Package ‘SpatialEpi’

August 2, 2021

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Methods and Data for Spatial Epidemiology</td>
</tr>
<tr>
<td>Version</td>
<td>1.2.5</td>
</tr>
<tr>
<td>Maintainer</td>
<td>Albert Y. Kim albert.ys.kim@gmail.com</td>
</tr>
<tr>
<td>Description</td>
<td>Methods and data for cluster detection and disease mapping.</td>
</tr>
<tr>
<td>Depends</td>
<td>R (>= 3.0.2), sp</td>
</tr>
<tr>
<td>License</td>
<td>GPL-2</td>
</tr>
<tr>
<td>LazyData</td>
<td>true</td>
</tr>
</tbody>
</table>

URL	https://github.com/rudeboybert/SpatialEpi
BugReports	https://github.com/rudeboybert/SpatialEpi/issues
Imports	Rcpp, MASS, maptools, spdep
LinkingTo	Rcpp, RcppArmadillo
NeedsCompilation	yes
RoxygenNote	7.1.1
Suggests	rmarkdown, markdown, knitr, testthat (>= 3.0.0), ggplot2, dplyr

Config/testthat/edition	3
VignetteBuilder	knitr
Encoding	UTF-8
Author	Cici Chen [ctb], Albert Y. Kim [aut, cre] (<https://orcid.org/0000-0001-7824-306X>), Michelle Ross [ctb], Jon Wakefield [aut], Mikael Moise [aut] (<https://orcid.org/0000-0002-3608-1178>)
Repository	CRAN
Date/Publication	2021-08-02 07:40:02 UTC
Description

Implementation of the Bayesian Cluster detection model of Wakefield and Kim (2013) for a study region with \(n \) areas. The prior and posterior probabilities of each of the \(n \) zones single zones being a cluster/anti-cluster are estimated using Markov chain Monte Carlo. Furthermore, the posterior probability of \(k \) clusters/anti-clusters is computed.

Usage

```r
bayes_cluster(
  y,
  E,
  population,
  sp.obj,
  centroids,
)```

### R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bayes_cluster</td>
<td>2</td>
</tr>
<tr>
<td>besag_newell</td>
<td>5</td>
</tr>
<tr>
<td>circle</td>
<td>7</td>
</tr>
<tr>
<td>create_geo_objects</td>
<td>8</td>
</tr>
<tr>
<td>eBayes</td>
<td>9</td>
</tr>
<tr>
<td>EBpostdens</td>
<td>10</td>
</tr>
<tr>
<td>EBpostthresh</td>
<td>11</td>
</tr>
<tr>
<td>estimate_lambda</td>
<td>12</td>
</tr>
<tr>
<td>expected</td>
<td>13</td>
</tr>
<tr>
<td>GammaPriorCh</td>
<td>14</td>
</tr>
<tr>
<td>grid2latlong</td>
<td>15</td>
</tr>
<tr>
<td>kuldorff</td>
<td>16</td>
</tr>
<tr>
<td>latlong2grid</td>
<td>18</td>
</tr>
<tr>
<td>LogNormalPriorCh</td>
<td>20</td>
</tr>
<tr>
<td>mapvariable</td>
<td>21</td>
</tr>
<tr>
<td>NYleukemia</td>
<td>22</td>
</tr>
<tr>
<td>NYleukemia_sf</td>
<td>23</td>
</tr>
<tr>
<td>pennLC</td>
<td>24</td>
</tr>
<tr>
<td>pennLC_sf</td>
<td>25</td>
</tr>
<tr>
<td>plotmap</td>
<td>26</td>
</tr>
<tr>
<td>polygon2spatial_polygon</td>
<td>27</td>
</tr>
<tr>
<td>process_MCMC_sample</td>
<td>28</td>
</tr>
<tr>
<td>scotland</td>
<td>29</td>
</tr>
<tr>
<td>scotland_sf</td>
<td>30</td>
</tr>
<tr>
<td>zones</td>
<td>31</td>
</tr>
</tbody>
</table>

**Index**  
33
max.prop, shape, rate, J, pi0, n.sim.lambda, n.sim.prior, n.sim.post, burnin.prop = 0.1, theta.init = vector(mode = "numeric", length = 0)
}

Arguments

y vector of length n of the observed number of disease in each area
E vector of length n of the expected number of disease in each area
population vector of length n of the population in each area
sp.obj an object of class SpatialPolygons
centroids n x 2 table of the (x,y)-coordinates of the area centroids. The coordinate system must be grid-based
max.prop maximum proportion of the study region’s population each single zone can contain
shape vector of length 2 of narrow/wide shape parameter for gamma prior on relative risk
rate vector of length 2 of narrow/wide rate parameter for gamma prior on relative risk
J maximum number of clusters/anti-clusters
pi0 prior probability of no clusters/anti-clusters
n.sim.lambda number of importance sampling iterations to estimate lambda
n.sim.prior number of MCMC iterations to estimate prior probabilities associated with each single zone
n.sim.post number of MCMC iterations to estimate posterior probabilities associated with each single zone
burnin.prop proportion of MCMC samples to use as burn-in
theta.init Initial configuration used for MCMC sampling

Value

List containing return(list( prior.map=prior.map, post.map=post.map, pk.y=pk.y))

class bayes_cluster

prior.map A list containing, for each area: 1) high.area the prior probability of cluster membership, 2) low.area anti-cluster membership, and 3) RR.est.area smoothed prior estimates of relative risk

post.map A list containing, for each area: 1) high.area the posterior probability of cluster membership, 2) low.area anti-cluster membership, and 3) RR.est.area smoothed posterior estimates of the relative risk

pk.y posterior probability of k clusters/anti-clusters given y for k=0,...,J
Author(s)
Albert Y. Kim

References

Examples

```r
Note for the NYleukemia example, 4 census tracts were completely surrounded
by another unique census tract; when applying the Bayesian cluster detection
model in [bayes_cluster()], we merge them with the surrounding
census tracts yielding `n=277` areas.
##
Load data and convert coordinate system from latitude/longitude to grid
data(NYleukemia)
sp.obj <- NYleukemia$spatial.polygon
population <- NYleukemia$data$population
cases <- NYleukemia$data$cases
centroids <- latlong2grid(NYleukemia$geo[, 2:3])
##
Identify the 4 census tract to be merged into their surrounding census tracts
remove <- NYleukemia$surrounded
add <- NYleukemia$surrounding
##
Merge population and case counts and geographical objects accordingly
population[add] <- population[add] + population[remove]
population <- population[-remove]
cases[add] <- cases[add] + cases[remove]
cases <- cases[-remove]
sp.obj <-
SpatialPolygons(sp.obj@polygons[-remove], proj4string=CRS("+proj=longlat +ellps=WGS84"))
centroids <- centroids[-remove,]
##
Set parameters
y <- cases
E <- expected(population, cases, 1)
max.prop <- 0.15
shape <- c(2976.3, 2.31)
rate <- c(2977.3, 1.31)
J <- 7
pi0 <- 0.95
n.sim.lambda <- 10^4
n.sim.prior <- 10^5
n.sim.post <- 10^5
##
(Uncomment first) Compute output
output <- bayes_cluster(y, E, population, sp.obj, centroids, max.prop,
shape, rate, J, pi0, n.sim.lambda, n.sim.prior, n.sim.post)
plotmap(output$prior.map$high.area, sp.obj)
plotmap(output$post.map$high.area, sp.obj)
plotmap(output$post.map$RR.est.area, sp.obj, log=TRUE)
```
#barplot(output$pk.y, names.arg=0:J, xlab="k", ylab="P(k|y)")

**Description**

Besag-Newell cluster detection method. There are differences with the original paper and our implementation:

- we base our analysis on $k$ cases, rather than $k$ other cases as prescribed in the paper.
- we do not subtract 1 from the accumulated numbers of other cases and accumulated numbers of others at risk, as was prescribed in the paper to discount selection bias.
- $M$ is the total number of areas included, not the number of additional areas included. i.e. $M$ starts at 1, not 0.
- p-values are not based on the original value of $k$, rather the actual number of cases observed until we view $k$ or more cases. Ex: if $k = 10$, but as we consider neighbors we encounter 1, 2, 9 then 12 cases, we base our $p$-values on $k = 12$.
- we do not provide a Monte-Carlo simulated $R$: the number of tests that attain significance at a fixed level $\alpha$.

The first two and last differences are because we view the testing on an area-by-area level, rather than a case-by-case level.

**Usage**

besag_newell(geo, population, cases, expected.cases = NULL, k, alpha.level)

**Arguments**

- geo: an n x 2 table of the (x,y)-coordinates of the area centroids.
- population: aggregated population counts for all n areas.
- cases: aggregated case counts for all n areas.
- expected.cases: expected numbers of disease for all n areas.
- k: number of cases to consider.
- alpha.level: alpha-level threshold used to declare significance.

**Details**

For the population and cases tables, the rows are bunched by areas first, and then for each area, the counts for each strata are listed. It is important that the tables are balanced: the strata information are in the same order for each area, and counts for each area/strata combination appear exactly once (even if zero).
Value

List containing

clusters information on all clusters that are $\alpha$-level significant, in decreasing order of the $p$-value

p.values for each of the $n$ areas, $p$-values of each cluster of size at least $k$

m.values for each of the $n$ areas, the number of areas need to observe at least $k$ cases

observed.k.values based on m.values, the actual number of cases used to compute the $p$-values

Note

The clusters list elements are themselves lists reporting:

- location.IDs.included ID's of areas in cluster, in order of distance
- population population of cluster
- number.of.cases number of cases in cluster
- expected.cases expected number of cases in cluster
- SMR estimated SMR of cluster
- p.value $p$-value

Author(s)

Albert Y. Kim

References


Examples

```r
Load Pennsylvania Lung Cancer Data
data(pennLC)
data <- pennLC$data

Process geographical information and convert to grid
geo <- pennLC$geo[,2:3]
geo <- latlong2grid(geo)

Get aggregated counts of population and cases for each county
population <- tapply(data$population, data$county, sum)
cases <- tapply(data$cases, data$county, sum)

Based on the 16 strata levels, computed expected numbers of disease
n.strata <- 16
expected.cases <- expected(data$population, data$cases, n.strata)
```
## Set Parameters
k <- 1250
alpha.level <- 0.05

# not controlling for stratas
results <- besag_newell(geo, population, cases, expected.cases=NULL, k, alpha.level)

# controlling for stratas
results <- besag_newell(geo, population, cases, expected.cases, k, alpha.level)

---

**circle**

*Compute cartesian coordinates of a cluster center and radius*

### Description
This function is used for plotting purposes.

### Usage

circle(geo, cluster.center, cluster.end)

### Arguments

- **geo**: A n x 2 table of the x-coordinate and y-coordinates of the centroids of each area.
- **cluster.center**: The area index (an integer between 1 and n) indicating the center of the circle.
- **cluster.end**: The area index (an integer between 1 and n) indicating the area at the end of the circle.

### Value

- **cluster.radius**: A data frame that you can plot.

### Author(s)

Albert Y. Kim

### Examples

data(pennLC)
geo <- pennLC$geo[,2:3]
plot(geo,type='n')
text(geo,labels=1:nrow(geo))
lines( circle(geo, 23, 46), col = "red" )
create_geo_objects

Create geographical objects to be used in Bayesian Cluster Detection Method

Description

This internal function creates the geographical objects needed to run the Bayesian cluster detection method in `bayes_cluster()`. Specifically it creates all single zones based data objects, where single zones are the zones defined by Kulldorff (1997).

Usage

```r
create_geo_objects(max.prop, population, centroids, sp.obj)
```

Arguments

- `max.prop`: maximum proportion of study region’s population each single zone can contain
- `population`: vector of length n of the population of each area
- `centroids`: n x 2 table of the (x,y)-coordinates of the area centroids. The coordinate system must be grid-based
- `sp.obj`: object of class SpatialPolygons (See SpatialPolygons-class) representing the study region

Value

- `overlap`: list with two elements: 1. presence which lists for each area all the single zones it is present in and 2. cluster.list for each single zone its component areas
- `cluster.coords`: n.zones x 2 matrix of the center and radial area of each single zone

Author(s)

Albert Y. Kim

References


Examples

```r
data(pennLC)
max.prop <- 0.15
population <- tapply(pennLC$data$population, pennLC$data$county, sum)
centroids <-latlong2grid(pennLC$geo[, 2:3])
sp.obj <- pennLC$spatial.polygon
output <- create_geo_objects(max.prop, population, centroids, sp.obj)
number of single zones
nrow(output$cluster.coords)
```
Description

The computes empirical Bayes estimates of relative risk of study region with n areas, given observed and expected numbers of counts of disease and covariate information.

Usage

eBayes(Y, E, Xmat = NULL)

Arguments

Y  a length n vector of observed cases
E  a length n vector of expected number of cases
Xmat  n x p dimension matrix of covariates

Value

A list with 5 elements:

RR  the ecological relative risk posterior mean estimates
RRmed  the ecological relative risk posterior median estimates
beta  the MLE’s of the regression coefficients
alpha  the MLE of negative binomial dispersion parameter
SMR  the standardized mortality/morbidity ratio Y/E

References


Examples

data(scotland)
data <- scotland$data
x <- data$AFF
Xmat <- cbind(x,x^2)
results <- eBayes(data$cases,data$expected,Xmat)
scotland.map <- scotland$spatial.polygon
mapvariable(results$RR, scotland.map)
EBpostdens

Produce plots of empirical Bayes posterior densities when the data Y are Poisson with expected number E and relative risk theta, with the latter having a gamma distribution with known values alpha and beta, which are estimated using empirical Bayes.

Description

This function produces plots of empirical Bayes posterior densities which are gamma distributions with parameters \((\alpha + Y, (\alpha + E \cdot \mu) / \mu)\) where \(\mu = \exp(\beta)\). The SMRs are drawn on for comparison.

Usage

```r
EBpostdens(
 Y, E, alpha, beta, Xrow = NULL, lower = NULL, upper = NULL, main = ""
)
```

Arguments

- **Y**: observed disease counts
- **E**: expected disease counts
- **alpha**: x
- **beta**: x
- **Xrow**: x
- **lower**: x
- **upper**: x
- **main**: x

Value

A plot containing the gamma posterior distribution

Author(s)

Jon Wakefield
Examples

data(scotland)
Y <- scotland$data$cases
E <- scotland$data$expected
ebresults <- eBayes(Y,E)
EBpostdens(Y[1], E[1], ebresults$alpha, ebresults$beta, lower=0, upper=15,
    main="Area 1")

---

EBpostthresh

Produce the probabilities of exceeding a threshold given a posterior gamma distribution.

Description

This function produces the posterior probabilities of exceeding a threshold given a gamma distributions with parameters (alpha+Y, (alpha+E*mu)/mu) where mu = exp(x beta). This model arises from Y being Poisson with mean theta times E where theta is the relative risk and E are the expected numbers. The prior on theta is gamma with parameters alpha and beta. The parameters alpha and beta may be estimated using empirical Bayes.

Usage

EBpostthresh(Y, E, alpha, beta, Xrow = NULL, rrthresh)

Arguments

Y observed disease counts
E expected disease counts
alpha x
beta x
Xrow x
rrthresh x

Value

Posterior probabilities of exceedence are returned.

Author(s)

Jon Wakefield

See Also

eBayes()
### estimate_lambda

**Estimate lambda values**

**Description**

Internal function to estimate values of lambda needed for \texttt{MCMC_simulation} and prior probability of \(k\) clusters/anti-clusters for \(k=0,...,J\)

**Usage**

\[
\text{estimate_lambda}(n.\text{sim}, J, \text{prior.z}, \text{overlap}, \pi_0)
\]

**Arguments**

- \(n.\text{sim}\) number of importance sampling iterations
- \(J\) maximum number of clusters/anti-clusters to consider
- \(\text{prior.z}\) prior probability of each single zone
- \(\text{overlap}\) output of \texttt{create_geo_objects()}: list with two elements: \texttt{presence} which lists for each area all the single zones it is present in and \texttt{cluster_list} for each single zone its component areas
- \(\pi_0\) prior probability of no clusters

**Value**

estimates of lambda and prior \(j\)

**References**

expected  

*Compute Expected Numbers of Disease*

**Description**
Compute the internally indirect standardized expected numbers of disease.

**Usage**
```r
expected(population, cases, n.strata)
```

**Arguments**
- `population`: a vector of population counts for each strata in each area
- `cases`: a vector of the corresponding number of cases
- `n.strata`: number of strata considered

**Details**
The `population` and `cases` vectors must be *balanced*: all counts are sorted by area first, and then within each area the counts for all strata are listed (even if 0 count) in the same order.

**Value**
- `expected.cases`: a vector of the expected numbers of disease for each area

**Author(s)**
Albert Y. Kim

**References**

**Examples**
```r
data(pennLC)
population <- pennLC$data$population
cases <- pennLC$data$cases
In each county in Pennsylvania, there are 2 races, gender and 4 age bands
considered = 16 strata levels
pennLC$data[1:16,]
expected(population, cases, 16)
```
Compute Parameters to Calibrate a Gamma Distribution

Description

Compute parameters to calibrate the prior distribution of a relative risk that has a gamma distribution.

Usage

GammaPriorCh(theta, prob, d)

Arguments

theta upper quantile
prob upper quantile
d degrees of freedom

Value

List containing

a shape parameter
b rate parameter

Author(s)

Jon Wakefield

See Also

LogNormalPriorCh

Examples

param <- GammaPriorCh(5, 0.975,1)
curve(dgamma(x,shape=param$a,rate=param$b),from=0,to=6,n=1000,ylab="density")
grid2latlong

Convert Coordinates from Grid to Latitude/Longitude

Description

Convert geographic coordinates from Universal Transverse Mercator system to Latitude/Longitude.

Usage

grid2latlong(input)

Arguments

input A data frame with columns named x and y of the UTM coordinates to convert or an n x 2 matrix of grid coordinates or an object of class SpatialPolygons (See SpatialPolygons-class)

Details

Longitude/latitudes are not a grid-based coordinate system: latitudes are equidistant but the distance between longitudes varies.

Value

Either a data frame with the corresponding longitude and latitude, or a SpatialPolygons object with the coordinates changed.

Note

Rough conversion of US lat/long to km (used by GeoBUGS): (see also forum.swarthmore.edu/dr.math/problems/longandlat.html)

Radius of earth: r = 3963.34 (equatorial) or 3949.99 (polar) mi = 6378.2 or 6356.7 km, which implies: km per mile = 1.609299 or 1.609295 a change of 1 degree of latitude corresponds to the same number of km, regardless of longitude. arclength=theta, so the multiplier for coordN$y should probably be just the radius of earth. On the other hand, a change of 1 degree in longitude corresponds to a different distance, depending on latitude. (at N pole, the change is essentially 0. at the equator, use equatorial radius. Perhaps for U.S., might use an "average" latitude, 30 deg is roughly Houston, 49deg is most of N bdry of continental 48 states. 0.5(30+49)=39.5 deg. so use r approx 6378.2sin(51.5)

Author(s)

Lance A. Waller
Examples

coord <- data.frame(rbind(
# Montreal, QC
  c(-6414.30, 5052.849),
# Vancouver, BC
  c(-122.6042, 45.6605)
))

grid2latlong(coord)

describe

kulldorff

kulldorff Cluster Detection Method

Description

Kulldorff spatial cluster detection method for a study region with \( n \) areas. The method constructs zones by consecutively aggregating nearest-neighboring areas until a proportion of the total study population is included. Given the observed number of cases, the likelihood of each zone is computed using either binomial or poisson likelihoods. The procedure reports the zone that is the most likely cluster and generates significance measures via Monte Carlo sampling. Further, secondary clusters, whose Monte Carlo p-values are below the \( \alpha \)-threshold, are reported as well.

Usage

kulldorff(
  geo,
  cases,
  population,
  expected.cases = NULL,
  pop.upper.bound,
  n.simulations,
  alpha.level,
  plot = TRUE
)

Arguments

geo
  an \( n \times 2 \) table of the (x,y)-coordinates of the area centroids

cases
  aggregated case counts for all \( n \) areas

population
  aggregated population counts for all \( n \) areas

expected.cases
  expected numbers of disease for all \( n \) areas

pop.upper.bound
  the upper bound on the proportion of the total population each zone can include

n.simulations
  number of Monte Carlo samples used for significance measures

alpha.level
  alpha-level threshold used to declare significance

plot
  flag for whether to plot histogram of Monte Carlo samples of the log-likelihood of the most likely cluster
Details

If expected.cases is specified to be NULL, then the binomial likelihood is used. Otherwise, a Poisson model is assumed. Typical values of n.simulations are 99, 999, 9999.

Value

List containing:

- most.likely.cluster
  - information on the most likely cluster
- secondary.clusters
  - information on secondary clusters, if none NULL is returned
- type
  - type of likelihood
- log.lkhd
  - log-likelihood of each zone considered
- simulated.log.lkhd
  - n.simulations Monte Carlo samples of the log-likelihood of the most likely cluster

Note

The most.likely.cluster and secondary.clusters list elements are themselves lists reporting:

- location.IDs.included
  - ID’s of areas in cluster, in order of distance
- population
  - population of cluster
- number.of.cases
  - number of cases in cluster
- expected.cases
  - expected number of cases in cluster
- SMR
  - estimated SMR of cluster
- log.likelihood.ratio
  - log-likelihood of cluster
- monte.carlo.rank
  - rank of lkhd of cluster within Monte Carlo simulated values
- p.value
  - Monte Carlo p-value

Author(s)

Albert Y. Kim

References


Examples

```r
Load Pennsylvania Lung Cancer Data
```
data(pennLC)
data <- pennLC$data

## Process geographical information and convert to grid
geo <- pennLC$geo[,2:3]
geo <- latlong2grid(geo)

## Get aggregated counts of population and cases for each county
population <- tapply(data$population, data$county, sum)
cases <- tapply(data$cases, data$county, sum)

## Based on the 16 strata levels, computed expected numbers of disease
n.strata <- 16
expected.cases <- expected(data$population, data$cases, n.strata)

## Set Parameters
pop.upper.bound <- 0.5
n.simulations <- 999
alpha.level <- 0.05
plot <- TRUE

## Kulldorff using Binomial likelihoods
binomial <- kulldorff(geo, cases, population, NULL, pop.upper.bound, n.simulations,
                        alpha.level, plot)
cluster <- binomial$most.likely.cluster$location.IDs.included

## plot
plot(pennLC$spatial.polygon, axes=TRUE)
plot(pennLC$spatial.polygon[cluster], add=TRUE, col="red")
title("Most Likely Cluster")

## Kulldorff using Poisson likelihoods
poisson <- kulldorff(geo, cases, population, expected.cases, pop.upper.bound,
                       n.simulations, alpha.level, plot)
cluster <- poisson$most.likely.cluster$location.IDs.included

## plot
plot(pennLC$spatial.polygon, axes=TRUE)
plot(pennLC$spatial.polygon[cluster], add=TRUE, col="red")
title("Most Likely Cluster Controlling for Strata")

---

**latlong2grid**

Convert Coordinates from Latitude/Longitude to Grid

**Description**

Convert geographic latitude/longitude coordinates to kilometer-based grid coordinates.

**Usage**

latlong2grid(input)
Arguments

input

either an n x 2 matrix of longitude and latitude coordinates in decimal format or an object of class SpatialPolygons

Details

Longitude/latitudes are not a grid-based coordinate system: latitudes are equidistant but the distance between longitudes varies.

Value

Either a data frame with the corresponding (x,y) kilometer-based grid coordinates, or a SpatialPolygons object with the coordinates changed.

Note

Rough conversion of US lat/long to km (used by GeoBUGS): (see also forum.swarthmore.edu/dr.math/problems/longandlat.html). Radius of earth: \( r = 3963.34 \) (equatorial) or 3949.99 (polar) mi = 6378.2 or 6356.7 km, which implies: km per mile = 1.609299 or 1.609295 a change of 1 degree of latitude corresponds to the same number of km, regardless of longitude. arclength=r*theta, so the multiplier for coord$y should probably be just the radius of earth. On the other hand, a change of 1 degree in longitude corresponds to a different distance, depending on latitude. (at N pole, the change is essentially 0. at the equator, use equatorial radius.

Author(s)

Lance A. Waller

Examples

```r
Convert coordinates
coord <- data.frame(rbind(
 # Montreal, QC: Latitude: 45deg 28' 0" N (deg min sec), Longitude: 73deg 45' 0" W
c(-73.7500, 45.4667),
 # Vancouver, BC: Latitude: 45deg 39' 38" N (deg min sec), Longitude: 122deg 36' 15" W
c(-122.6042, 45.6605)
))
latlong2grid(coord)
Convert SpatialPolygon
data(pennLC)
new <- latlong2grid(pennLC$spatial.polygon)
par(mfrow=c(1,2))
plot(pennLC$spatial.polygon,axes=TRUE)
title("Lat/Long")
plot(new,axes=TRUE)
title("Grid (in km)")
```
LogNormalPriorCh

Compute Parameters to Calibrate a Log-normal Distribution

Description

Compute parameters to calibrate the prior distribution of a relative risk that has a log-normal distribution.

Usage

LogNormalPriorCh(theta1, theta2, prob1, prob2)

Arguments

- theta1: lower quantile
- theta2: upper quantile
- prob1: lower probability
- prob2: upper probability

Value

A list containing

- mu: mean of log-normal distribution
- sigma: variance of log-normal distribution

Author(s)

Jon Wakefield

Examples

# Calibrate the log-normal distribution s.t. the 95% confidence interval is [0.2, 5]
param <- LogNormalPriorCh(0.2, 5, 0.025, 0.975)
curve(dlnorm(x,param$mu,param$sigma), from=0, to=6, ylab="density")
mapvariable

Plot Levels of a Variable in a Colour-Coded Map

Description

Plot levels of a variable in a colour-coded map along with a legend.

Usage

```r
mapvariable(
 y, spatial.polygon, ncut = 1000, nlevels = 10, lower = NULL, upper = NULL, main = NULL, xlab = NULL, ylab = NULL
)
```

Arguments

- `y`: variable to plot
- `spatial.polygon`: an object of class SpatialPolygons (See SpatialPolygons-class)
- `ncut`: number of cuts in colour levels to plot
- `nlevels`: number of levels to include in legend
- `lower`: lower bound of levels
- `upper`: upper bound of levels
- `main`: an overall title for the plot
- `xlab`: a title for the x axis
- `ylab`: a title for the y axis

Value

A map colour-coded to indicate the different levels of `y`

Author(s)

Jon Wakefield, Nicky Best, Sebastien Haneuse, and Albert Y. Kim

References

Examples

data(scotland)
map <- scotland$spatial.polygon
y <- scotland$data$cases
E <- scotland$data$expected
SMR <- y/E
mapvariable(SMR,map,main="Scotland",xlab="Eastings (km)",ylab="Northings (km)")

NYleukemia

Upstate New York Leukemia Data

Description
Census tract level (n=281) leukemia data for the 8 counties in upstate New York from 1978-1982, paired with population data from the 1980 census. Note that 4 census tracts were completely surrounded by another unique census tract; when applying the Bayesian cluster detection model in bayes_cluster(), we merge them with the surrounding census tracts yielding n=277 areas.

Usage
NYleukemia

Format
List with 5 items:
geo table of the FIPS code, longitude, and latitude of the geographic centroid of each census tract
data table of the FIPS code, number of cases, and population of each census tract
spatial.polygon object of class SpatialPolygons
surrounded row IDs of the 4 census tracts that are completely surrounded by the
surrounding census tracts

References

Examples
## Load data and convert coordinate system from latitude/longitude to grid
data(NYleukemia)
map <- NYleukemia$spatial.polygon
population <- NYleukemia$data$population
cases <- NYleukemia$data$cases
centroids <- latlong2grid(NYleukemia$geo[, 2:3])

## Identify the 4 census tract to be merged into their surrounding census tracts.
remove <- NYleukemia$surrounded
add <- NYleukemia$surrounding

## Merge population and case counts
population[add] <- population[add] + population[remove]
population <- population[-remove]
cases[add] <- cases[add] + cases[remove]
cases <- cases[-remove]

## Modify geographical objects accordingly
map <- SpatialPolygons(map@polygons[-remove], proj4string=CRS("+proj=longlat +ellps=WGS84"))
centroids <- centroids[-remove,]

## Plot incidence in latitude/longitude
plotmap(cases/population, map, log=TRUE, nclr=5)
points(grid2latlong(centroids), pch=4)

---

**NYleukemia_sf**  
*Upstate New York Leukemia*

**Description**

Census tract level (n=281) leukemia data for the 8 counties in upstate New York from 1978-1982, paired with population data from the 1980 census. Note that 4 census tracts were completely surrounded by another unique census tract; when applying the Bayesian cluster detection model in `bayes_cluster()`, we merge them with the surrounding census tracts yielding n=277 areas.

**Usage**

NYleukemia_sf

**Format**

An sf `POLYGON` data frame with 281 rows and 4 variables:

- **geometry** Geometric representation of 8 counties in upstate New York
- **cases** Number of cases per county
- **population** Population of each census tract
- **censustract.FIPS** 11-digit Federal Information Processing System identification number for each county

**Source**

Examples

```r
Static map of NY Leukemia rate per county
library(ggplot2)
Not run:
ggplot(NYleukemia_sf) +
 geom_sf(aes(fill = cases/population)) +
 scale_fill_gradient(low = "white", high = "red")
End(Not run)
```

Pennsylvania Lung Cancer

Description

County-level (n=67) population/case data for lung cancer in Pennsylvania in 2002, stratified on race (white vs non-white), gender and age (Under 40, 40-59, 60-69 and 70+). Additionally, county-specific smoking rates.

Usage

pennLC

Format

List of 3 items

`geo` a table of county IDs, longitude/latitude of the geographic centroid of each county
`data` a table of county IDs, number of cases, population and strata information
`smoking` a table of county IDs and proportion of smokers
`spatial.polygon` an object of class SpatialPolygons

Source

Population data was obtained from the 2000 decennial census, lung cancer and smoking data were obtained from the Pennsylvania Department of Health website: [https://www.health.pa.gov/Pages/default.aspx](https://www.health.pa.gov/Pages/default.aspx)

Examples

```r
data(pennLC)
pennLC$geo
pennLC$data
pennLC$smoking
Map smoking rates in Pennsylvania
mapvariable(pennLC$smoking[,2], pennLC$spatial.polygon)
```
Description

County-level (n=67) population/case data for lung cancer in Pennsylvania in 2002, stratified on race (white vs non-white), gender and age (Under 40, 40-59, 60-69 and 70+). Additionally, county-specific smoking rates.

Usage

pennLC_sf

Format

An sf POLYGON data frame with 1072 rows = 67 counties x 2 race x 2 gender x 4 age bands

- **county** Pennsylvania county
- **cases** Number of cases per county split by strata
- **population** Population per county split by strata
- **race** Race (w = white and o = non-white)
- **gender** Gender (f = female and m = male)
- **age** Age (4 bands)
- **smoking** Overall county smoking rate (not broken down by strata)
- **geometry** Geometric representation of counties in Pennsylvania

Source

Population data was obtained from the 2000 decennial census, lung cancer and smoking data were obtained from the Pennsylvania Department of Health website: https://www.health.pa.gov/Pages/default.aspx.

Examples

```r
library(ggplot2)
library(dplyr)

Sum cases & population for each county
lung_cancer_rate <- pennLC_sf %>%
 group_by(county) %>%
 summarize(cases = sum(cases),
 population = sum(population)) %>%
 mutate(rate = cases/population)

Static map of Pennsylvania lung cancer rates for each county
```
## Not run:
```r
ggplot() +
 geom_sf(data = lung_cancer_rate, aes(fill = rate))
End(Not run)

plotmap

Plot Levels of a Variable in a Colour-Coded Map

Description

Plot levels of a variable in a colour-coded map.

Usage

```r
plotmap(
  values,  # variable to plot
  map,  # an object of class SpatialPolygons (See SpatialPolygons-class)
  log = FALSE,  # boolean of whether to plot values on log scale
  nclr = 7,  # number of colour-levels to use
  include.legend = TRUE,  # boolean of whether to include legend
  lwd = 0.5,  # line width of borders of areas
  round = 3,  # number of digits to round to in legend
  brks = NULL,  # if desired, pre-specified breaks for legend
  legend = NULL,  # if desired, a pre-specified legend
  location = "topright",  # location of legend
  rev = FALSE  # boolean of whether to reverse colour scheme (darker colours for smaller values)
)
```

Arguments

- `values`: variable to plot
- `map`: an object of class SpatialPolygons (See SpatialPolygons-class)
- `log`: boolean of whether to plot values on log scale
- `nclr`: number of colour-levels to use
- `include.legend`: boolean of whether to include legend
- `lwd`: line width of borders of areas
- `round`: number of digits to round to in legend
- `brks`: if desired, pre-specified breaks for legend
- `legend`: if desired, a pre-specified legend
- `location`: location of legend
- `rev`: boolean of whether to reverse colour scheme (darker colours for smaller values)

Value

A map colour-coded to indicate the different levels of `values`.
Examples

```r
## Load data
data(scotland)
map <- scotland$spatial.polygon
y <- scotland$data$cases
E <- scotland$data$expected
SMR <- y/E
## Plot SMR
plotmap(SMR, map, nclr=9, location="topleft")
```

polygon2spatial_polygon

Convert a Polygon to a Spatial Polygons Object

Description

Converts a polygon (a matrix of coordinates with NA values to separate subpolygons) into a Spatial Polygons object.

Usage

```r
polygon2spatial_polygon(
  poly,
  coordinate.system,
  area.names = NULL,
  nrepeats = NULL
)
```

Arguments

- `poly`: a 2-column matrix of coordinates, where each complete subpolygon is separated by NA's
- `coordinate.system`: the coordinate system to use
- `area.names`: names of all areas
- `nrepeats`: number of sub polygons for each area

Details

Just as when plotting with the `graphics::polygon()` function, it is assumed that each subpolygon is to be closed by joining the last point to the first point. In the matrix `poly`, NA values separate complete subpolygons. `coordinate.system` must be either `+proj=utm` or `+proj=longlat`. In the case with an area consists of more than one separate closed polygon, `nrepeats` specifies the number of closed polygons associated with each area.
process_MCMC_sample

Value
An object of class SpatialPolygons (See SpatialPolygons-class from the sp package).

Author(s)
Albert Y. Kim

References

Examples

data(scotland)

polygon <- scotland$polygon$polygon
coord.system <- '+proj=utm'
names <- scotland$data$county.names
nrepeats <- scotland$polygon$nrepeats

spatial.polygon <- polygon2spatial_polygon(polygon,coord.system,names,nrepeats)

par(mfrow=c(1,2))
plot using polygon function
plot(polygon,type='n',xlab="Eastings (km)",ylab="Northings (km)",main="Polygon File")
polygon(polygon)

plot as spatial polygon object
plot(spatial.polygon,axes=TRUE)
title(xlab="Eastings (km)",ylab="Northings (km)",main="Spatial Polygon")

Note that area 23 (argyll-bute) consists of 8 separate polygons
nrepeats[23]
plot(spatial.polygon[23],add=TRUE,col="red")

Description
Take the output of sampled configurations from MCMC_simulation and produce area-by-area summaries

Usage
process_MCMC_sample(sample, param, RR.area, cluster.list, cutoffs)
Arguments

- **sample**: list objects of sampled configurations
- **param**: mean relative risk associated with each of the \(n \) zones single zones considering the wide prior
- **RR.area**: mean relative risk associated with each of the \(n \) areas considering the narrow prior
- **cluster.list**: list of length \(n \) zones listing, for each single zone, its component areas
- **cutoffs**: cutoffs used to declare highs (clusters) and lows (anti-clusters)

Value

- **high.area**: Probability of cluster membership for each area
- **low.area**: Probability of anti-cluster membership for each area
- **RR.est.area**: Smoothed relative risk estimates for each area

References

scotland

Lip Cancer in Scotland

Description

County-level (\(n=56 \)) data for lip cancer among males in Scotland between 1975-1980

Usage

scotland

Format

List containing:

- **geo**: a table of county IDs, x-coordinates (eastings) and y-coordinates (northings) of the geographic centroid of each county.
- **data**: a table of county IDs, number of cases, population and strata information
- **spatial.polygon**: a Spatial Polygons class (see `SpatialPolygons-class`) map of Scotland
- **polygon**: a polygon map of Scotland (see `polygon2spatial_polygon()`)

Source

References

Examples

data(scotland)
data <- scotland$data
scotland.map <- scotland$spatial.polygon
SMR <- data$cases/data$expected
mapvariable(SMR, scotland.map)

scotland_sf

Lip Cancer in Scotland

Description

County-level (n=56) data for lip cancer among males in Scotland between 1975-1980

Usage

scotland_sf

Format

A data frame with 56 rows representing counties and 5 variables:

- **geometry**: Geometric representation of counties in Scotland
- **cases**: Number of Lip Cancer cases per county
- **county.names**: Scotland County name
- **AFF**: Proportion of the population who work in agricultural fishing and farming
- **expected**: Expected number of lip cancer cases

Source

References

zones

Create set of all single zones and output geographical information

Examples

library(ggplot2)
Not run:
 ggplot() +
 geom_sf(data = scotland_sf, aes(fill = cases))
End(Not run)

zones

Create set of all single zones and output geographical information

Description

Based on the population counts and centroid coordinates of each of \(n \) areas, output the set of \(n.zones \) single zones as defined by Kulldorff and other geographical information.

Usage

zones(geo, population, pop.upper.bound)

Arguments

- `geo`: \(n \times 2 \) table of the (x,y)-coordinates of the area centroids
- `population`: a vector of population counts of each area
- `pop.upper.bound`: maximum proportion of study region each zone can contain

Value

A list containing

- `nearest.neighbors`: list of \(n \) elements, where each element is a vector of the nearest neighbors in order of distance up until `pop.upper.bound` of the total population is attained
- `cluster.coords`: \(n.zones \times 2 \) table of the center and the radial area for each zone
- `dist`: \(n \times n \) inter-point distance matrix of the centroids

Author(s)

Albert Y. Kim

References

Examples

data(pennLC)
geo <- pennLC$geo[,2:3]
geo <- latlong2grid(geo)
population <- tapply(pennLC$data$population, pennLC$data$county, sum)
pop.upper.bound <- 0.5
geo.info <- zones(geo, population, pop.upper.bound)
Index

* datasets
 NYleukemia, 22
 NYleukemia_sf, 23
 pennLC, 24
 pennLC_sf, 25
 scotland, 29
 scotland_sf, 30

bayes_cluster, 2
bayes_cluster(), 8, 22, 23
besag_newell, 5

circle, 7
create_geo_objects, 8
create_geo_objects(), 12

eBayes, 9
eBayes(), 11
EBpostdens, 10
EBpostthresh, 11
estimate_lambda, 12
expected, 13

GammaPriorCh, 14
graphics:::polygon(), 27
grid2latlong, 15

kulldorff, 16
latlong2grid, 18
LogNormalPriorCh, 20

mapvariable, 21

NYleukemia, 22
NYleukemia_sf, 23

pennLC, 24
pennLC_sf, 25
plotmap, 26
polygon2spatial_polygon, 27

process_MCMC_sample, 28
scotland, 29
scotland_sf, 30
SpatialPolygons-class, 8, 15, 21, 26, 28, 29
zones, 31