SmithWilsonYieldCurve-package

Fit yield curves using the Smith-Wilson method

Description

A package to fit yield curves using the Smith-Wilson method

Details

The main function exposed in this package is fFitSmithWilsonYieldCurve, which takes market data in the form of a vector of cashflow times, a matrix of cashflows and a vector of market prices. It returns an object of class "SmithWilsonYieldCurve".

A convenience function fFitSmithWilsonYieldCurveToInstruments takes a dataframe containing market instrument data as type, tenor, frequency and rate. It extracts the required vectors and matrices and then calls fFitSmithWilsonYieldCurve.

Objects of class SmithWilsonYieldCurve are a list, the first element of which is a function P(t), which returns the zero coupon bond price of the fitted curve at time t.

Details including mathematics at http://www.not-normal-consulting.co.uk, or check the EIOPA document in references.

Author(s)

Phil Joubert <phil.joubert@not-normal-consulting.co.uk>

References

Examples

dfInstruments <- data.frame(c("SWAP", "SWAP"), c(1,10), c(1,1), c(0.025, 0.05))
colnames(dfInstruments) <- c("Type", "Tenor", "Frequency", "Rate")
Curve <- fFitSmithWilsonYieldCurveToInstruments(dfInstruments, 0.04, 0.1)
plot(Curve)
fCreateCashflowMatrix

Returns the matrix of cashflows for the list of instruments

Description

Returns the matrix of cashflows for the list of instruments

Usage

\[
fCreateCashflowMatrix(dfInstruments)
\]

Arguments

- `dfInstruments` A set of market instruments as a dataframe with columns Type, Tenor, Frequency and Rate with Type in (LIBOR, SWAP), Tenor the instrument maturity in years and rate the rate per annum

fCreateKernelMatrix

Create the matrix of kernel functions

Description

Creates a J x J matrix \([w(u_i, u_j)] \) where J is the number of cashflow times in the calibration set

Usage

\[
fCreateKernelMatrix(times, fKernel)
\]

Arguments

- `times` a vector of cashflow times
- `fKernel` a kernel to apply (a function of times x times returning a matrix)
fCreateTimeVector

Extract a vector of cashflow times in years from a list of instruments

Description

Assumes that LIBOR tenor is in days, with 365 days per year. Assumes that SWAPs are semi-annual

Returns a vector of all unique cashflow times in years

Usage

```r
fCreateTimeVector(dfInstruments)
```

Arguments

- `dfInstruments` A dataframe of instruments with at least columns Type and Tenor

fFitKernelWeights

Solve for the vector xi of kernel weights

Description

Solve for the vector xi of kernel weights

Usage

```r
fFitKernelWeights(CashflowMatrix, KernelFunctionMatrix, MarketValueVector, BaseZeroVector)
```

Arguments

- `CashflowMatrix` A matrix of all cashflows, instruments in rows, times in columns
- `KernelFunctionMatrix` A matrix of kernel function values
- `MarketValueVector` A vector of market values of the instruments
- `BaseZeroVector` A vector of "base" values for the zeros
fFitSmithWilsonYieldCurve

Construct the Smith-Wilson yield curve

Description

Constructs the SmithWilson ZCB function based on the given market inputs and parameter choices.

Usage

```r
fFitSmithWilsonYieldCurve(TimesVector, CashflowMatrix, MarketValueVector, ufr, alpha)
```

Arguments

- **TimesVector**
 A vector of all cashflow times
- **CashflowMatrix**
 A matrix of all cashflows, instruments in rows, times in columns
- **MarketValueVector**
 A vector of market values of the instruments
- **ufr**
 The Ultimate Forward Rate (UFR) of the Smith-Wilson kernel
- **alpha**
 The rate of reversion of forward rates to the UFR in the Smith-Wilson kernel

Value

A list containing:

- "P" a function of time which gives the ZCB price to that term
- "xi" the vector of weights applied to the kernel functions to obtain the ZCB price
- "K" the (compound) kernel vector

fFitSmithWilsonYieldCurveToInstruments

Construct the Smith-Wilson yield curve

Description

Constructs the SmithWilson ZCB function based on the given market inputs and parameter choices. Primarily a convenience wrapper around other package functions.

Usage

```r
fFitSmithWilsonYieldCurveToInstruments(InstrumentSet, ufr, alpha)
```
Arguments

InstrumentSet A set of market instruments as a dataframe with columns
 • "Type" One of (LIBOR, SWAP)
 • "Tenor" The instrument maturity in years
 • "Frequency" The payment frequency (ignored for Type=="LIBOR")
 • "Rate" The coupon rate per annum in percent

ufr The Ultimate Forward Rate (UFR) of the Smith-Wilson kernel
alpha The rate of reversion of forward rates to the UFR in the Smith-Wilson kernel

Value

a list containing:
 • "P" a function of time which gives the ZCB price to that term
 • "xi" the vector of weights applied to the kernel functions to obtain the ZCB price
 • "K" the (compound) kernel vector

ffityieldcurve Constructs the ZCB function based on the given market inputs and a specific kernel and base function

Description

Constructs the ZCB function based on the given market inputs and a specific kernel and base function

Usage

ffityieldcurve(TimesVector, CashflowMatrix, MarketValueVector, fKernel, fBase)

Arguments

TimesVector A vector of all cashflow times
CashflowMatrix A matrix of all cashflows, instruments in rows, times in columns
MarketValueVector A vector of market values of the instruments
fKernel a function of two times used as the Kernel "basis" function
fBase a function giving the base level of the curve

Value

a list comprising elements: a function of time which gives the ZCB price to that time
fGetCashflowsLibor

| fGetCashflowsLibor | Gets the cashflow schedule for a LIBOR agreement |

Description

Gets the cashflow schedule for a LIBOR agreement

Usage

fGetCashflowsLibor(dfInstrument)

Arguments

dfInstrument | A set of market instruments as a dataframe with columns Type, Tenor and Rate with Type in (LIBOR, SWAP), Tenor the instrument maturity in years and rate the rate per annum

fGetCashflowsSwap

| fGetCashflowsSwap | Gets the cashflow schedule for a swap |

Description

Gets the cashflow schedule for a swap

Usage

fGetCashflowsSwap(dfInstrument)

Arguments

dfInstrument | A set of market instruments as a dataframe with columns Type, Tenor and Rate with Type in (LIBOR, SWAP), Tenor the instrument maturity in years and rate the rate per annum
fGetTimesLibor
Extract the payment date of a LIBOR agreement in years

Description

Extract the payment date of a LIBOR agreement in years

Usage

```
fGetTimesLibor(dfInstrument)
```

Arguments

- `dfInstrument` A dataframe of instruments with at least columns Type and Tenor

fGetTimesSwap
Extract the payment dates of a Swap agreement in years

Description

Extract the payment dates of a Swap agreement in years

Usage

```
fGetTimesSwap(dfInstrument)
```

Arguments

- `dfInstrument` A dataframe of instruments with at least columns Type and Tenor

fWilson
Wilson function

Description

Acts as a kernel for regression

Usage

```
fWilson(t, u, ufr, alpha)
```

Arguments

- `t` a time
- `u` another time
- `ufr` the ultimate forward rate
- `alpha` the speed of reversion to the ultimate forward rate
lines.SmithWilsonYieldCurve

Plot generic for SmithWilsonYieldCurve objects

Description
Plot generic for SmithWilsonYieldCurve objects

Usage
```r
## S3 method for class 'SmithWilsonYieldCurve'
lines(x, y, ..., 
    aspect = c("cts", "zero"))
```

Arguments
- **x**: An object of class SmithWilsonYieldCurve or a vector of terms to evaluate the curve at
- **y**: Optionally an object of class SmithWilsonYieldCurve
- **aspect**: either "cts" for continuously compounded spot rates, or "zero" for ZCB prices
- **...**: other arguments to pass to the default lines function

plot.SmithWilsonYieldCurve

Plot generic for SmithWilsonYieldCurve objects

Description
Plot generic for SmithWilsonYieldCurve objects

Usage
```r
## S3 method for class 'SmithWilsonYieldCurve'
plot(x, y, ..., 
    aspect = c("cts", "zero"))
```

Arguments
- **x**: An object of class SmithWilsonYieldCurve or a vector of terms to evaluate the curve at
- **y**: Optionally an object of class SmithWilsonYieldCurve
- **aspect**: either "cts" for continuously compounded spot rates, or "zero" for ZCB prices
- **...**: other arguments to pass to the default plot function
points.SmithWilsonYieldCurve

Plot generic for SmithWilsonYieldCurve objects

Description

Plot generic for SmithWilsonYieldCurve objects

Usage

```r
## S3 method for class 'SmithWilsonYieldCurve'
points(x, y, ...,
        aspect = c("cts", "zero"))
```

Arguments

- `x` An object of class SmithWilsonYieldCurve or a vector of terms to evaluate the curve at
- `y` Optionally an object of class SmithWilsonYieldCurve
- `aspect` either "cts" for continously compounded spot rates, or "zero" for ZCB prices
- `...` other arguments to pass to the default plot function
Index

fCreateCashflowMatrix, 3
fCreateKernelMatrix, 3
fCreateTimeVector, 4
fFitKernelWeights, 4
fFitSmithWilsonYieldCurve, 5
fFitSmithWilsonYieldCurveToInstruments, 5
fFitYieldCurve, 6
fGetCashflowsLibor, 7
fGetCashflowsSwap, 7
fGetTimesLibor, 8
fGetTimesSwap, 8
fWilson, 8

lines.SmithWilsonYieldCurve, 9
plot.SmithWilsonYieldCurve, 9
points.SmithWilsonYieldCurve, 10

SmithWilsonYieldCurve
 (SmithWilsonYieldCurve-package), 2
SmithWilsonYieldCurve-package, 2