Package ‘StanMoMo’

September 23, 2023

Title Bayesian Mortality Modelling with 'Stan'
Version 1.2.0
Description Implementation of popular mortality models using the 'rstan'
package, which provides the R interface to the 'Stan' C++ library for
Bayesian estimation. The package supports well-known models proposed in the
actuarial and demographic literature including the Lee-Carter (1992)
<doi:10.1111/j.1539-6975.2006.00195.x> models. By a simple call, the user
inputs deaths and exposures and the package outputs the MCMC simulations for
each parameter, the log likelihoods and predictions. Moreover, the package
includes tools for model selection and Bayesian model averaging by leave
future-out validation.

License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
Biarch true
Depends R (>= 3.5.0)
Imports loo, methods, RcppParallel, Rcpp (>= 0.12.0), rstan (>=
 2.26.0), rstantools (>= 2.0.0), tidyverse, dplyr, tibble, htr,
 bridgesampling, stats, utils, tidyselect, latex2exp, tidyr,
 ggplot2
LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0),
 rstan (>= 2.26.0), StanHeaders (>= 2.26.0), RcppParallel
SystemRequirements GNU make
Suggests knitr, rmarkdown, shinystan, Cairo
VignetteBuilder knitr
URL https://github.com/kabarigou/StanMoMo
BugReports https://github.com/kabarigou/StanMoMo/issues
NeedsCompilation yes

1
The 'StanMoMo' package.

Description

The StanMoMo package performs Bayesian Mortality Modeling with Stan for a variety of popular mortality models. The current package supports the Lee-Carter model, the Renshaw-Haberman model, the Age-Period-Cohort model, the Cairns-Blake-Dowd model and the M6 model. By a simple call, the user inputs deaths and exposures and the package outputs the MCMC simulations for each parameter, the log likelihoods and predictions. Moreover, the package includes tools for model selection and Bayesian model averaging by leave-future-out validation.

References

Description

Fit and Forecast Bayesian APC model. The model can be fitted with a Poisson or Negative-Binomial distribution. The function outputs posteriors distributions for each parameter, predicted death rates and log-likelihoods.

Usage

```r
apc_stan(
  death, 
  exposure, 
  forecast, 
  validation = 0, 
  family = c("poisson", "nb"), 
  ... 
)
```

Arguments

death Matrix of deaths.
exposure Matrix of exposures.
forecast Number of years to forecast.
validation Number of years for validation.
family specifies the random component of the mortality model. "Poisson" assumes a Poisson model with log link and "nb" assumes a negative-binomial model with log link and overdispersion parameter \(\phi \).
...
Arguments passed to `rstan::sampling` (e.g. iter, chains).

Details

The created model is either a log-Poisson or a log-Negative-Binomial version of the APC model:

\[
D_{x,t} \sim \mathcal{P}(\mu_{x,t} e_{x,t})
\]

or

\[
D_{x,t} \sim \mathcal{NB}(\mu_{x,t} e_{x,t}, \phi)
\]

with

\[
\log \mu_{x,t} = \alpha_x + \kappa_t + \gamma_{t-x}.
\]

To ensure the identifiability of the model, we impose

\[
\kappa_1 = 0, \gamma_1 = 0, \gamma_C = 0,
\]
where C represents the most recent cohort in the data.

For the priors, we assume that

$$
\alpha_x \sim N(0, 100), \quad \frac{1}{\phi} \sim Half \sim N(0, 1).
$$

For the period term, similar to the LC model, we consider a random walk with drift:

$$
\kappa_t = c + \kappa_{t-1} + \epsilon_t, \quad \epsilon_t \sim N(0, \sigma^2)
$$

with the following hyperparameters assumptions: $c \sim N(0, 10), \sigma \sim Exp(0.1)$.

For the cohort term, we consider a second order autoregressive process (AR(2)):

$$
\gamma_c = \psi_1 \gamma_{c-1} + \psi_2 \gamma_{c-2} + \epsilon_t^\gamma, \quad \epsilon_t^\gamma \sim N(0, \sigma_\gamma).
$$

To close the model specification, we impose some vague priors assumptions on the hyperparameters:

$$
\psi_1, \psi_2 \sim N(0, 10), \quad \sigma_\gamma \sim Exp(0.1).
$$

Value

An object of class stanfit returned by rstan::sampling

References

Examples

#10-year forecasts for French data for ages 50-90 and years 1970-2017 with a log-Poisson model
ages.fit<-70:90
years.fit<-1990:2010
deathFR<FRMaleData$Dxt[formatC(ages.fit),formatC(years.fit)]
exposureFR<FRMaleData$Ext[formatC(ages.fit),formatC(years.fit)]
iterations<-50 # Toy example, consider at least 2000 iterations
fitAPC=apc_stan(death = deathFR, exposure = exposureFR, forecast = 5, family = "poisson",
iter=iterations, chains=1)
The function generates boxplots for the posterior distribution of the main parameters.

Usage

`boxplot_post_dist(stan_fit, parm_name, ages, years)`

Arguments

- `stan_fit`: stan fit object
- `parm_name`: string to indicate the name of the parameter, to choose from c('a', 'b', 'g', 'k', 'k2', 'phi')
- `ages`: range of ages
- `years`: range of years

Value

Posterior distribution shown as boxplots

Examples

```r
years <- 1990:2017
ages <- 50:90
cohorts <- sort(unique(as.vector(sapply(years, function(year) year - ages))))
death <- FRMaleData$Dxt[formatC(ages),formatC(years)]
exposure <- FRMaleData$Ext[formatC(ages),formatC(years)]
iterations<-50 # Toy example, consider at least 2000 iterations
stan_fit <- fit_mo_mo("m6", death, exposure, ages, 0, 5, "nb", 1, 4,
log_marg = FALSE, iter=iterations)
boxplot_post_dist(stan_fit, "k", ages, years)
boxplot_post_dist(stan_fit, "g", ages, years)
```
Bayesian Cairns-Blake-Dowd (CBD) model with Stan

Description

Fit and Forecast Bayesian CBD model. The model can be fitted with a Poisson or Negative-Binomial distribution. The function outputs posteriors distributions for each parameter, predicted death rates and log-likelihoods.

Usage

```r
cbd_stan(
  death,
  exposure,
  age,
  forecast,
  validation = 0,
  family = c("poisson", "nb"),
  ...
)
```

Arguments

- `death`: Matrix of deaths.
- `exposure`: Matrix of exposures.
- `age`: Vector of ages.
- `forecast`: Number of years to forecast.
- `validation`: Number of years for validation.
- `family`: specifies the random component of the mortality model. "Poisson" assumes a Poisson model with log link and "nb" assumes a negative-binomial model with log link and overdispersion parameter \(\phi \).
- `...`: Arguments passed to `rstan::sampling` (e.g. iter, chains).

Details

The created model is either a log-Poisson or a log-Negative-Binomial version of the CBD model:

\[
D_{x,t} \sim \mathcal{P}(\mu_{x,t} e_{x,t})
\]

or

\[
D_{x,t} \sim \mathcal{NB}(\mu_{x,t} e_{x,t}, \phi)
\]

with

\[
\log \mu_{x,t} = \kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)},
\]

where \(\bar{x} \) is the average age in the data.
For the period terms, we consider a multivariate random walk with drift:
\[
\kappa_t = c + \kappa_{t-1} + \epsilon_t, \quad \kappa_t = \begin{pmatrix} \kappa_t^{(1)} \\ \kappa_t^{(2)} \end{pmatrix}, \quad \epsilon_t \sim N(0, \Sigma),
\]
with normal priors: \(c \sim N(0, 10) \).

The variance-covariance matrix of the error term is defined by
\[
\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}
\]
where the variance coefficients have independent exponential priors: \(\sigma_1, \sigma_2 \sim Exp(0.1) \) and the correlation parameter has a uniform prior: \(\rho \sim U[-1, 1] \). As for the other models, the overdispersion parameter has a prior distribution given by
\[
\frac{1}{\phi} \sim Half N(0, 1).
\]

Value
An object of class \texttt{stanfit} returned by \texttt{rstan::sampling}

References

Examples
10-year forecasts for French data for ages 50-90 and years 1970-2017 with a log-NB model
ages.fit<-50:90
years.fit<-1970:2017
deathFR<-FRMaleData$Dxt[formatC(ages.fit),formatC(years.fit)]
exposureFR<-FRMaleData$Ext[formatC(ages.fit),formatC(years.fit)]
iterations<-50 # Toy example, consider at least 2000 iterations
fitCBD=cdb_stan(death = deathFR,exposure=exposureFR, age=ages.fit, forecast = 10,
family = "poisson",iter=iterations,chains=1)
Usage

compute_weights_BMA(stan_fits, mortality_models)

Arguments

- stan_fits: list of Stan model fits where the marginal likelihood was computed via bridge sampling
- mortality_models: vector of mortality models names

Value

data frame with model evidence for BMA

Description

Function to get the a posterior means of the parameters based on a stanfit object

Usage

extract_map(stan_fit)

Arguments

- stan_fit: a stanfit object

Value

named list with the point estimates of the parameters
fit_mo_mo

Wrapper function to fit and forecast mortality models

Description

Wrapper function to fit and forecast mortality models

Usage

```r
fit_mo_mo(
  mortality_model = "lc",
  death,
  exposure,
  ages = 50:90,
  validation = 0,
  forecast = 1,
  family = "nb",
  chains = 1,
  cores = 4,
  log_marg = FALSE,
  iter = 2000
)
```

Arguments

- `mortality_model` name of the mortality model
- `death` death matrix
- `exposure` exposure matrix
- `ages` vector of ages
- `validation` size of the validation set
- `forecast` number of calendar years to be forecast
- `family` underlying count distribution
- `chains` number of Markov chains
- `cores` number of cores used
- `log_marg` Do we compute the marginal likelihood or not?
- `iter` Length of the Markov chain trajectory

Value

a stanfit object
Examples

```r
years <- 1990:2017
ges <- 50:90
cohorts <- sort(unique(as.vector(sapply(years, function(year) year - ages))))
death <- FRMaleData$Dxt[formatC(ages),formatC(years)]
exposure <- FRMaleData$Ext[formatC(ages),formatC(years)]
stan_fit <- fit_mo_mo("m6", death, exposure, ages, 0, 5, "nb", 1, 4,
log_marg = FALSE, iter=50)
boxplot_post_dist(stan_fit, "k", ages, years)
boxplot_post_dist(stan_fit, "g", ages, years)
```

FRMaleData

Deaths and Exposures Data of French Males

Description

List containing deaths and exposures of French Male for ages 0-110 and years 1816-2017.

Usage

FRMaleData

Format

A list of 2 matrices

- **Dxt** Matrix of deaths, with 111 rows (ages) and 202 columns (years)
- **Ext** Matrix of exposures, with 111 rows (ages) and 202 columns (years)

Source

Human Mortality Database https://www.mortality.org/

References

Human Mortality Database (2011). University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Available at https://www.mortality.org/
Bayesian Lee-Carter with Stan

Description

Fit and Forecast Bayesian Lee-Carter model. The model can be fitted with a Poisson or Negative-Binomial distribution. The function outputs posteriors distributions for each parameter, predicted death rates and log-likelihoods.

Usage

```r
lc_stan(
  death,
  exposure,
  forecast,
  validation = 0,
  family = c("poisson", "nb"),
  ...
)
```

Arguments

deadth Matrix of deaths.
exposure Matrix of exposures.
forecast Number of years to forecast.
validation Number of years for validation.
family specifies the random component of the mortality model. "Poisson" assumes a Poisson model with log link and "nb" assumes a negative-binomial model with log link and overdispersion parameter φ.
...
Arguments passed to `rstan::sampling` (e.g. iter, chains).

Details

The created model is either a log-Poisson or a log-Negative-Binomial version of the Lee-Carter model:

\[
D_{x,t} \sim \mathcal{P}(\mu_{x,t} \kappa_t)
\]

or

\[
D_{x,t} \sim \mathcal{NB}(\mu_{x,t} \kappa_t, \phi)
\]

with

\[
\log \mu_{x,t} = \alpha_x + \beta_x \kappa_t.
\]

To ensure the identifiability of the model, we impose

\[
\sum_x \beta_x = 1, \kappa_1 = 0.
\]
For the priors, the model chooses relatively wide priors:

\[\alpha_x \sim N(0, 100), \beta_x \sim Dir(1, \ldots, 1), \frac{1}{\phi} \sim Half - N(0, 1). \]

For the period term, we consider a first order autoregressive process (AR(1)) with linear trend:

\[\kappa_t = c + \kappa_{t-1} + \epsilon_t, \epsilon_t \sim N(0, \sigma^2) \]

with \(c \sim N(0, 10), \sigma \sim Exp(0.1). \)

Value

An object of class `stanfit` returned by `rstan::sampling`.

References

Examples

```r
# 10-year forecasts for French data for ages 50-90 and years 1970-2017 with a log-Poisson model
ages.fit<-50:90
years.fit<-1970:2017
deathFR<-FRMaleData$Dxt[formatC(ages.fit),formatC(years.fit)]
exposureFR<-FRMaleData$Ext[formatC(ages.fit),formatC(years.fit)]
iterations<-50 # Toy example, consider at least 2000 iterations
fitLC=lc_stan(death = deathFR, exposure=exposureFR, forecast = 10,
family = "poisson", iter=iterations, chains=1)
```

m6_stan

Bayesian M6 model with Stan

Description

Fit and Forecast Bayesian M6 model (CBD with cohort effect) introduced in Cairns et al (2009). The model can be fitted with a Poisson or Negative-Binomial distribution. The function outputs posteriors distributions for each parameter, predicted death rates and log-likelihoods.
Usage

m6_stan(
 death,
 exposure,
 forecast,
 age,
 validation = 0,
 family = c("poisson", "nb"),
 ...
)

Arguments

deadth Matrix of deaths.
exposure Matrix of exposures.
forecast Number of years to forecast.
age Vector of ages.
validation Number of years for validation.
family specifies the random component of the mortality model. "Poisson" assumes a Poisson model with log link and "nb" assumes a negative-binomial model with log link and overdispersion parameter ϕ.

Details

The created model is either a log-Poisson or a log-Negative-Binomial version of the M6 model:

$$D_{x,t} \sim \mathcal{P}(\mu_{x,t}e_{x,t})$$

or

$$D_{x,t} \sim \text{NB}(\mu_{x,t}e_{x,t}, \phi)$$

with

$$\log \mu_{x,t} = \kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)} + \gamma_{t-x},$$

where \bar{x} is the average age in the data.

To ensure the identifiability of the model, we impose

$$\gamma_1 = 0, \gamma_C = 0,$$

where C represents the most recent cohort in the data.

For the period terms, we consider a multivariate random walk with drift:

$$\kappa_t = c + \kappa_{t-1} + \epsilon_t^\kappa, \quad \kappa_t = \left(\begin{array}{c} \kappa_t^{(1)} \\ \kappa_t^{(2)} \end{array} \right), \quad \epsilon_t^\kappa \sim N(0, \Sigma),$$

with normal priors: $c \sim N(0, 10)$.
The variance-covariance matrix of the error term is defined by

\[\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix} \]

where the variance coefficients have independent exponential priors: \(\sigma_1, \sigma_2 \sim \text{Exp}(0.1) \) and the correlation parameter has a uniform prior: \(\rho \sim U[-1, 1] \). As for the other models, the overdispersion parameter has a prior distribution given by

\[\frac{1}{\phi} \sim \text{Half-N}(0, 1). \]

For the cohort term, we consider a second order autoregressive process (AR(2)):

\[\gamma_c = \psi_1 \gamma_{c-1} + \psi_2 \gamma_{c-2} + \epsilon_c^1, \quad \epsilon_c^1 \sim N(0, \sigma_\gamma). \]

To close the model specification, we impose some vague priors assumptions on the hyperparameters:

\[\psi_1, \psi_2 \sim N(0, 10), \quad \sigma_\gamma \sim \text{Exp}(0.1). \]

Value

An object of class \text{stanfit} returned by \text{rstan::sampling}.

References

Examples

#10-year forecasts for French data for ages 50-90 and years 1970-2017 with a log-Poisson model
ages.fit<-70:90
years.fit<-1970:2010
deathFR<-FRMaleData$Dxt[formatC(ages.fit),formatC(years.fit)]
exposureFR<-FRMaleData$Ext[formatC(ages.fit),formatC(years.fit)]
iterations<-5000 # Toy example, consider at least 2000 iterations
fitM6=m6_stan(death = deathFR, exposure=exposureFR, age=ages.fit, forecast = 5, family = "poisson", iter=iterations, chains=1)
mortality_weights

Model averaging/weighting via future-out stacking or pseudo-BMA weighting

Description

Usage

mortality_weights(X)

Arguments

X
A list of stanfit objects.

Details

Mortality model averaging via stacking of predictive distributions or pseudo-BMA weighting. Both approaches were proposed in Yao et al. (2018) based leave-one-out cross-validation which is not suited for forecasting. Barigou et al. (2021) adapted both approaches based on leave-future-out validation which is more appropriate for mortality forecasting.

The stacking method combines all models by maximizing the leave-future-out predictive density of the combination distribution. That is, it finds the optimal linear combining weights for maximizing the leave-future-out log score.

The pseudo-BMA method finds the relative weights proportional to the expected log predictive density of each model.

Similar to Yao et al. (2018), we recommend stacking for averaging predictive distributions as pseudo-BMA tends to select only one model.

Value

A matrix containing one weight for each model and each approach.

References

Examples

#10-year forecasts for French data for ages 50-90 and years 1970-2017 with a log-Poisson model
#where the 10 last years are held out for validation. We search for the model weights between
#the Lee-Carter model and the RH model (Lee-Carter with cohort effect).
ages.fit<-50:90
years.fit<-1970:2017
deathFR<-$FRMaleData$Dxt[formatC(ages.fit),formatC(years.fit)]
exposureFR<-$FRMaleData$Ext[formatC(ages.fit),formatC(years.fit)]
iterations<-1000 # Toy example, consider at least 2000 iterations
fitLC=lc_stan(death = deathFR,exposure=exposureFR, forecast = 10, validation=10,
family = "poisson",iter=iterations,chains=1)
fitRH=rh_stan(death = deathFR,exposure=exposureFR, forecast = 10, validation=10,
family = "poisson",iter=iterations,chains=1)
model_weights<-mortality_weights(list(fitLC,fitRH))

rh_stan

Bayesian Renshaw-Haberman model with Stan

Description

Fit and Forecast Bayesian Renshaw-Haberman model (Lee-Carter with cohort effect) introduced
in Renshaw and Haberman (2006). The model can be fitted with a Poisson or Negative-Binomial
distribution. The function outputs posteriors distributions for each parameter, predicted death rates
and log-likelihoods.

Usage

rh_stan(
 death,
 exposure,
 forecast,
 validation = 0,
 family = c("poisson", "nb"),
 ...
)

Arguments

depth | Matrix of deaths.
exposure | Matrix of exposures.
forecast | Number of years to forecast.
validation | Number of years for validation.
family specifies the random component of the mortality model. "Poisson" assumes a Poisson model with log link and "nb" assumes a negative-binomial model with log link and overdispersion parameter φ.

Arguments passed to `rstan::sampling` (e.g. iter, chains).

Details

The created model is either a log-Poisson or a log-Negative-Binomial version of the Renshaw-Haberman model:

\[
D_{x,t} \sim \mathcal{P} (\mu_{x,t}e_{x,t})
\]

or

\[
D_{x,t} \sim \mathcal{NB} (\mu_{x,t}e_{x,t}, \phi)
\]

with

\[
\log \mu_{x,t} = \alpha_x + \beta_x \kappa_t + \gamma_{t-x}.
\]

To ensure the identifiability of the model, we impose

\[
\kappa_1 = 0, \gamma_1 = 0, \sum gamma_i = 0, \gamma_C = 0,
\]

where C represents the most recent cohort in the data.

For the priors, the model chooses wide priors:

\[
\alpha_x \sim N(0, 100), \beta_x \sim Dir(1, \ldots, 1), \frac{1}{\phi} \sim Half - N(0, 1).
\]

For the period term, we consider the standard random walk with drift:

\[
\kappa_t = c + \kappa_{t-1} + \epsilon_t, \epsilon_t \sim N(0, \sigma^2)
\]

with \(c \sim N(0, 10), \sigma \sim Exp(0.1)\).

For the cohort term, we consider a second order autoregressive process (AR(2)):

\[
\gamma_c = \psi_1 \gamma_{c-1} + \psi_2 \gamma_{c-2} + \epsilon_c^\gamma, \quad \epsilon_c^\gamma \sim N(0, \sigma_\gamma).
\]

To close the model specification, we impose some vague priors assumptions on the hyperparameters:

\[
\psi_1, \psi_2 \sim N(0, 10), \quad \sigma_\gamma \sim Exp(0.1).
\]

Value

An object of class `stanfit` returned by `rstan::sampling`.

References

Examples

10-year forecasts for French data for ages 50-90 and years 1970-2017 with a log-Poisson model
ages.fit<-70:90
years.fit<-1990:2010
deathFR<-FRMaleData$Dxt[formatC(ages.fit), formatC(years.fit)]
exposureFR<-FRMaleData$Ext[formatC(ages.fit), formatC(years.fit)]
iterations<-50 # Toy example, consider at least 2000 iterations
fitRH=rh_stan(death = deathFR, exposure=exposureFR, forecast = 5, family = "poisson", iter=iterations, chains=1)

sim_death_apc

Simulation of death counts from the Age-Period-Cohort mortality model

Description

Simulation of death counts from the Age-Period-Cohort mortality model

Usage

`sim_death_apc(a, k, g, phi, years, ages, exposure)`

Arguments

- **a**: vector of age component
- **k**: vector of period component
- **g**: vector of cohort component
- **phi**: dispersion parameter
- **years**: vector of calendar years
- **ages**: vectors of ages
- **exposure**: matrix of exposure data

Value

matrix of death count
sim_death_cbd
Simulation of death counts from the CBD model

Description
Simulation of death counts from the CBD model

Usage
```
sim_death_cbd(k, k2, phi, years, ages, exposure)
```

Arguments
- **k**: first vector of period component
- **k2**: second vector of period component
- **phi**: dispersion parameter
- **years**: vector of calendar years
- **ages**: vectors of ages
- **exposure**: matrix of exposure data

Value
matrix of death count

sim_death_lc
Simulation of death counts from the Lee-Carter mortality model

Description
Simulation of death counts from the Lee-Carter mortality model

Usage
```
sim_death_lc(a, b, k, phi, exposure)
```

Arguments
- **a**: vector of age component
- **b**: vector of age/year component
- **k**: vector of year component
- **phi**: dispersion parameter
- **exposure**: matrix of exposure data

Value
matrix of death count
sim_death_m6
Simulation of death counts from the M6 model

Description
Simulation of death counts from the M6 model

Usage
sim_death_m6(k, k2, g, phi, years, ages, exposure)

Arguments
- **k**: first vector of period component
- **k2**: second vector of period component
- **g**: vector of cohort component
- **phi**: dispersion parameter
- **years**: vector of calendar years
- **ages**: vectors of ages
- **exposure**: matrix of exposure data

Value
matrix of death count

sim_death_mix_cbd_rh
Simulation of death counts from a hybrid model that averages the mortality rates from the cbd and rh models

Description
Simulation of death counts from a hybrid model that averages the mortality rates from the cbd and rh models

Usage
sim_death_mix_cbd_rh(params_cbd, params_rh, years, ages, exposure, q)

Arguments
- **params_cbd**: named list that contains the parameters of the cbd model
- **params_rh**: named list that contains the parameters of the rh model
- **years**: vector of calendar year
- **ages**: vector of ages
- **exposure**: matrix of exposure data
- **q**: mixing parameter (0 <= rh, 1 <= cbd)
sim_death_rh

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>matrix of death count</td>
</tr>
</tbody>
</table>

Description

Simulation of death counts from the Renshaw-Haberman mortality model

Usage

```r
sim_death_rh(a, b, k, g, phi, years, ages, exposure)
```

Arguments

- `a` vector of age component
- `b` vector of age/year component
- `k` vector of period component
- `g` vector of cohort component
- `phi` dispersion parameter
- `years` vector of calendar years
- `ages` vectors of ages
- `exposure` matrix of exposure data

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>matrix of death count</td>
</tr>
</tbody>
</table>

sim_mortality_data

| Simulation of mortality data from various models |

Description

Simulation of mortality data from various models

Usage

```r
sim_mortality_data(a, k, k2, b, g, phi, years, ages, exposure, mortality_model)
```
Arguments

- `a`: vector of age component
- `k`: first vector of time component
- `k2`: second vector of time component
- `b`: vector of age/time component
- `g`: vector of cohort component
- `phi`: dispersion parameter
- `years`: vector of calendar year
- `ages`: vector of ages
- `exposure`: matrix of exposure
- `mortality_model`: name of the mortality model that we simulate from

Value

- matrix of death counts
Index

* datasets
 FRMaleData, 10
 apc_stan, 3
 boxplot_post_dist, 5
 cbd_stan, 6
 compute_weights_BMA, 7
 extract_map, 8
 fit_mo_mo, 9
 FRMaleData, 10
 lc_stan, 11
 m6_stan, 12
 mortality_weights, 15
 rh_stan, 16
 sim_death_apc, 18
 sim_death_cbd, 19
 sim_death_lc, 19
 sim_death_m6, 20
 sim_death_mix_cbd_rh, 20
 sim_death_rh, 21
 sim_mortality_data, 21
 StanMoMo (StanMoMo-package), 2
 StanMoMo-package, 2