linkage")
par(opar)
```

funkmeans03A

Functional K-Means Clustering by Abraham et al. (2003)

Description

Given N curves $\gamma_1(t), \gamma_2(t), \ldots, \gamma_N(t) : I \to \mathbb{R}$, perform k-means clustering on the coefficients from the functional data expanded by B-spline basis. Note that in the original paper, authors used B-splines as the choice of basis due to nice properties. However, we allow other types of basis as well for convenience.

Usage

```r
funkmeans03A(fdobj, k = 2, ...)
```
Arguments

- `fdobj` a 'fd' functional data object of N curves by the `fda` package.
- `k` the number of clusters (default: 2).
- `...` extra parameters including
 - `maxiter` the maximum number of iterations (default: 10).
 - `nstart` the number of random initializations (default: 5).

Value

A named list of S3 class `T4cluster` containing
- `cluster` a length-N vector of class labels (from 1 : k).
- `mean` a 'fd' object of k mean curves.
- `algorithm` name of the algorithm.

References

Examples

```r
# two types of curves

# type 1 : sin(x) + perturbation; 20 OF THESE ON [0, 2*PI]
# type 2 : cos(x) + perturbation; 20 OF THESE ON [0, 2*PI]
# type 3 : sin(x) + cos(0.5x) ; 20 OF THESE ON [0, 2*PI]

## PREPARE : USE 'fda' PACKAGE

# Generate Raw Data
datx = seq(from=0, to=2*pi, length.out=100)
daty = array(0,c(100, 60))
for (i in 1:20){
daty[,i] = sin(datx) + rnorm(100, sd=0.5)
daty[,i+20] = cos(datx) + rnorm(100, sd=0.5)
daty[,i+40] = sin(datx) + cos(0.5*datx) + rnorm(100, sd=0.5)
}

# Wrap as 'fd' object
mybasis <- fda::create.bspline.basis(c(0,2*pi), nbasis=10)
myfdobj <- fda::smooth.basis(datx, daty, mybasis)$fd

## RUN THE ALGORITHM WITH K=2,3,4
fk2 = funkmeans03A(myfdobj, k=2)
fk3 = funkmeans03A(myfdobj, k=3)
fk4 = funkmeans03A(myfdobj, k=4)

## FUNCTIONAL PCA FOR VISUALIZATION
embed = fda::pca.fd(myfdobj, nharm=2)$score
```
VISUALIZE

```r
opar <- par(no.readonly=TRUE)
pard(mfrow=c(1,3))
plot(embed, col=fk2$cluster, pch=19, main="K=2")
plot(embed, col=fk3$cluster, pch=19, main="K=3")
plot(embed, col=fk4$cluster, pch=19, main="K=4")
par(opar)
```

Description

Generate from Three 5-dimensional Subspaces in 200-dimensional space.

Usage

```r
gen3S(n = 50, var = 0.3)
```

Arguments

- **n**: the number of data points sampled from each subspace (default: 50).
- **var**: degree of Gaussian noise (default: 0.3).

Value

A named list containing:

- **data**: an \((3 * n \times 3)\) data matrix.
- **class**: length-\(3 * n\) vector for class label.

References

Examples

```r
## a toy example
tester = gen3S(n=100)
data = tester$data
label = tester$class
```
Description

It generates nested *donuts*, which are just hollow circles. For flexible testing, the parameter \(k \) controls the number of circles of varying radii where \(n \) controls the number of observations for each circle.

Usage

```r
genDONUTS(n = 50, k = 2, sd = 0.1)
```

Arguments

- \(n \) the number of data points for each hollow circle (default: 50).
- \(k \) the number of circles (default: 2).
- \(sd \) magnitude of white noise (default: 0.1).

Value

a named list containing with \(m = nk \):

- **data** an \((m \times 2)\) data matrix.
- **label** a length-\(m \) vector(factor) for class labels.

Examples

```r
## generate data
donut2 = genDONUTS(k=2)
donut3 = genDONUTS(k=3)
donut4 = genDONUTS(k=4)

## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
plot(donut2$data, col=donut2$label, pch=19, main="k=2")
plot(donut3$data, col=donut3$label, pch=19, main="k=3")
plot(donut4$data, col=donut4$label, pch=19, main="k=4")
par(opar)
```
Description
This function generates a toy example of 'line and plane' data in \mathbb{R}^3 that data are generated from a mixture of lines (one-dimensional) planes (two-dimensional). The number of line- and plane-components are explicitly set by the user for flexible testing.

Usage
genLP(n = 100, nl = 1, np = 1, iso.var = 0.1)

Arguments
- n: the number of data points for each line and plane.
- nl: the number of line components.
- np: the number of plane components.
- iso.var: degree of isotropic variance.

Value
a named list containing with $m = n \times (nl + np)$:
- data: an $(m \times 3)$ data matrix.
- class: length-m vector for class label.
- dimension: length-m vector of corresponding dimension from which an observation is created.

Examples
```r
## test for visualization
set.seed(10)
tester = genLP(n=100, nl=1, np=2, iso.var=0.1)
data = tester$data
label = tester$class
## do PCA for data reduction
proj = base::eigen(stats::cov(data))$vectors[,1:2]
dat2 = data%*%proj
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
plot(dat2[,1],dat2[,2],pch=19,cex=0.5,col=label,main="PCA")
plot(data[,1],data[,2],pch=19,cex=0.5,col=label,main="Axis 1 vs 2")
plot(data[,1],data[,3],pch=19,cex=0.5,col=label,main="Axis 1 vs 3")
plot(data[,2],data[,3],pch=19,cex=0.5,col=label,main="Axis 2 vs 3")
par(opar)
```
Description

Creates a smiley-face data in \mathbb{R}^2. This function is a modification of mlbench's mlbench.smiley function.

Usage

```r
genSMILEY(n = 496, sd = 0.1)
```

Arguments

- `n` number of samples to be generated.
- `sd` additive Gaussian noise level.

Value

A list containing

- `data` an $(n \times 2)$ data matrix.
- `label` a length-n vector(factor) for class labels.

Examples

```r
## Generate SMILEY Data with Difference Noise Levels
s10 = genSMILEY(200, sd=0.1)
s25 = genSMILEY(200, sd=0.25)
s50 = genSMILEY(200, sd=0.5)

## Visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
plot(s10$data, col=s10$label, pch=19, main="sd=0.10")
plot(s25$data, col=s25$label, pch=19, main="sd=0.25")
plot(s50$data, col=s50$label, pch=19, main="sd=0.50")
par(opar)
```
Finite Gaussian Mixture Model

Description

Finite Gaussian Mixture Model (GMM) is a well-known probabilistic clustering algorithm by fitting the following distribution to the data

\[f(x; \{\mu_k, \Sigma_k\}_{k=1}^K) = \sum_{k=1}^K w_k N(x; \mu_k, \Sigma_k) \]

with parameters \(w_k\)'s for cluster weights, \(\mu_k\)'s for class means, and \(\Sigma_k\)'s for class covariances. This function is a wrapper for Armadillo’s GMM function, which supports two types of covariance models.

Usage

```
gmm(data, k = 2, ...)```

**Arguments**

- `data`: an \((n \times p)\) matrix of row-stacked observations.
- `k`: the number of clusters (default: 2).
- `...`: extra parameters including
  - `maxiter`: the maximum number of iterations (default: 10).
  - `usediag`: a logical; covariances are diagonal if `TRUE`, or full covariances are returned for `FALSE` (default: `FALSE`).

**Value**

a named list of S3 class `T4cluster` containing

- `cluster`: a length-\(n\) vector of class labels (from 1 : \(k\)).
- `mean`: a \((k \times p)\) matrix where each row is a class mean.
- `variance`: a \((p \times p \times k)\) array where each slice is a class covariance.
- `weight`: a length-\(k\) vector of class weights that sum to 1.
- `loglkd`: log-likelihood of the data for the fitted model.
- `algorithm`: name of the algorithm.
Examples

```r

clustering with 'iris' dataset

PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))

EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y

CLUSTERING WITH DIFFERENT K VALUES
cl2 = gmm(X, k=2)$cluster
cl3 = gmm(X, k=3)$cluster
cl4 = gmm(X, k=4)$cluster

VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=cl2, pch=19, main="gmm: k=2")
plot(X2d, col=cl3, pch=19, main="gmm: k=3")
plot(X2d, col=cl4, pch=19, main="gmm: k=4")
par(opar)
```

---

**gmm03F**

*Ensemble of Gaussian Mixtures with Random Projection*

**Description**

When the data lies in a high-dimensional Euclidean space, fitting a model-based clustering algorithm is troublesome. This function implements an algorithm from the reference, which uses an aggregate information from an ensemble of Gaussian mixtures in combination with random projection.

**Usage**

```r
gmm03F(data, k = 2, ...)
```

**Arguments**

- `data` an \((n \times p)\) matrix of row-stacked observations.
- `k` the number of clusters (default: 2).
- `...` extra parameters including
  - `nruns` the number of projections (default: 20).
  - `lowdim` target dimension for random projection (default: 5).
maxiter the maximum number of iterations (default: 10).

usediag a logical; covariances are diagonal if TRUE, or full covariances are returned for FALSE (default: FALSE).

Value

a named list of S3 class T4cluster containing

cluster a length-$n$ vector of class labels (from 1 : $k$).

algorithm name of the algorithm.

References


Examples

# -------------------------------------------------------------
# clustering with 'iris' dataset
# -------------------------------------------------------------
## PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))

## EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y

## CLUSTERING WITH DIFFERENT K VALUES
c2 = gmm03F(X, k=2)$cluster
c3 = gmm03F(X, k=3)$cluster
c4 = gmm03F(X, k=4)$cluster

## VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=c2, pch=19, main="gmm03F: k=2")
plot(X2d, col=c3, pch=19, main="gmm03F: k=3")
plot(X2d, col=c4, pch=19, main="gmm03F: k=4")
par(opar)
Ruan et al. (2011) proposed a regularized covariance estimation by graphical lasso to cope with high-dimensional scenario where conventional GMM might incur singular covariance components. Authors proposed to use $\lambda$ as a regularization parameter as normally used in sparse covariance/precision estimation problems and suggested to use the model with the smallest BIC values.

**Usage**

```r
gmm11R(data, k = 2, lambda = 1, ...)
```

**Arguments**

- `data`: an $(n \times p)$ matrix of row-stacked observations.
- `k`: the number of clusters (default: 2).
- `lambda`: regularization parameter for graphical lasso (default: 1).
- `...`: extra parameters including
  - `maxiter`: the maximum number of iterations (default: 10).
  - `nstart`: the number of random initializations (default: 5).
  - `usediag`: a logical; covariances are diagonal if `TRUE`, or full covariances are returned for `FALSE` (default: `FALSE`).

**Value**

a named list of S3 class `T4cluster` containing

- `cluster`: a length-$n$ vector of class labels (from `1:k`).
- `mean`: a $(k \times p)$ matrix where each row is a class mean.
- `variance`: a $(p \times p \times k)$ array where each slice is a class covariance.
- `weight`: a length-$k$ vector of class weights that sum to 1.
- `loglkld`: log-likelihood of the data for the fitted model.
- `algorithm`: name of the algorithm.

**References**

gmm16G
Weighted GMM by Gebru et al. (2016)

Description
When each observation $x_i$ is associated with a weight $w_i > 0$, modifying the GMM formulation is required. Gebru et al. (2016) proposed a method to use scaled covariance based on an observation that

$$
\mathcal{N}(x|\mu, \Sigma)^w \propto \mathcal{N}
\left(x|\mu, \frac{\Sigma}{w}\right)
$$

by considering the positive weight as a role of precision. Currently, we provide a method with fixed weight case only while the paper also considers a Bayesian formalism on the weight using Gamma distribution.

Usage

```r
gmm16G(data, k = 2, weight = NULL, ...)
```

Arguments

- **data**: an $(n \times p)$ matrix of row-stacked observations.
- **k**: the number of clusters (default: 2).
weight a positive weight vector of length \( n \). If NULL (default), uniform weight is set.

extra parameters including

**maxiter** the maximum number of iterations (default: 10).

**usediag** a logical; covariances are diagonal if TRUE, or full covariances are returned for FALSE (default: FALSE).

Value

a named list of S3 class `T4cluster` containing

- **cluster** a length-\( n \) vector of class labels (from 1 : \( k \)).
- **mean** a \( (k \times p) \) matrix where each row is a class mean.
- **variance** a \( (p \times p \times k) \) array where each slice is a class covariance.
- **weight** a length-\( k \) vector of class weights that sum to 1.
- **loglkd** log-likelihood of the data for the fitted model.
- **algorithm** name of the algorithm.

References


Examples

```r

clustering with 'iris' dataset

PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))

EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y

CLUSTERING WITH DIFFERENT K VALUES
c2 = gmm16G(X, k=2)$cluster
c3 = gmm16G(X, k=3)$cluster
c4 = gmm16G(X, k=4)$cluster

VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=c2, pch=19, main="gmm16G: k=2")
plot(X2d, col=c3, pch=19, main="gmm16G: k=3")
plot(X2d, col=c4, pch=19, main="gmm16G: k=4")
par(opar)
```
Description

Geodesic spherical $k$-means algorithm is an counterpart of the spherical $k$-means algorithm by replacing the cosine similarity with the squared geodesic distance, which is the great-circle distance under the intrinsic geometry regime on the unit hypersphere. If the data is not normalized, it performs the normalization and proceeds thereafter.

Usage

gskmeans(data, k = 2, ...)

Arguments

data an $(n \times p)$ matrix of row-stacked observations. If not row-stochastic, each row is normalized to be unit norm.
k the number of clusters (default: 2).
... extra parameters including

init initialization method; either "kmeans" or "gmm" (default: "kmeans").
maxiter the maximum number of iterations (default: 10).
abstol stopping criterion to stop the algorithm (default: $10^{-8}$).
verbose a logical; TRUE to show iteration history or FALSE to quiet.

Value

a named list of S3 class T4cluster containing

cluster a length-$n$ vector of class labels (from $1 : k$).
cost a value of the cost function.
means an $(k \times p)$ matrix where each row is a unit-norm class mean.
algorithm name of the algorithm.

Examples

# -------------------------------------------------------------
# clustering with "household" dataset
# -------------------------------------------------------------
## PREPARE
data(household, package="T4cluster")
X = household$data
lab = as.integer(household$gender)

## EXECUTE GSKMEANS WITH VARYING K's
vec.rand = rep(0, 9)
for (i in 1:9){
    clust_i = gskmeans(X, k=(i+1))$cluster
    vec.rand[i] = compare.rand(clust_i, lab)
}

## VISUALIZE THE RAND INDEX
opar <- par(no.readonly=TRUE)
plot(2:10, vec.rand, type="b", pch=19, ylim=c(0.5, 1),
     ylab="Rand index",xlab="number of clusters",
     main="clustering quality index over varying k's.")
par(opar)

---

**household**

Load 'household' data

**Description**

The data is taken from HSAUR3 package's household data. We use housing, service, and food variables and normalize them to be unit-norm so that each observation is projected onto the 2-dimensional sphere. The data consists of 20 males and 20 females and has been used for clustering on the unit hypersphere.

**Usage**

data(household)

**Format**

a named list containing

- **data** an \((n \times 3)\) data matrix whose rows are unit-norm.
- **gender** a length-\(n\) factor for class label.

**See Also**

household

**Examples**

## Load the data
data(household, package="T4cluster")

## Visualize the data in pairs
opar <- par(no.readonly=TRUE)
scatterplot3d::scatterplot3d(household$data, color=rep(c("red","blue"), each=20),
                             pch=19, main="household expenditure on the 2-dimensional sphere")
**kmeans**

```r
xlim=c(0,1.2), ylim=c(0,1.2), zlim=c(0,1.2), angle=45)
par(opar)
```

---

**kmeans**

**K-Means Clustering**

---

**Description**

*K*-means algorithm we provide is a wrapper to the **Armadillo**'s k-means routine. Two types of initialization schemes are employed. Please see the parameters section for more details.

**Usage**

```r
kmeans(data, k = 2, ...)
```

**Arguments**

- `data` an \((n \times p)\) matrix of row-stacked observations.
- `k` the number of clusters (default: 2).
- `...` extra parameters including
  - `init` initialization method; either "random" for random initialization, or "plus" for k-means++ starting.
  - `maxiter` the maximum number of iterations (default: 10).
  - `nstart` the number of random initializations (default: 5).

**Value**

a named list of S3 class `T4cluster` containing

- `cluster` a length-\(n\) vector of class labels (from 1 : \(k\)).
- `mean` a \((k \times p)\) matrix where each row is a class mean.
- `wcss` within-cluster sum of squares (WCSS).
- `algorithm` name of the algorithm.

**References**

Examples

```r

clustering with 'iris' dataset

PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))

EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y

CLUSTERING WITH DIFFERENT K VALUES
c2 = kmeans(X, k=2)$cluster
c3 = kmeans(X, k=3)$cluster
c4 = kmeans(X, k=4)$cluster

VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=c2, pch=19, main="k-means: k=2")
plot(X2d, col=c3, pch=19, main="k-means: k=3")
plot(X2d, col=c4, pch=19, main="k-means: k=4")
par(opar)
```

---

**kmeans18B**

*K-Means Clustering with Lightweight Coreset*

**Description**

Apply $k$-means clustering algorithm on top of the lightweight coreset as proposed in the paper. The smaller the set is, the faster the execution becomes with potentially larger quantization errors.

**Usage**

`kmeans18B(data, k = 2, m = round(nrow(data)/2), ...)`

**Arguments**

- **data**
  - an $(n \times p)$ matrix of row-stacked observations.
- **k**
  - the number of clusters (default: 2).
- **m**
  - the size of coreset (default: $n/2$).
- **...**
  - extra parameters including
    - `maxiter` the maximum number of iterations (default: 10).
    - `nstart` the number of random initializations (default: 5).
**Value**

- **cluster** a length-\(n\) vector of class labels (from 1 : \(k\)).
- **mean** a \((k \times p)\) matrix where each row is a class mean.
- **wcss** within-cluster sum of squares (WCSS).
- **algorithm** name of the algorithm.

**References**


**Examples**

```r

clustering with 'iris' dataset

PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))
EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y
CLUSTERING WITH DIFFERENT CORESET SIZES WITH K=3
core1 = kmeans18B(X, k=3, m=25)$cluster
core2 = kmeans18B(X, k=3, m=50)$cluster
core3 = kmeans18B(X, k=3, m=100)$cluster
VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=core1, pch=19, main="kmeans18B: m=25")
plot(X2d, col=core2, pch=19, main="kmeans18B: m=50")
plot(X2d, col=core3, pch=19, main="kmeans18B: m=100")
par(opar)
```

**Description**

*K*-means++ algorithm is usually used as a fast initialization scheme, though it can still be used as a standalone clustering algorithms by first choosing the centroids and assign points to the nearest centroids.
Usage

kmeanspp(data, k = 2)

Arguments

data an \((n \times p)\) matrix of row-stacked observations.

k the number of clusters (default: 2).

Value

a named list of S3 class T4cluster containing

cluster a length-\(n\) vector of class labels (from \(1 : k\)).

algorithm name of the algorithm.

References


Examples

# ------------------------------------------------------------
# clustering with 'iris' dataset
# ------------------------------------------------------------
## PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))

## EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y

## CLUSTERING WITH DIFFERENT K VALUES
c2 = kmeanspp(X, k=2)$cluster
c3 = kmeanspp(X, k=3)$cluster
c4 = kmeanspp(X, k=4)$cluster

## VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=c2, pch=19, main="k-means++: k=2")
plot(X2d, col=c3, pch=19, main="k-means++: k=3")
plot(X2d, col=c4, pch=19, main="k-means++: k=4")
par(opar)
Description

Low-Rank Representation (LRR) constructs the connectivity of the data by solving

$$\min_{C} \|C\|_* \text{ such that } D = DC$$

for column-stacked data matrix $D$ and $\| \cdot \|_*$ is the nuclear norm which is relaxation of the rank condition. If you are interested in full implementation of the algorithm with sparse outliers and noise, please contact the maintainer.

Usage

LRR(data, k = 2, rank = 2)

Arguments

data an $(n \times p)$ matrix of row-stacked observations.
k the number of clusters (default: 2).
rank sum of dimensions for all $k$ subspaces (default: 2).

Value

a named list of S3 class T4cluster containing

cluster a length-$n$ vector of class labels (from 1 : $k$).
algorithm name of the algorithm.

References


Examples

```r
generate a toy example
set.seed(10)
tester = genLP(n=100, nl=2, np=1, iso.var=0.1)
data = tester$data
label = tester$class
do PCA for data reduction
proj = base::eigen(stats::cov(data))$vectors[,1:2]
dat2 = data%*%proj
```
## run LRR algorithm with k=2, 3, and 4 with rank=4
output2 = LRR(data, k=2, rank=4)
output3 = LRR(data, k=3, rank=4)
output4 = LRR(data, k=4, rank=4)

## extract label information
lab2 = output2$cluster
lab3 = output3$cluster
lab4 = output4$cluster

## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(dat2, pch=19, cex=0.9, col=lab2, main="LRR:K=2")
plot(dat2, pch=19, cex=0.9, col=lab3, main="LRR:K=3")
plot(dat2, pch=19, cex=0.9, col=lab4, main="LRR:K=4")
par(opar)

---

**LRSC**

*Low-Rank Subspace Clustering*

**Description**

Low-Rank Subspace Clustering (LRSC) constructs the connectivity of the data by solving

\[
\min_C \|C\|_* \quad \text{such that} \quad A = AC, \ C = C^T
\]

for the uncorrupted data scenario where \(A\) is a column-stacked data matrix. In the current implementation, the first equality constraint for reconstructiveness of the data can be relaxed by solving

\[
\min_C \|C\|_* + \frac{\tau}{2} \|A - AC\|_F^2 \quad \text{such that} \quad C = C^T
\]

controlled by the regularization parameter \(\tau\). If you are interested in enabling a more general class of the problem suggested by authors, please contact maintainer of the package.

**Usage**

LRSC(data, k = 2, type = c("relaxed", "exact"), tau = 1)

**Arguments**

- **data**: an \((n \times p)\) matrix of row-stacked observations.
- **k**: the number of clusters (default: 2).
- **type**: type of the problem to be solved.
- **tau**: regularization parameter for relaxed-constraint problem.
Details

\[ \min_C \| C \|_* \quad \text{such that} \quad D = DC \]

for column-stacked data matrix \( D \) and \( \| \cdot \|_* \) is the nuclear norm which is relaxation of the rank condition. If you are interested in full implementation of the algorithm with sparse outliers and noise, please contact the maintainer.

Value

a named list of S3 class \texttt{T4cluster} containing

- \texttt{cluster} a length-\( n \) vector of class labels (from \( 1 : k \)).
- \texttt{algorithm} name of the algorithm.

References


Examples

```r
generate a toy example
set.seed(10)
tester = genLP(n=100, nl=2, np=1, iso.var=0.1)
data = tester$data
class = tester$class

do PCA for data reduction
proj = base::eigen(stats::cov(data))$vectors[,1:2]
dat2 = data%*%proj

run LRSC algorithm with \(k = 2, 3, 4 \) with relaxed/exact solvers
out2rel = LRSC(data, k=2, type="relaxed")
out3rel = LRSC(data, k=3, type="relaxed")
out4rel = LRSC(data, k=4, type="relaxed")

out2exc = LRSC(data, k=2, type="exact")
out3exc = LRSC(data, k=3, type="exact")
out4exc = LRSC(data, k=4, type="exact")

extract label information
lab2rel = out2rel$cluster
lab3rel = out3rel$cluster
lab4rel = out4rel$cluster

lab2exc = out2exc$cluster
lab3exc = out3exc$cluster
lab4exc = out4exc$cluster

visualize
```
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,3))
plot(dat2, pch=19, cex=0.9, col=lab2rel, main="LRSC Relaxed:K=2")
plot(dat2, pch=19, cex=0.9, col=lab3rel, main="LRSC Relaxed:K=3")
plot(dat2, pch=19, cex=0.9, col=lab4rel, main="LRSC Relaxed:K=4")
plot(dat2, pch=19, cex=0.9, col=lab2exc, main="LRSC Exact:K=2")
plot(dat2, pch=19, cex=0.9, col=lab3exc, main="LRSC Exact:K=3")
plot(dat2, pch=19, cex=0.9, col=lab4exc, main="LRSC Exact:K=4")
par(opar)

---

**LSR**  

**Least Squares Regression**

**Description**

For the subspace clustering, traditional method of least squares regression is used to build coefficient matrix that reconstructs the data point by solving

\[
\min_Z \|X - XZ\|_F^2 + \lambda \|Z\|_F \text{ such that } diag(Z) = 0
\]

where \(X \in \mathbb{R}^{p \times n}\) is a column-stacked data matrix. As seen from the equation, we use a denoising version controlled by \(\lambda\) and provide an option to abide by the constraint \(diag(Z) = 0\) by \texttt{zerodiag} parameter.

**Usage**

\[
\texttt{LSR(data, k = 2, lambda = 1e-05, zerodiag = TRUE)}
\]

**Arguments**

- **data** an \((n \times p)\) matrix of row-stacked observations.
- **k** the number of clusters (default: 2).
- **lambda** regularization parameter (default: 1e-5).
- **zerodiag** a logical; TRUE (default) to use the problem formulation with zero diagonal entries or FALSE otherwise.

**Value**

a named list of S3 class \texttt{T4cluster} containing

- **cluster** a length-\(n\) vector of class labels (from 1 : k).
- **algorithm** name of the algorithm.
References


Examples

```r
generate a toy example
set.seed(10)
tester = genLP(n=100, nl=2, np=1, iso.var=0.1)
data = tester$data
label = tester$class

do PCA for data reduction
proj = base::eigen(stats::cov(data))$vectors[,1:2]
dat2 = data%*%proj

run LSR for k=3 with different lambda values
out1 = LSR(data, k=3, lambda=1e-2)
out2 = LSR(data, k=3, lambda=1)
out3 = LSR(data, k=3, lambda=1e+2)

extract label information
lab1 = out1$cluster
lab2 = out2$cluster
lab3 = out3$cluster

visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(dat2, pch=19, cex=0.9, col=lab1, main="LSR:lambda=1e-2")
plot(dat2, pch=19, cex=0.9, col=lab2, main="LSR:lambda=1")
plot(dat2, pch=19, cex=0.9, col=lab3, main="LSR:lambda=1e+2")
par(opar)
```

——

**MSM**

Bayesian Mixture of Subspaces of Different Dimensions

Description

MSM is a Bayesian model inferring mixtures of subspaces that are of possibly different dimensions. For simplicity, this function returns only a handful of information that are most important in representing the mixture model, including projection, location, and hard assignment parameters.
Usage

MSM(data, k = 2, ...)  

Arguments

data an \((n \times p)\) matrix of row-stacked observations.

k the number of mixtures.

... extra parameters including

  temperature  temperature value for Gibbs posterior (default: 1e-6).
  prop.var proposal variance parameter (default: 1.0).
  iter the number of MCMC runs (default: 496).
  burn.in burn-in for MCMC runs (default: iter/2).
  thin interval for recording MCMC runs (default: 10).
  print.progress a logical; TRUE to show completion of iterations by 10, FALSE otherwise (default: FALSE).

Value

a list whose elements are S3 class "MSM" instances, which are also lists of following elements:

P length-k list of projection matrices.

U length-k list of orthonormal basis.

theta length-k list of center locations of each mixture.

cluster length-n vector of cluster label.

Examples

```r
generate a toy example
set.seed(10)
tester = genLP(n=100, nl=2, np=1, iso.var=0.1)
data = tester$data
label = tester$class
do PCA for data reduction
proj = base::eigen(stats::cov(data))$vectors[,1:2]
dat2 = data%*%proj

run MSM algorithm with k=2, 3, and 4
maxiter = 500
output2 = MSM(data, k=2, iter=maxiter)
output3 = MSM(data, k=3, iter=maxiter)
output4 = MSM(data, k=4, iter=maxiter)

extract final clustering information
nrec = length(output2)
finc2 = output2[[nrec]]$cluster
finc3 = output3[[nrec]]$cluster
```
finc4 = output4[[nrec]]$cluster

## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(3,4))
plot(dat2[,1],dat2[,2],pch=19,cex=0.3,col=finc2+1,main="K=2:PCA")
plot(data[,1],data[,2],pch=19,cex=0.3,col=finc2+1,main="K=2:Axis(1,2)")
plot(data[,1],data[,3],pch=19,cex=0.3,col=finc2+1,main="K=2:Axis(1,3)")
plot(data[,2],data[,3],pch=19,cex=0.3,col=finc2+1,main="K=2:Axis(2,3)")
plot(dat2[,1],dat2[,2],pch=19,cex=0.3,col=finc3+1,main="K=3:PCA")
plot(data[,1],data[,2],pch=19,cex=0.3,col=finc3+1,main="K=3:Axis(1,2)")
plot(data[,1],data[,3],pch=19,cex=0.3,col=finc3+1,main="K=3:Axis(1,3)")
plot(data[,2],data[,3],pch=19,cex=0.3,col=finc3+1,main="K=3:Axis(2,3)")
plot(dat2[,1],dat2[,2],pch=19,cex=0.3,col=finc4+1,main="K=4:PCA")
plot(data[,1],data[,2],pch=19,cex=0.3,col=finc4+1,main="K=4:Axis(1,2)")
plot(data[,1],data[,3],pch=19,cex=0.3,col=finc4+1,main="K=4:Axis(1,3)")
plot(data[,2],data[,3],pch=19,cex=0.3,col=finc4+1,main="K=4:Axis(2,3)")
par(opar)

---

pcm

**Compute Pairwise Co-occurrence Matrix**

**Description**

Let clustering be a label from data of N observations and suppose we are given M such labels. Co-occurrence matrix counts the number of events where two observations $X_i$ and $X_j$ belong to the same category/class. PCM serves as a measure of uncertainty embedded in any algorithms with non-deterministic components.

**Usage**

pcm(partitions)

**Arguments**

- **partitions**

  partitions can be provided in either (1) an $(M \times N)$ matrix where each row is a clustering for N objects, or (2) a length-M list of length-N clustering labels.

**Value**

an $(N \times N)$ matrix, whose elements $(i,j)$ are counts for how many times observations $i$ and $j$ belong to the same cluster, ranging from 0 to M.

**See Also**

psm
Examples

```r

PSM with 'iris' dataset + k-means++

PREPARE WITH SUBSET OF DATA
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))

EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y

RUN K-MEANS++ 100 TIMES
partitions = list()
for (i in 1:100){
 partitions[[i]] = kmeanspp(X)$cluster
}

COMPUTE PCM
iris.pcm = pcm(partitions)

VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
image(iris.pcm[,150:1], axes=FALSE, main="PCM")
par(opar)
```

predict.MSM

S3 method to predict class label of new data with 'MSM' object

Description

Given an instance of MSM class from MSM function, predict class label of a new data.

Usage

```r
S3 method for class 'MSM'
predict(object, newdata, ...)
```

Arguments

- **object**: an 'MSM' object from MSM function.
- **newdata**: an \((m \times p)\) matrix of row-stacked observations.
- **...**: extra parameters (not necessary).

Value

A length-\(m\) vector of class labels.
Compute Posterior Similarity Matrix

Description

Let clustering be a label from data of \( N \) observations and suppose we are given \( M \) such labels. Posterior similarity matrix, as its name suggests, computes posterior probability for a pair of observations to belong to the same cluster, i.e.,

\[
P_{ij} = P(label(X_i) = label(X_j))
\]

under the scenario where multiple clusterings are samples drawn from a posterior distribution within the Bayesian framework. However, it can also be used for non-Bayesian settings as \( \text{psm} \) is a measure of uncertainty embedded in any algorithms with non-deterministic components.

Usage

\( \text{psm}(\text{partitions}) \)

Arguments

- \( \text{partitions} \)
  
  partitions can be provided in either (1) an \((M \times N)\) matrix where each row is a clustering for \( N \) objects, or (2) a length-\( M \) list of length-\( N \) clustering labels.

Value

an \((N \times N)\) matrix, whose elements \((i, j)\) are posterior probability for an observation \( i \) and \( j \) belong to the same cluster.

See Also

\( \text{pcm} \)

Examples

```r
PSM with 'iris' dataset + k-means++
PREPARE WITH SUBSET OF DATA
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))

EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y

RUN K-MEANS++ 100 TIMES
partitions = list()
for (i in 1:100){
 # Add code here
}
```
partitions[[i]] = kmeanspp(X)$cluster
}

## COMPUTE PSM
iris.psm = psm(partitions)

## VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
image(iris.psm[,150:1], axes=FALSE, main="PSM")
par(opar)

sc05Z  

Spectral Clustering by Zelnik-Manor and Perona (2005)

Description

Zelnik-Manor and Perona proposed a method to define a set of data-driven bandwidth parameters where \( \sigma_i \) is the distance from a point \( x_i \) to its \( nnbd \)-th nearest neighbor. Then the affinity matrix is defined as

\[
A_{ij} = \exp\left(-\frac{d(x_i, d_j)^2}{\sigma_i \sigma_j}\right)
\]

and the standard spectral clustering of Ng, Jordan, and Weiss (\texttt{scNJW}) is applied.

Usage

\texttt{sc05Z(data, k = 2, nnbd = 7, ...)}

Arguments

data  \hspace{1cm} \text{an} \ (n \times p) \ \text{matrix of row-stacked observations or S3 dist object of} \ n \ \text{observations.}

k  \hspace{1cm} \text{the number of clusters (default: 2).}

nnbd  \hspace{1cm} \text{neighborhood size to define data-driven bandwidth parameter (default: 7).}

...  \hspace{1cm} \text{extra parameters including}

\texttt{algclust} \hspace{1cm} \text{method to perform clustering on embedded data; either "kmeans" (default) or "GMM".}

\texttt{maxiter} \hspace{1cm} \text{the maximum number of iterations (default: 10).}

Value

a named list of S3 class \texttt{T4cluster} containing

\texttt{cluster} \hspace{1cm} \text{a length-}n \ \text{vector of class labels (from 1 : k).}

\texttt{eigval} \hspace{1cm} \text{eigenvalues of the graph laplacian's spectral decomposition.}

\texttt{embeds} \hspace{1cm} \text{an} \ (n \times k) \ \text{low-dimensional embedding.}

\texttt{algorithm} \hspace{1cm} \text{name of the algorithm.}
References


Examples

```r

clustering with 'iris' dataset

PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))

EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y

CLUSTERING WITH DIFFERENT K VALUES
cl2 = sc05Z(X, k=2)$cluster
cl3 = sc05Z(X, k=3)$cluster
cl4 = sc05Z(X, k=4)$cluster

VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=cl2, pch=19, main="sc05Z: k=2")
plot(X2d, col=cl3, pch=19, main="sc05Z: k=3")
plot(X2d, col=cl4, pch=19, main="sc05Z: k=4")
par(opar)
```

sc09G

Spectral Clustering by Gu and Wang (2009)

Description

The algorithm defines a set of data-driven bandwidth parameters where \( \sigma_i \) is the average distance from a point \( x_i \) to its ndbd-th nearest neighbor. Then the affinity matrix is defined as

\[
A_{ij} = \exp(-d(x_i, d_j)^2 / \sigma_i \sigma_j)
\]

and the standard spectral clustering of Ng, Jordan, and Weiss (scNJW) is applied.

Usage

```r
sc09G(data, k = 2, ndbd = 7, ...)
```
Arguments

data an \((n \times p)\) matrix of row-stacked observations or S3 dist object of \(n\) observations.

k the number of clusters (default: 2).

nnbd neighborhood size to define data-driven bandwidth parameter (default: 7).

... extra parameters including

algclust method to perform clustering on embedded data; either "kmeans" (default) or "GMM".

maxiter the maximum number of iterations (default: 10).

Value

a named list of S3 class T4cluster containing

cluster a length-\(n\) vector of class labels (from 1 : \(k\)).

eigval eigenvalues of the graph laplacian’s spectral decomposition.

embeds an \((n \times k)\) low-dimensional embedding.

algorithm name of the algorithm.

References


Examples

```r

clustering with 'iris' dataset

PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))

EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y

CLUSTERING WITH DIFFERENT K VALUES
cl2 = sc09G(X, k=2)$cluster
c13 = sc09G(X, k=3)$cluster
c14 = sc09G(X, k=4)$cluster

VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=cl2, pch=19, main="sc09G: k=2")
```

Spectral Clustering by Zhang et al. (2010)

Description

The algorithm defines a set of data-driven bandwidth parameters $p_{ij}$ by constructing a similarity matrix. Then the affinity matrix is defined as

$$A_{ij} = \exp(-d(x_i, d_j)^2 / 2p_{ij})$$

and the standard spectral clustering of Ng, Jordan, and Weiss (scNJW) is applied.

Usage

sc10Z(data, k = 2, ...)

Arguments

data: an $(n \times p)$ matrix of row-stacked observations or S3 dist object of $n$ observations.
k: the number of clusters (default: 2).
... extra parameters including

algclust: method to perform clustering on embedded data; either "kmeans" (default) or "GMM".
maxiter: the maximum number of iterations (default: 10).

Value

a named list of S3 class T4cluster containing

cluster: a length-$n$ vector of class labels (from 1 : $k$).
eigval: eigenvalues of the graph laplacian’s spectral decomposition.
embeds: an $(n \times k)$ low-dimensional embedding.
algorithm: name of the algorithm.

References

Examples

```r

clustering with 'iris' dataset

PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))

EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y

CLUSTERING WITH DIFFERENT K VALUES
cl2 = sc10Z(X, k=2)$cluster
cl3 = sc10Z(X, k=3)$cluster
cl4 = sc10Z(X, k=4)$cluster

VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=cl2, pch=19, main="sc10Z: k=2")
plot(X2d, col=cl3, pch=19, main="sc10Z: k=3")
plot(X2d, col=cl4, pch=19, main="sc10Z: k=4")
par(opar)
```

---

**Spectral Clustering by Yang et al. (2011)**

Description

As a data-driven method, the algorithm recovers geodesic distance from a k-nearest neighbor graph scaled by an (exponential) parameter $\rho$ and applies random-walk spectral clustering. Authors referred their method as density sensitive similarity function.

Usage

```r
sc11Y(data, k = 2, nnbd = 7, rho = 2, ...)
```

Arguments

- **data**: an $(n \times p)$ matrix of row-stacked observations or S3 `dist` object of $n$ observations.
- **k**: the number of clusters (default: 2).
- **nnbd**: neighborhood size to define data-driven bandwidth parameter (default: 7).
- **rho**: exponent scaling parameter (default: 2).
- **...**: extra parameters including
algclust method to perform clustering on embedded data; either "kmeans" (default) or "GMM".

maxiter the maximum number of iterations (default: 10).

Value

a named list of S3 class T4cluster containing

cluster a length-n vector of class labels (from 1 : k).
eigval eigenvalues of the graph laplacian’s spectral decomposition.
embeds an (n x k) low-dimensional embedding.
algorithm name of the algorithm.

References


Examples

# -------------------------------------------------------------
# clustering with 'iris' dataset
# -------------------------------------------------------------
## PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))

## EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y

## CLUSTERING WITH DIFFERENT K VALUES
c12 = sc11Y(X, k=2)$cluster
c13 = sc11Y(X, k=3)$cluster
c14 = sc11Y(X, k=4)$cluster

## VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=c12, pch=19, main="sc11Y: k=2")
plot(X2d, col=c13, pch=19, main="sc11Y: k=3")
plot(X2d, col=c14, pch=19, main="sc11Y: k=4")
par(opar)
Description

Li and Guo proposed to construct an affinity matrix

\[ A_{ij} = \exp\left(-\frac{d(x_i, d_j)^2}{2\sigma^2}\right) \]

and adjust the matrix by neighbor propagation. Then, standard spectral clustering from the symmetric, normalized graph laplacian is applied.

Usage

\[ \text{sc12L}(\text{data}, k = 2, \sigma = 1, \ldots) \]

Arguments

data an \((n \times p)\) matrix of row-stacked observations or \text{S3 dist} object of \(n\) observations.

k the number of clusters (default: 2).

sigma common bandwidth parameter (default: 1).

... extra parameters including

algclust method to perform clustering on embedded data; either "kmeans" (default) or "GMM".

maxiter the maximum number of iterations (default: 10).

Value

a named list of \text{S3 class} \text{T4cluster} containing

cluster a length-\(n\) vector of class labels (from 1 : \(k\)).

eigval eigenvalues of the graph laplacian’s spectral decomposition.

embeds an \((n \times k)\) low-dimensional embedding.

algorithm name of the algorithm.

References


See Also

\text{scNJW}
Examples

```r

clustering with 'iris' dataset

PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))

EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y

CLUSTERING WITH DIFFERENT K VALUES
cl2 = sc12L(X, k=2)$cluster
cl3 = sc12L(X, k=3)$cluster
cl4 = sc12L(X, k=4)$cluster

VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=cl2, pch=19, main="sc12L: k=2")
plot(X2d, col=cl3, pch=19, main="sc12L: k=3")
plot(X2d, col=cl4, pch=19, main="sc12L: k=4")
par(opar)
```

---

**scNJW**

*Spectral Clustering by Ng, Jordan, and Weiss (2002)*

**Description**

The version of Ng, Jordan, and Weiss first constructs the affinity matrix

\[ A_{ij} = \exp\left(-\frac{d(x_i, d_j)^2}{\sigma^2}\right) \]

where \( \sigma \) is a common bandwidth parameter and performs k-means (or possibly, GMM) clustering on the row-space of eigenvectors for the symmetric graph laplacian matrix

\[ L = D^{-1/2}(D - A)D^{-1/2} \]

**Usage**

`scNJW(data, k = 2, sigma = 1, ...)`
Arguments

data an \((n \times p)\) matrix of row-stacked observations or S3 dist object of \(n\) observations.
k the number of clusters (default: 2).
sigma bandwidth parameter (default: 1).
... extra parameters including

\textbf{alglust} method to perform clustering on embedded data; either "kmeans" (default) or "GMM".

\textbf{maxiter} the maximum number of iterations (default: 10).

Value

a named list of S3 class \texttt{T4cluster} containing

\textbf{cluster} a length-\(n\) vector of class labels (from \(1:k\)).
\textbf{eigval} eigenvalues of the graph laplacian’s spectral decomposition.
\textbf{embeds} an \((n \times k)\) low-dimensional embedding.
\textbf{algorithm} name of the algorithm.

References


Examples

```r

clustering with 'iris' dataset

PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))

EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y

c2 = scNJW(X, k=2)$cluster
c3 = scNJW(X, k=3)$cluster
c4 = scNJW(X, k=4)$cluster

VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=c2, pch=19, main="scNJW: k=2")
```
scSM

Spectral Clustering by Shi and Malik (2000)

Description

The version of Shi and Malik first constructs the affinity matrix

\[ A_{ij} = \exp\left(-\frac{d(x_i, d_j)^2}{\sigma^2}\right) \]

where \( \sigma \) is a common bandwidth parameter and performs k-means (or possibly, GMM) clustering on the row-space of eigenvectors for the random-walk graph laplacian matrix

\[ L = D^{-1}(D - A) \]

Usage

scSM(data, k = 2, sigma = 1, ...)

Arguments

data: an \((n \times p)\) matrix of row-stacked observations or S3 dist object of \(n\) observations.
k: the number of clusters (default: 2).
sigma: bandwidth parameter (default: 1).
...: extra parameters including

algclust: method to perform clustering on embedded data; either "kmeans" (default) or "GMM".

maxiter: the maximum number of iterations (default: 10).

Value

a named list of S3 class T4cluster containing

cluster: a length-\(n\) vector of class labels (from \(1:k\)).
eigval: eigenvalues of the graph laplacian’s spectral decomposition.
embeds: an \((n \times k)\) low-dimensional embedding.
algorithm: name of the algorithm.
References


Examples

```r
clustering with 'iris' dataset
prepare with subset of data
data(iris)
sid = sample(1:150, 50)
X = as.matrix(iris[sid,1:4])
lab = as.integer(as.factor(iris[sid,5]))

embedding with PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y

clustering with different k values
cl2 = scSM(X, k=2)$cluster
cl3 = scSM(X, k=3)$cluster
cl4 = scSM(X, k=4)$cluster

visualization
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=cl2, pch=19, main="scSM: k=2")
plot(X2d, col=cl3, pch=19, main="scSM: k=3")
plot(X2d, col=cl4, pch=19, main="scSM: k=4")
par(opar)
```

scUL

**Spectral Clustering with Unnormalized Laplacian**

Description

The version of Shi and Malik first constructs the affinity matrix

\[ A_{ij} = \exp\left(-\frac{d(x_i, d_j)^2}{\sigma^2}\right) \]

where \( \sigma \) is a common bandwidth parameter and performs k-means (or possibly, GMM) clustering on the row-space of eigenvectors for the unnormalized graph laplacian matrix

\[ L = D - A \]
Usage

scUL(data, k = 2, sigma = 1, ...)

Arguments

data: an \((n \times p)\) matrix of row-stacked observations or S3 dist object of \(n\) observations.
k: the number of clusters (default: 2).
sigma: bandwidth parameter (default: 1).
...: extra parameters including

algclust: method to perform clustering on embedded data; either "kmeans" (default) or "GMM".

maxiter: the maximum number of iterations (default: 10).

Value

a named list of S3 class T4cluster containing

cluster: a length-\(n\) vector of class labels (from \(1 : k\)).
eigval: eigenvalues of the graph laplacian’s spectral decomposition.
embeds: an \((n \times k)\) low-dimensional embedding.
algorithm: name of the algorithm.

References


Examples

# -------------------------------------------------------------
# clustering with 'iris' dataset
# -------------------------------------------------------------
## PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))

## EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y

c12 = scUL(X, k=2)$cluster
c13 = scUL(X, k=3)$cluster
c14 = scUL(X, k=4)$cluster

## VISUALIZATION
opar <- par(no.readonly=TRUE)
spkmeans

Spherical K-Means Clustering

Description

Spherical $k$-means algorithm performs clustering for the data residing on the unit hypersphere with the cosine similarity. If the data is not normalized, it performs the normalization and proceeds thereafter.

Usage

spkmeans(data, k = 2, ...)

Arguments

data an $(n \times p)$ matrix of row-stacked observations. If not row-stochastic, each row is normalized to be unit norm.
k the number of clusters (default: 2).
... extra parameters including

init initialization method; either "kmeans" or "gmm" (default: "kmeans").
maxiter the maximum number of iterations (default: 10).
abstol stopping criterion to stop the algorithm (default: $10^{-6}$).
verbose a logical; TRUE to show iteration history or FALSE to quiet.

Value

a named list of S3 class T4cluster containing

cluster a length-$n$ vector of class labels (from 1 : $k$).

mean a value of the cost function.

means an $(k \times p)$ matrix where each row is a unit-norm class mean.

algorithm name of the algorithm.

References

Examples

```r
clustering with 'household' dataset

PREPARE
data(household, package="T4cluster")
X = household$data
lab = as.integer(household$gender)

EXECUTE SPKMEANS WITH VARYING K's
vec.rand = rep(0, 9)
for (i in 1:9){
 clust_i = spkmeans(X, k=(i+1))$cluster
 vec.rand[i] = compare.rand(clust_i, lab)
}

VISUALIZE THE RAND INDEX
opar <- par(no.readonly=TRUE)
plot(2:10, vec.rand, type="b", pch=19, ylim=c(0.5, 1),
 ylab="Rand index",xlab="number of clusters",
 main="clustering quality index over varying k's.")
par(opar)
```

**SSC**

Sparse Subspace Clustering

**Description**

Sparse Subspace Clustering (SSC) assumes that the data points lie in a union of low-dimensional subspaces. The algorithm constructs local connectivity and uses the information for spectral clustering. SSC is an implementation based on basis pursuit for sparse reconstruction for the model without systematic noise, which solves

$$\min_C \|C\|_1 \quad \text{such that} \quad \text{diag}(C) = 0, \quad D = DC$$

for column-stacked data matrix $D$. If you are interested in full implementation of the algorithm with sparse outliers and noise, please contact the maintainer.

**Usage**

```r
SSC(data, k = 2)
```

**Arguments**

- `data` an $(n \times p)$ matrix of row-stacked observations.
- `k` the number of clusters (default: 2).
Value

a named list of S3 class T4cluster containing

cluster a length-n vector of class labels (from 1 : k).

algorithm name of the algorithm.

References


Examples

```r
generate a toy example
set.seed(10)
tester = genLP(n=100, nl=2, np=1, iso.var=0.1)
data = tester$data
label = tester$class

do PCA for data reduction
proj = base::eigen(stats::cov(data))$vectors[,1:2]
dat2 = data%*%proj

run SSC algorithm with k=2, 3, and 4
output2 = SSC(data, k=2)
output3 = SSC(data, k=3)
output4 = SSC(data, k=4)

extract label information
lab2 = output2$cluster
lab3 = output3$cluster
lab4 = output4$cluster

visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(3,4))
plot(dat2[,1],dat2[,2],pch=19,cex=0.3,col=lab2,main="K=2:PCA")
plot(data[,1],data[,2],pch=19,cex=0.3,col=lab2,main="K=2:Axis(1,2)"
plot(data[,1],data[,3],pch=19,cex=0.3,col=lab2,main="K=2:Axis(1,3)"
plot(data[,2],data[,3],pch=19,cex=0.3,col=lab2,main="K=2:Axis(2,3)"

plot(dat2[,1],dat2[,2],pch=19,cex=0.3,col=lab3,main="K=3:PCA")
plot(data[,1],data[,2],pch=19,cex=0.3,col=lab3,main="K=3:Axis(1,2)"
plot(data[,1],data[,3],pch=19,cex=0.3,col=lab3,main="K=3:Axis(1,3)"
plot(data[,2],data[,3],pch=19,cex=0.3,col=lab3,main="K=3:Axis(2,3)"

plot(dat2[,1],dat2[,2],pch=19,cex=0.3,col=lab4,main="K=4:PCA")
plot(data[,1],data[,2],pch=19,cex=0.3,col=lab4,main="K=4:Axis(1,2)"
plot(data[,1],data[,3],pch=19,cex=0.3,col=lab4,main="K=4:Axis(1,3)"
plot(data[,2],data[,3],pch=19,cex=0.3,col=lab4,main="K=4:Axis(2,3)"
par(opar)
```
Subspace Segmentation via Quadratic Programming (SSQP) solves the following problem

$$\min_{Z} \|X - XZ\|^2_F + \lambda \|Z^TZ\|_1 \quad \text{such that } \text{diag}(Z) = 0, \ Z \leq 0$$

where $X \in \mathbb{R}^{p \times n}$ is a column-stacked data matrix. The computed $Z^*$ is used as an affinity matrix for spectral clustering.

Usage

SSQP(data, k = 2, lambda = 1e-05, ...)

Arguments

data an $(n \times p)$ matrix of row-stacked observations.
k the number of clusters (default: 2).
lambda regularization parameter (default: 1e-5).
... extra parameters for the gradient descent algorithm including

maxiter maximum number of iterations (default: 100).
abstol tolerance level to stop (default: 1e-7).

Value

a named list of S3 class T4cluster containing

cluster a length-$n$ vector of class labels (from $1 : k$).
algorithm name of the algorithm.

References

## Examples

```r
generate a toy example
set.seed(10)
tester = genLP(n=100, nl=2, np=1, iso.var=0.1)
data = tester$data
tester = tester$class

do PCA for data reduction
proj = base::eigen(stats::cov(data))$vectors[,1:2]
dat2 = data %*% proj

run SSQP for k=3 with different lambda values
out1 = SSQP(data, k=3, lambda=1e-2)
out2 = SSQP(data, k=3, lambda=1)
out3 = SSQP(data, k=3, lambda=1e+2)

extract label information
lab1 = out1$cluster
lab2 = out2$cluster
lab3 = out3$cluster

visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(dat2, pch=19, cex=0.9, col=lab1, main="SSQP:lambda=1e-2")
plot(dat2, pch=19, cex=0.9, col=lab2, main="SSQP:lambda=1")
plot(dat2, pch=19, cex=0.9, col=lab3, main="SSQP:lambda=1e+2")
par(opar)
```
Index

* algorithm
  dpmeans, 5
  gmm, 15
  gmm03F, 16
  gmm11R, 18
  gmm16G, 19
  kmeans, 23
  kmeans18B, 24
  kmeanspp, 25
  sc05Z, 36
  sc09G, 37
  sc10Z, 39
  sc11Y, 40
  sc12L, 42
  scNJW, 43
  scSM, 45
  scUL, 46
* comparison
  compare.adjrand, 2
  compare.rand, 3, 4
* datasets
  household, 22
* data
  gen3S, 11
  genDONUTS, 12
  genLP, 13
  genSMILEY, 14
  household, 22
* functional
  funhclust, 8
  funkmeans03A, 9
* soc
  pcm, 33
  psm, 35
* sphere
  gskmeans, 21
  spkmeans, 48
* subspace
  EKSS, 6
  LRR, 27
  LRSC, 28
  LSR, 30
  MSM, 31
  predict.MSM, 34
  SSC, 49
  SSQP, 51
  compare.adjrand, 2
  compare.rand, 3, 4
  dpmeans, 5
  EKSS, 6
  funhclust, 8
  funkmeans03A, 9
  gen3S, 11
  genDONUTS, 12
  genLP, 13
  genSMILEY, 14
  gmm, 15
  gmm03F, 16
  gmm11R, 18
  gmm16G, 19
  gskmeans, 21
  hclust, 8
  household, 22, 22
  kmeans, 23
  kmeans18B, 24
  kmeanspp, 25
  LRR, 27
  LRSC, 28
  LSR, 30
  MSM, 31, 34
  pcm, 33, 35
predict.MSM, 34
psm, 33, 35
sc05Z, 36
sc09G, 37
sc10Z, 39
sc11Y, 40
sc12L, 42
scNJV, 36, 37, 39, 42, 43
scSM, 45
scUL, 46
spkmeans, 48
SSC, 49
SSQP, 51