Package ‘Seurat’

May 10, 2024

Version 5.1.0
Date 2024-05-08
Title Tools for Single Cell Genomics

BugReports https://github.com/satijalab/seurat/issues

Depends R (>= 4.0.0),
 methods,
 SeuratObject (>= 5.0.2)

Imports cluster,
 cowplot,
 fastDummies,
 fitdistrplus,
 future,
 future.apply,
 generics (>= 0.1.3),
 ggplot2 (>= 3.3.0),
 ggrepel,
 ggridges,
 graphics,
 grDevices,
 grid,
 htr,
 ica,
 igraph,
irlba,
jsonlite,
KernSmooth,
leiden (>= 0.3.1),
lifecycle,
lmtest,
MASS,
Matrix (>= 1.5-0),
matrixStats,
miniUI,
patchwork,
pbapply,
plotly (>= 4.9.0),
png,
progressr,
purrr,
RANN,
RColorBrewer,
Rcpp (>= 1.0.7),
RcppAnnoy (>= 0.0.18),
RcppHNSW,
reticulate,
rlang,
ROCR,
RSpectra,
Rtsne,
scales,
scattermore (>= 1.2),
scatterplot (> = 0.4.1),
shiny,
spatstat.explore,
spatstat.geom,
stats,
tibble,
tools,
tools,
utils,
uwot (>= 0.1.10)

LinkingTo Rcpp (>= 0.11.0), RcppEigen, RcppProgress

License MIT + file LICENSE

LazyData true

Collate 'RcppExports.R'
 'reexports.R'
 'generics.R'
 'clustering.R'
 'visualization.R'
 'convenience.R'
 'data.R'
'differential_expression.R'
'dimensional_reduction.R'
'integration.R'
'zzz.R'
'integration5.R'
'mixscape.R'
'objects.R'
'preprocessing.R'
'preprocessing5.R'
'roxygen.R'
'sketching.R'
'tree.R'
'utilities.R'

RoxygenNote 7.3.1

Encoding UTF-8

Suggests ape,
 arrow,
 BPCells,
 rsvd,
 testthat,
 hdf5r,
 S4Vectors,
 SummarizedExperiment,
 SingleCellExperiment,
 MAST,
 DESeq2,
 BiocGenerics,
 GenomicRanges,
 GenomeInfoDb,
 IRanges,
 rtracklayer,
 Rfast2,
 monocle,
 Biobase,
 VGAM,
 limma,
 metap,
 enrichR,
 mixtools,
 ggrastr,
 data.table,
 R.utils,
 presto,
 DelayedArray,
 harmony
R topics documented:

Seurat-package ... 8
AddAzimuthResults ... 10
AddModuleScore ... 11
AggregateExpression ... 12
AnchorSet-class ... 14
AnnotateAnchors ... 15
as.CellDataSet .. 16
as.Seurat.CellDataSet .. 17
as.SingleCellExperiment .. 18
as.sparse.H5Group .. 18
Assay-class .. 19
AugmentPlot .. 19
AutoPointSize .. 20
AverageExpression ... 21
BarcodeInflectionsPlot .. 22
BGTextColor .. 23
BlackAndWhite ... 24
BridgeCellsRepresentation ... 25
BridgeReferenceSet-class .. 26
BuildClusterTree ... 26
BuildNicheAssay .. 28
CalcPerturbSig ... 28
CalculateBarcodeInflections .. 30
CaseMatch ... 31
c.c.genes ... 32
c.c.genes.updated.2019 .. 32
CCAIntegration .. 33
CellCycleScoring .. 35
Cells.SCTModel .. 37
CellScatter .. 37
CellSelector .. 39
CollapseEmbeddingOutliers .. 40
CollapseSpeciesExpressionMatrix 41
ColorDimSplit ... 42
CombinePlots .. 44
contrast-theory .. 45
CreateCategoryMatrix ... 46
CreateSCTAssayObject .. 46
CustomDistance .. 47
DEenrichRPlot ... 48
DietSeurat ... 50
DimHeatmap ... 51
DimPlot ... 52
DimReduce-class .. 55
DiscretePalette .. 55
DoHeatmap ... 56
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DotPlot</td>
<td>58</td>
</tr>
<tr>
<td>ElbowPlot</td>
<td>59</td>
</tr>
<tr>
<td>ExpMean</td>
<td>60</td>
</tr>
<tr>
<td>ExpSD</td>
<td>60</td>
</tr>
<tr>
<td>ExpVar</td>
<td>61</td>
</tr>
<tr>
<td>FastRowScale</td>
<td>62</td>
</tr>
<tr>
<td>FastRPCAIntegration</td>
<td>62</td>
</tr>
<tr>
<td>FeaturePlot</td>
<td>63</td>
</tr>
<tr>
<td>FeatureScatter</td>
<td>66</td>
</tr>
<tr>
<td>FetchResiduals</td>
<td>68</td>
</tr>
<tr>
<td>FilterSlideSeq</td>
<td>69</td>
</tr>
<tr>
<td>FindAllMarkers</td>
<td>70</td>
</tr>
<tr>
<td>FindBridgeIntegrationAnchors</td>
<td>74</td>
</tr>
<tr>
<td>FindBridgeTransferAnchors</td>
<td>75</td>
</tr>
<tr>
<td>FindClusters</td>
<td>76</td>
</tr>
<tr>
<td>FindConservedMarkers</td>
<td>78</td>
</tr>
<tr>
<td>FindIntegrationAnchors</td>
<td>79</td>
</tr>
<tr>
<td>FindMarkers</td>
<td>82</td>
</tr>
<tr>
<td>FindMultiModalNeighbors</td>
<td>88</td>
</tr>
<tr>
<td>FindNeighbors</td>
<td>90</td>
</tr>
<tr>
<td>FindSpatiallyVariableFeatures</td>
<td>93</td>
</tr>
<tr>
<td>FindSubCluster</td>
<td>95</td>
</tr>
<tr>
<td>FindTransferAnchors</td>
<td>96</td>
</tr>
<tr>
<td>FindVariableFeatures</td>
<td>99</td>
</tr>
<tr>
<td>FoldChange</td>
<td>102</td>
</tr>
<tr>
<td>GetAssay</td>
<td>104</td>
</tr>
<tr>
<td>GetImage.SlideSeq</td>
<td>105</td>
</tr>
<tr>
<td>GetIntegrationData</td>
<td>106</td>
</tr>
<tr>
<td>GetResidual</td>
<td>106</td>
</tr>
<tr>
<td>GetTissueCoordinates.SlideSeq</td>
<td>107</td>
</tr>
<tr>
<td>GetTransferPredictions</td>
<td>108</td>
</tr>
<tr>
<td>Graph-class</td>
<td>109</td>
</tr>
<tr>
<td>GroupCorrelation</td>
<td>110</td>
</tr>
<tr>
<td>GroupCorrelationPlot</td>
<td>111</td>
</tr>
<tr>
<td>HarmonyIntegration</td>
<td>111</td>
</tr>
<tr>
<td>HoverLocator</td>
<td>113</td>
</tr>
<tr>
<td>HTODemux</td>
<td>114</td>
</tr>
<tr>
<td>HTOHeatmap</td>
<td>116</td>
</tr>
<tr>
<td>HVFInfo.SCTAssay</td>
<td>117</td>
</tr>
<tr>
<td>IFeaturePlot</td>
<td>118</td>
</tr>
<tr>
<td>ImageDimPlot</td>
<td>118</td>
</tr>
<tr>
<td>ImageFeaturePlot</td>
<td>120</td>
</tr>
<tr>
<td>IntegrateData</td>
<td>123</td>
</tr>
<tr>
<td>IntegrateEmbeddings</td>
<td>126</td>
</tr>
<tr>
<td>IntegrateLayers</td>
<td>128</td>
</tr>
<tr>
<td>IntegrationAnchorSet-class</td>
<td>129</td>
</tr>
<tr>
<td>IntegrationData-class</td>
<td>129</td>
</tr>
<tr>
<td>ISpatialDimPlot</td>
<td>130</td>
</tr>
</tbody>
</table>
R topics documented:

ISpatialFeaturePlot ... 130
JackStraw ... 131
JackStrawData-class ... 132
JackStrawPlot ... 133
JointPCAIntegration ... 134
L2CCA ... 136
L2Dim ... 136
LabelClusters ... 137
LabelPoints ... 138
LeverageScore .. 139
LinkedPlots ... 141
Load10X_Spatial ... 142
LoadAnnoyIndex ... 144
LoadCurioSeeker ... 144
LoadSTARmap ... 145
LoadXenium ... 146
LocalStruct ... 147
LogNormalize ... 148
LogVMR ... 149
MappingScore .. 149
MapQuery ... 151
merge.SCTAssay .. 153
MetaFeature ... 154
MinMax ... 155
MixingMetric ... 155
MixscapeHeatmap .. 156
MixscapeLDA .. 159
ModalityWeights-class .. 160
MULTIseqDemux .. 160
Neighbor-class .. 161
NNPlot ... 162
NNtoGraph ... 163
NormalizeData .. 164
PCASigGenes .. 165
PercentAbove ... 166
PercentageFeatureSet ... 167
PlotClusterTree .. 168
PlotPerturbScore .. 168
PolyDimPlot ... 169
PolyFeaturePlot .. 170
PredictAssay .. 171
PrepareBridgeReference .. 172
PrepLDA ... 174
PrepSCTFindMarkers .. 175
PrepSCTIntegration .. 176
ProjectData ... 178
ProjectDim ... 179
ProjectDimReduce .. 180
R topics documented:

- ProjectIntegration .. 181
- ProjectUMAP .. 182
- PseudobulkExpression .. 184
- Radius.SlideSeq ... 186
- Read10X ... 187
- Read10X_Coordinates .. 188
- Read10X_h5 ... 189
- Read10X_Image .. 189
- Read10X_probe_metadata ... 190
- Read10X_ScaleFactors .. 191
- ReadAkoya .. 191
- ReadMtx ... 193
- ReadNanostring .. 194
- ReadParseBio ... 196
- ReadSlideSeq .. 197
- ReadSTARsolo .. 197
- ReadVitessce .. 198
- RegroupIds ... 201
- RelativeCounts .. 202
- RenameCells.SCTAssay .. 203
- RidgePlot ... 203
- RPCAIntegration .. 205
- RunCCA ... 207
- RunGraphLaplacian ... 209
- RunICA ... 210
- RunLDA ... 212
- RunMarkVario .. 213
- RunMixscape ... 214
- RunMoranI ... 215
- RunPCA ... 216
- RunSLSI ... 218
- RunSPCA ... 219
- RunTSNE ... 221
- RunUMAP ... 223
- SampleUMI ... 228
- SaveAnnoyIndex .. 229
- ScaleData ... 230
- ScaleFactors ... 232
- ScoreJackStraw .. 233
- SCTAssay-class .. 234
- SCTTransform .. 236
- SCTResults ... 239
- SelectIntegrationFeatures .. 240
- SelectIntegrationFeatures5 ... 242
- SelectSCTIntegrationFeatures .. 242
- SetIntegrationData ... 243
- SetQuantile ... 244
Seurat-package

Seurat-package

Seurat: Tools for Single Cell Genomics

Description

Package options

Seurat uses the following [options()] to configure behaviour:

Seurat.memsafe global option to call gc() after many operations. This can be helpful in cleaning up the memory status of the R session and prevent use of swap space. However, it does add to the computational overhead and setting to FALSE can speed things up if you’re working in an environment where RAM availability is not a concern.
Seurat.warn.umap.uwot Show warning about the default backend for RunUMAP changing from Python UMAP via reticulate to UWOT

Seurat.checkdots For functions that have ... as a parameter, this controls the behavior when an item isn’t used. Can be one of warn, stop, or silent.

Seurat.limma.wilcox.msg Show message about more efficient Wilcoxon Rank Sum test available via the limma package

Seurat.Rfast2.msg Show message about more efficient Moran’s I function available via the Rfast2 package

Seurat.warn.vlnplot.split Show message about changes to default behavior of split/multi violin plots

Author(s)

Maintainer: Rahul Satija <seurat@nygenome.org> (ORCID)

Other contributors:

- Andrew Butler <abutler@nygenome.org> (ORCID) [contributor]
- Saket Choudhary <schoudhary@nygenome.org> (ORCID) [contributor]
- David Collins <dcollins@nygenome.org> (ORCID) [contributor]
- Charlotte Darby <cdarby@nygenome.org> (ORCID) [contributor]
- Jeff Farrell <jfarrell@g.harvard.edu> [contributor]
- Isabella Grabski <igrabski@nygenome.org> (ORCID) [contributor]
- Christoph Hafemeister <chafemeister@nygenome.org> (ORCID) [contributor]
- Yuhan Hao <yhao@nygenome.org> (ORCID) [contributor]
- Austin Hartman <ahartman@nygenome.org> (ORCID) [contributor]
- Paul Hoffman <hoff0792@umn.edu> (ORCID) [contributor]
- Jaison Jain <jjain@nygenome.org> (ORCID) [contributor]
- Longda Jiang <ljiang@nygenome.org> (ORCID) [contributor]
- Madeline Kowalski <mkowalski@nygenome.org> (ORCID) [contributor]
- Skylar Li <sli@nygenome.org> [contributor]
- Gesmira Molla <gmolla@nygenome.org> (ORCID) [contributor]
- Efthymia Papalexi <epapalexi@nygenome.org> (ORCID) [contributor]
- Patrick Roelli <proelli@nygenome.org> [contributor]
- Karthik Shekhar <kshekhar@berkeley.edu> [contributor]
- Avi Srivastava <asrivastava@nygenome.org> (ORCID) [contributor]
- Tim Stuart <tstuart@nygenome.org> (ORCID) [contributor]
- Kristof Torkenczy (ORCID) [contributor]
- Shiwei Zheng <szheng@nygenome.org> (ORCID) [contributor]
- Satija Lab and Collaborators [funder]
AddAzimuthResults

See Also

Useful links:

- https://satijalab.org/seurat
- https://github.com/satijalab/seurat
- Report bugs at https://github.com/satijalab/seurat/issues

Description

Add mapping and prediction scores, UMAP embeddings, and imputed assay (if available) from Azimuth to an existing or new Seurat object

Usage

AddAzimuthResults(object = NULL, filename)

Arguments

object A Seurat object
filename Path to Azimuth mapping scores file

Value

object with Azimuth results added

Examples

Not run:
object <- AddAzimuthResults(object, filename = "azimuth_results.Rds")

End(Not run)
AddModuleScore

Calculate module scores for feature expression programs in single cells

Description

Calculate the average expression levels of each program (cluster) on single cell level, subtracted by the aggregated expression of control feature sets. All analyzed features are binned based on averaged expression, and the control features are randomly selected from each bin.

Usage

AddModuleScore(
 object,
 features,
 pool = NULL,
 nbin = 24,
 ctrl = 100,
 k = FALSE,
 assay = NULL,
 name = "Cluster",
 seed = 1,
 search = FALSE,
 slot = "data",
 ...
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Seurat object</td>
</tr>
<tr>
<td>features</td>
<td>A list of vectors of features for expression programs; each entry should be a vector of feature names</td>
</tr>
<tr>
<td>pool</td>
<td>List of features to check expression levels against, defaults to rownames(x = object)</td>
</tr>
<tr>
<td>nbin</td>
<td>Number of bins of aggregate expression levels for all analyzed features</td>
</tr>
<tr>
<td>ctrl</td>
<td>Number of control features selected from the same bin per analyzed feature</td>
</tr>
<tr>
<td>k</td>
<td>Use feature clusters returned from DoKMeans</td>
</tr>
<tr>
<td>assay</td>
<td>Name of assay to use</td>
</tr>
<tr>
<td>name</td>
<td>Name for the expression programs; will append a number to the end for each entry in features (eg. if features has three programs, the results will be stored as name1, name2, name3, respectively)</td>
</tr>
<tr>
<td>seed</td>
<td>Set a random seed. If NULL, seed is not set.</td>
</tr>
<tr>
<td>search</td>
<td>Search for symbol synonyms for features in features that don’t match features in object? Searches the HGNC’s gene names database; see UpdateSymbolList for more details</td>
</tr>
</tbody>
</table>
AggregateExpression

slot
Slot to calculate score values off of. Defaults to data slot (i.e log-normalized counts)

Extra parameters passed to UpdateSymbolList

Value
Returns a Seurat object with module scores added to object meta data; each module is stored as name# for each module program present in features

References
Tirosh et al, Science (2016)

Examples

```r
## Not run:
data("pbmc_small")
)
pbmc_small <- AddModuleScore(
  object = pbmc_small,
  features = cd_features,
  ctrl = 5,
  name = "CD_Features"
)
head(x = pbmc_small[])

## End(Not run)
```

AggregateExpression
Aggregated feature expression by identity class
Description

Returns summed counts ("pseudobulk") for each identity class.

Usage

```r
AggregateExpression(
  object,
  assays = NULL,
  features = NULL,
  return.seurat = FALSE,
  group.by = "ident",
  add.ident = NULL,
  normalization.method = "LogNormalize",
  scale.factor = 10000,
  margin = 1,
  verbose = TRUE,
  ...
)
```

Arguments

- **object**: Seurat object
- **assays**: Which assays to use. Default is all assays
- **features**: Features to analyze. Default is all features in the assay
- **return.seurat**: Whether to return the data as a Seurat object. Default is FALSE
- **group.by**: Category (or vector of categories) for grouping (e.g, ident, replicate, celltype); ’ident’ by default To use multiple categories, specify a vector, such as c(’ident’, ’replicate’, ’celltype’)’
- **add.ident**: (Deprecated). Place an additional label on each cell prior to pseudobulking
- **normalization.method**: Method for normalization, see `NormalizeData`
- **scale.factor**: Scale factor for normalization, see `NormalizeData`
- **margin**: Margin to perform CLR normalization, see `NormalizeData`
- **verbose**: Print messages and show progress bar
- **...**: Arguments to be passed to methods such as `CreateSeuratObject`

Details

If `return.seurat = TRUE`, aggregated values are placed in the ‘counts’ layer of the returned object. The data is then normalized by running `NormalizeData` on the aggregated counts. `ScaleData` is then run on the default assay before returning the object.

Value

Returns a matrix with genes as rows, identity classes as columns. If `return.seurat` is TRUE, returns an object of class `Seurat`.
Examples

Not run:
data("pbmc_small")
head(AggregateExpression(object = pbmc_small)$RNA)
head(AggregateExpression(object = pbmc_small, group.by = c('ident', 'groups'))$RNA)

End(Not run)

AnchorSet-class The AnchorSet Class

Description

The AnchorSet class is an intermediate data storage class that stores the anchors and other related information needed for performing downstream analyses - namely data integration (IntegrateData) and data transfer (TransferData).

Slots

- object.list List of objects used to create anchors
- reference.cells List of cell names in the reference dataset - needed when performing data transfer.
- reference.objects Position of reference object/s in object.list
- query.cells List of cell names in the query dataset - needed when performing data transfer
- anchors The anchor matrix. This contains the cell indices of both anchor pair cells, the anchor score, and the index of the original dataset in the object.list for cell1 and cell2 of the anchor.
- offsets The offsets used to enable cell look up in downstream functions
- weight.reduction The weight dimensional reduction used to calculate weight matrix
- anchor.features The features used when performing anchor finding.
- neighbors List containing Neighbor objects for reuse later (e.g. mapping)
- command Store log of parameters that were used
AnnotateAnchors

Add info to anchor matrix

Description

Add info to anchor matrix

Usage

AnnotateAnchors(anchors, vars, slot, ...)

Default S3 method:
AnnotateAnchors(
 anchors,
 vars = NULL,
 slot = NULL,
 object.list,
 assay = NULL,
 ...
)

S3 method for class 'IntegrationAnchorSet'
AnnotateAnchors(
 anchors,
 vars = NULL,
 slot = NULL,
 object.list = NULL,
 assay = NULL,
 ...
)

S3 method for class 'TransferAnchorSet'
AnnotateAnchors(
 anchors,
 vars = NULL,
 slot = NULL,
 reference = NULL,
 query = NULL,
 assay = NULL,
 ...
)

Arguments

anchors An AnchorSet object
vars Variables to pull for each object via FetchData
as.CellDataSet

Description

Convert objects to CellDataSet objects

Usage

as.CellDataSet(x, ...)

S3 method for class 'Seurat'
as.CellDataSet(x, assay = NULL, reduction = NULL, ...)

Arguments

x An object to convert to class CellDataSet
... Arguments passed to other methods
assay Assay to convert
reduction Name of DimReduc to set to main reducedDim in cds

Value

Returns the anchor dataframe with additional columns for annotation metadata
as.Seurat.CellDataSet Convert objects to Seurat objects

Description

Convert objects to Seurat objects

Usage

S3 method for class 'CellDataSet'
as.Seurat(x, slot = "counts", assay = "RNA", verbose = TRUE, ...)

S3 method for class 'SingleCellExperiment'
as.Seurat(
 x,
 counts = "counts",
 data = "logcounts",
 assay = NULL,
 project = "SingleCellExperiment",
 ...
)

Arguments

- x: An object to convert to class Seurat
- slot: Slot to store expression data as
- assay: Name of assays to convert; set to NULL for all assays to be converted
- verbose: Show progress updates
- ...: Arguments passed to other methods
- counts: name of the SingleCellExperiment assay to store as counts; set to NULL if only normalized data are present
- data: name of the SingleCellExperiment assay to slot as data. Set to NULL if only counts are present
- project: Project name for new Seurat object

Value

A Seurat object generated from x

See Also

SeuratObject::as.Seurat
as.SingleCellExperiment

Convert objects to SingleCellExperiment objects

Description

Convert objects to SingleCellExperiment objects

Usage

as.SingleCellExperiment(x, ...)

S3 method for class 'Seurat'
as.SingleCellExperiment(x, assay = NULL, ...)

Arguments

x An object to convert to class SingleCellExperiment
...
Arguments passed to other methods
assay Assays to convert

as.sparse.H5Group Cast to Sparse

Description

Cast to Sparse

Usage

S3 method for class 'H5Group'
as.sparse(x, ...)

S3 method for class 'Matrix'
as.data.frame(
 x,
 row.names = NULL,
 optional = FALSE,
 ...,
 stringsAsFactors =getOption(x = "stringsAsFactors", default = FALSE)
)
Assay-class

Arguments

- **x**: An object
- ... Arguments passed to other methods
- **row.names**: NULL or a character vector giving the row names for the data; missing values are not allowed
- **optional**: logical. If TRUE, setting row names and converting column names (to syntactic names: see `make.names`) is optional. Note that all of R’s base package `as.data.frame()` methods use `optional` only for column names treatment, basically with the meaning of `data.frame(*, check.names = !optional)`. See also the `make.names` argument of the `matrix` method.
- **stringsAsFactors**: logical: should the character vector be converted to a factor?

Value

- `as.data.frame.Matrix`: A data frame representation of the S4 Matrix

See Also

- `SeuratObject::as.sparse`

Assay-class

The Assay Class

Description

The Assay object is the basic unit of Seurat; for more details, please see the documentation in `SeuratObject`

See Also

- `SeuratObject::Assay-class`

AugmentPlot

Augments ggplot2-based plot with a PNG image.

Description

Creates "vector-friendly" plots. Does this by saving a copy of the plot as a PNG file, then adding the PNG image with `annotation_raster` to a blank plot of the same dimensions as `plot`. Please note: original legends and axes will be lost during augmentation.

Usage

AugmentPlot(plot, width = 10, height = 10, dpi = 100)
AutoPointSize

Arguments

plot A ggplot object
width, height Width and height of PNG version of plot
dpi Plot resolution

Value

A ggplot object

Examples

Not run:
data("pbmc_small")
plot <- DimPlot(object = pbmc_small)
AugmentPlot(plot = plot)
End(Not run)

AutoPointSize(Automagically calculate a point size for ggplot2-based scatter plots)

Description

It happens to look good

Usage

AutoPointSize(data, raster = NULL)

Arguments

data A data frame being passed to ggplot2
raster If TRUE, point size is set to 1

Value

The "optimal" point size for visualizing these data

Examples

df <- data.frame(x = rnorm(n = 10000), y = runif(n = 10000))
AutoPointSize(data = df)
AverageExpression

Averaged feature expression by identity class

Description

Returns averaged expression values for each identity class.

Usage

AverageExpression(
 object, # Seurat object
 assays = NULL, # Which assays to use. Default is all assays
 features = NULL, # Features to analyze. Default is all features in the assay
 return.seurat = FALSE, # Whether to return the data as a Seurat object. Default is FALSE
 group.by = "ident", # Category (or vector of categories) for grouping (e.g, ident, replicate, celltype);
 add.ident = NULL, # 'ident' by default To use multiple categories, specify a vector, such as c('ident',
 layer = "data", # 'replicate', 'celltype')
 slot = deprecated(), # (Deprecated). Place an additional label on each cell prior to pseudobulking
 verbose = TRUE, # Layer(s) to use; if multiple layers are given, assumed to follow the order of
 ...) # 'assays' (if specified) or object's assays

Arguments

- **object**: Seurat object
- **assays**: Which assays to use. Default is all assays
- **features**: Features to analyze. Default is all features in the assay
- **return.seurat**: Whether to return the data as a Seurat object. Default is FALSE
- **group.by**: Category (or vector of categories) for grouping (e.g, ident, replicate, celltype); 'ident' by default To use multiple categories, specify a vector, such as c('ident', 'replicate', 'celltype')
- **add.ident**: (Deprecated). Place an additional label on each cell prior to pseudobulking
- **layer**: Layer(s) to use; if multiple layers are given, assumed to follow the order of 'assays' (if specified) or object's assays
- **slot**: (Deprecated). Slots(s) to use
- **verbose**: Print messages and show progress bar
- **...**: Arguments to be passed to methods such as CreateSeuratObject

Details

If layer is set to 'data', this function assumes that the data has been log normalized and therefore feature values are exponentiated prior to averaging so that averaging is done in non-log space. Otherwise, if layer is set to either 'counts' or 'scale.data', no exponentiation is performed prior to averaging. If return.seurat = TRUE and layer is not 'scale.data', averaged values are placed
in the 'counts' layer of the returned object and 'log1p' is run on the averaged counts and placed in the 'data' layer. `ScaleData` is then run on the default assay before returning the object. If `return.seurat = TRUE` and layer is 'scale.data', the 'counts' layer contains average counts and 'scale.data' is set to the averaged values of 'scale.data'.

Value

Returns a matrix with genes as rows, identity classes as columns. If `return.seurat` is TRUE, returns an object of class `Seurat`.

Examples

```r
data("pbmc_small")
head(AverageExpression(object = pbmc_small)$RNA)
head(AverageExpression(object = pbmc_small, group.by = c('ident', 'groups'))$RNA)
```

```r
BarcodeInflectionsPlot

_plot the Barcode Distribution and Calculated Inflection Points_

### Description

This function plots the calculated inflection points derived from the barcode-rank distribution.

### Usage

`BarcodeInflectionsPlot(object)`

### Arguments

- `object` Seurat object

### Details

See `[CalculateBarcodeInflections()]` to calculate inflection points and `[SubsetByBarcodeInflections()]` to subsequently subset the Seurat object.

### Value

Returns a `ggplot2` object showing the by-group inflection points and provided (or default) rank threshold values in grey.

### Author(s)

Robert A. Amezquita, <robert.amezquita@fredhutch.org>
BGTextColor

See Also

CalculateBarcodeInflections SubsetByBarcodeInflections

Examples

data("pbmc_small")
pbmc_small <- CalculateBarcodeInflections(pbmc_small, group.column = 'groups')
BarcodeInflectionsPlot(pbmc_small)

BGTextColor

Determine text color based on background color

Description

Determine text color based on background color

Usage

BGTextColor(
  background,
  threshold = 186,
  w3c = FALSE,
  dark = "black",
  light = "white"
)

Arguments

background A vector of background colors; supports R color names and hexadecimal codes
threshold Intensity threshold for light/dark cutoff; intensities greater than threshold yield dark, others yield light
w3c Use W3C formula for calculating background text color; ignores threshold
dark Color for dark text
light Color for light text

Value

A named vector of either dark or light, depending on background; names of vector are background

Source

https://stackoverflow.com/questions/3942878/how-to-decide-font-color-in-white-or-black-depending-on

Examples

BGTextColor(background = c('black', 'white', '#E76BF3'))
BlackAndWhite

Create a custom color palette

Description

Creates a custom color palette based on low, middle, and high color values

Usage

BlackAndWhite(mid = NULL, k = 50)

BlueAndRed(k = 50)

CustomPalette(low = "white", high = "red", mid = NULL, k = 50)

PurpleAndYellow(k = 50)

Arguments

mid    middle color. Optional.
k    number of steps (colors levels) to include between low and high values
low    low color
high    high color

Value

A color palette for plotting

Examples

df <- data.frame(x = rnorm(n = 100, mean = 20, sd = 2), y = rbinom(n = 100, size = 100, prob = 0.2))
plot(df, col = BlackAndWhite())

df <- data.frame(x = rnorm(n = 100, mean = 20, sd = 2), y = rbinom(n = 100, size = 100, prob = 0.2))
plot(df, col = BlueAndRed())

myPalette <- CustomPalette()
myPalette

df <- data.frame(x = rnorm(n = 100, mean = 20, sd = 2), y = rbinom(n = 100, size = 100, prob = 0.2))
plot(df, col = PurpleAndYellow())
BridgeCellsRepresentation

Construct a dictionary representation for each unimodal dataset

Description

Construct a dictionary representation for each unimodal dataset

Usage

BridgeCellsRepresentation(
  object.list,
  bridge.object,
  object.reduction,
  bridge.reduction,
  laplacian.reduction = "lap",
  laplacian.dims = 1:50,
  bridge.assay.name = "Bridge",
  return.all.assays = FALSE,
  l2.norm = TRUE,
  verbose = TRUE
)

Arguments

- **object.list**: A list of Seurat objects
- **bridge.object**: A multi-omic bridge Seurat which is used as the basis to represent unimodal datasets
- **object.reduction**: A list of dimensional reductions from object.list used to be reconstructed by bridge.object
- **bridge.reduction**: A list of dimensional reductions from bridge.object used to reconstruct object.reduction
- **laplacian.reduction**: Name of bridge graph laplacian dimensional reduction
- **laplacian.dims**: Dimensions used for bridge graph laplacian dimensional reduction
- **bridge.assay.name**: Assay name used for bridge object reconstruction value (default is 'Bridge')
- **return.all.assays**: Whether to return all assays in the object.list. Only bridge assay is returned by default.
- **l2.norm**: Whether to l2 normalize the dictionary representation
- **verbose**: Print messages and progress
Value

Returns a object list in which each object has a bridge cell derived assay

BridgeReferenceSet-class

The BridgeReferenceSet Class The BridgeReferenceSet is an output from PrepareBridgeReference

Description

The BridgeReferenceSet Class The BridgeReferenceSet is an output from PrepareBridgeReference

Slots

bridge The multi-omic object
reference The Reference object only containing bridge representation assay
params A list of parameters used in the PrepareBridgeReference command Store log of parameters that were used

BuildClusterTree Phylogenetic Analysis of Identity Classes

Description

Constructs a phylogenetic tree relating the 'aggregate' cell from each identity class. Tree is estimated based on a distance matrix constructed in either gene expression space or PCA space.

Usage

BuildClusterTree(
  object,
  assay = NULL,
  features = NULL,
  dims = NULL,
  reduction = "pca",
  graph = NULL,
  slot = "data",
  reorder = FALSE,
  reorder.numeric = FALSE,
  verbose = TRUE
)

BuildClusterTree

Arguments

object  Seurat object
assay   Assay to use for the analysis.
features Genes to use for the analysis. Default is the set of variable genes (VariableFeatures(object = object))
dims    If set, tree is calculated in dimension reduction space; overrides features
reduction Name of dimension reduction to use. Only used if dims is not NULL.
graph   If graph is passed, build tree based on graph connectivity between clusters; overrides dims and features
slot    slot/layer to use.
reorder Re-order identity classes (factor ordering), according to position on the tree. This groups similar classes together which can be helpful, for example, when drawing violin plots.
reorder.numeric Re-order identity classes according to position on the tree, assigning a numeric value (1’ is the leftmost node)
verbose Show progress updates

Details

Note that the tree is calculated for an ‘aggregate’ cell, so gene expression or PC scores are summed across all cells in an identity class before the tree is constructed.

Value

A Seurat object where the cluster tree can be accessed with Tool

Examples

```r
Not run:
if (requireNamespace("ape", quietly = TRUE)) {
 data("pbmc_small")
 pbmc_small <- BuildClusterTree(object = pbmc_small)
 Tool(object = pbmc_small, slot = 'BuildClusterTree')
}
End(Not run)
```
BuildNicheAssay  

Construct an assay for spatial niche analysis

Description

This function will construct a new assay where each feature is a cell label. The values represent the sum of a particular cell label neighboring a given cell.

Usage

BuildNicheAssay(
  object, fov,
  group.by,
  assay = "niche",
  cluster.name = "niches",
  neighbors.k = 20,
  niches.k = 4
)

Arguments

object  A Seurat object
fov     FOV object to gather cell positions from
group.by Cell classifications to count in spatial neighborhood
assay   Name for spatial neighborhoods assay
cluster.name Name of output clusters
neighbors.k Number of neighbors to consider for each cell
niches.k  Number of clusters to return based on the niche assay

Value

Seurat object containing a new assay

CalcPerturbSig  

Calculate a perturbation Signature

Description

Function to calculate perturbation signature for pooled CRISPR screen datasets. For each target cell (expressing one target gRNA), we identified 20 cells from the control pool (non-targeting cells) with the most similar mRNA expression profiles. The perturbation signature is calculated by subtracting the averaged mRNA expression profile of the non-targeting neighbors from the mRNA expression profile of the target cell.
Usage

CalcPerturbSig(
  object,
  assay = NULL,
  features = NULL,
  slot = "data",
  gd.class = "guide_ID",
  nt.cell.class = "NT",
  split.by = NULL,
  num.neighbors = NULL,
  reduction = "pca",
  ndims = 15,
  new.assay.name = "PRTB",
  verbose = TRUE
)

Arguments

object  An object of class Seurat.
assay   Name of Assay PRTB signature is being calculated on.
features Features to compute PRTB signature for. Defaults to the variable features set in
           the assay specified.
slot     Data slot to use for PRTB signature calculation.
gd.class Metadata column containing target gene classification.
nt.cell.class Non-targeting gRNA cell classification identity.
split.by Provide metadata column if multiple biological replicates exist to calculate PRTB
          signature for every replicate separately.
num.neighbors Number of nearest neighbors to consider.
reduction Reduction method used to calculate nearest neighbors.
ndims      Number of dimensions to use from dimensionality reduction method.
new.assay.name Name for the new assay.
verbose Display progress + messages

Value

Returns a Seurat object with a new assay added containing the perturbation signature for all cells in
the data slot.
CalculateBarcodeInflections

Calculate the Barcode Distribution Inflection

Description

This function calculates an adaptive inflection point ("knee") of the barcode distribution for each sample group. This is useful for determining a threshold for removing low-quality samples.

Usage

```r
CalculateBarcodeInflections(
 object,
 barcode.column = "nCount_RNA",
 group.column = "orig.ident",
 threshold.low = NULL,
 threshold.high = NULL
)
```

Arguments

- **object**: Seurat object
- **barcode.column**: Column to use as proxy for barcodes ("nCount_RNA" by default)
- **group.column**: Column to group by ("orig.ident" by default)
- **threshold.low**: Ignore barcodes of rank below this threshold in inflection calculation
- **threshold.high**: Ignore barcodes of rank above this threshold in inflection calculation

Details

The function operates by calculating the slope of the barcode number vs. rank distribution, and then finding the point at which the distribution changes most steeply (the "knee"). Of note, this calculation often must be restricted as to the range at which it performs, so 'threshold' parameters are provided to restrict the range of the calculation based on the rank of the barcodes. [BarcodeInflectionsPlot()] is provided as a convenience function to visualize and test different thresholds and thus provide more sensical end results.

See [BarcodeInflectionsPlot()] to visualize the calculated inflection points and [SubsetByBarcodeInflections()] to subsequently subset the Seurat object.

Value

Returns Seurat object with a new list in the 'tools' slot, 'CalculateBarcodeInflections' with values:

- **barcode_distribution**: contains the full barcode distribution across the entire dataset
- **inflection_points**: the calculated inflection points within the thresholds
- **threshold_values**: the provided (or default) threshold values to search within for inflections
- **cells_pass**: the cells that pass the inflection point calculation
CaseMatch

Author(s)
Robert A. Amezquita, <robert.amezquita@fredhutch.org>

See Also
BarcodeInflectionsPlot SubsetByBarcodeInflections

Examples

```r
data("pbmc_small")
CalculateBarcodeInflections(pbmc_small, group.column = 'groups')
```

---

CaseMatch  

Match the case of character vectors

Description

Match the case of character vectors

Usage

```r
CaseMatch(search, match)
```

Arguments

- **search**: A vector of search terms
- **match**: A vector of characters whose case should be matched

Value

Values from search present in match with the case of match

Examples

```r
data("pbmc_small")
cd_genes <- c('Cd79b', 'Cd19', 'Cd200')
CaseMatch(search = cd_genes, match = rownames(x = pbmc_small))
```
**cc.genes**  
*Cell cycle genes*

---

**Description**

A list of genes used in cell-cycle regression

**Usage**

cc.genes

**Format**

A list of two vectors

- **s.genes** Genes associated with S-phase
- **g2m.genes** Genes associated with G2M-phase

**Source**

https://www.science.org/doi/abs/10.1126/science.aad0501

---

**cc.genes.updated.2019  Cell cycle genes: 2019 update**

---

**Description**

A list of genes used in cell-cycle regression, updated with 2019 symbols

**Usage**

cc.genes.updated.2019

**Format**

A list of two vectors

- **s.genes** Genes associated with S-phase
- **g2m.genes** Genes associated with G2M-phase
Updated symbols

The following symbols were updated from cc.genes

- **s.genes**
  - MCM2: MCM7
  - MLF1IP: CENPU
  - RPA2: POLR1B
  - BRIP1: MRPL36

- **g2m.genes**
  - FAM64A: PIMREG
  - HN1: JPT1

Source

https://www.science.org/doi/abs/10.1126/science.aad0501

See Also

cc.genes

Examples

```r
Not run:
cc.genes.updated.2019 <- cc.genes
cc.genes.updated.2019$s.genes <- UpdateSymbolList(symbols = cc.genes.updated.2019$s.genes)
cc.genes.updated.2019$g2m.genes <- UpdateSymbolList(symbols = cc.genes.updated.2019$g2m.genes)
End(Not run)
```

CCAIntegration

Seurat-CCA Integration

Description

Seurat-CCA Integration

Usage

CCAIntegration(
  object = NULL,
  assay = NULL,
  layers = NULL,
  orig = NULL,
  new.reduction = "integrated.dr",
  reference = NULL,
  features = NULL,
  normalization.method = c("LogNormalize", "SCT"),
  dims = 1:30,
)
k.filter = NA,
scale.layer = "scale.data",
dims.to.integrate = NULL,
k.weight = 100,
weight.reduction = NULL,
sd.weight = 1,
sample.tree = NULL,
preserve.order = FALSE,
verbose = TRUE,
...
)

Arguments

- **object**: A Seurat object
- **assay**: Name of Assay in the Seurat object
- **layers**: Names of layers in assay
- **orig**: A dimensional reduction to correct
- **new.reduction**: Name of new integrated dimensional reduction
- **reference**: A reference Seurat object
- **features**: A vector of features to use for integration
- **normalization.method**: Name of normalization method used: LogNormalize or SCT
- **dims**: Dimensions of dimensional reduction to use for integration
- **k.filter**: Number of anchors to filter
- **scale.layer**: Name of scaled layer in assay
- **dims.to.integrate**: Number of dimensions to return integrated values for
- **k.weight**: Number of neighbors to consider when weighting anchors
- **weight.reduction**: Dimension reduction to use when calculating anchor weights. This can be one of:
  - A string, specifying the name of a dimension reduction present in all objects to be integrated
  - A vector of strings, specifying the name of a dimension reduction to use for each object to be integrated
  - A vector of DimReduc objects, specifying the object to use for each object in the integration
  - NULL, in which case the full corrected space is used for computing anchor weights.
- **sd.weight**: Controls the bandwidth of the Gaussian kernel for weighting
- **sample.tree**: Specify the order of integration. Order of integration should be encoded in a matrix, where each row represents one of the pairwise integration steps. Negative numbers specify a dataset, positive numbers specify the integration results from
a given row (the format of the merge matrix included in the `hclust` function output). For example: `matrix(c(-2, 1, -3, -1), ncol = 2)` gives:

```
[,1] [,2]
[1,] -2 -3
[2,] 1 -1
```

Which would cause dataset 2 and 3 to be integrated first, then the resulting object integrated with dataset 1.

If NULL, the sample tree will be computed automatically.

**preserve.order**

Do not reorder objects based on size for each pairwise integration.

**verbose**

Print progress

... Arguments passed on to `FindIntegrationAnchors`

### Examples

```r
Not run:
Preprocessing
obj <- SeuratData::LoadData("pbmcscsa")
obj[["RNA"]][["RNA"], f = obj$Method]
obj <- NormalizeData(obj)
obj <- FindVariableFeatures(obj)
obj <- ScaleData(obj)
obj <- RunPCA(obj)

After preprocessing, we integrate layers.
obj <- IntegrateLayers(object = obj, method = CCAIntegration,
 orig.reduction = "pca", new.reduction = "integrated.cca",
 verbose = FALSE)

Modifying parameters
We can also specify parameters such as `k.anchor` to increase the strength of integration
obj <- IntegrateLayers(object = obj, method = CCAIntegration,
 orig.reduction = "pca", new.reduction = "integrated.cca",
 k.anchor = 20, verbose = FALSE)

Integrating SCTransformed data
obj <- SCTransform(object = obj)
obj <- IntegrateLayers(object = obj, method = CCAIntegration,
 orig.reduction = "pca", new.reduction = "integrated.cca",
 assay = "SCT", verbose = FALSE)

End(Not run)
```

---

**CellCycleScoring** Score cell cycle phases
Description

Score cell cycle phases

Usage

```r
CellCycleScoring(
 object,
 s.features,
 g2m.features,
 ctrl = NULL,
 set.ident = FALSE,
 ...
)
```

Arguments

- `object`: A Seurat object
- `s.features`: A vector of features associated with S phase
- `g2m.features`: A vector of features associated with G2M phase
- `ctrl`: Number of control features selected from the same bin per analyzed feature supplied to `AddModuleScore`. Defaults to value equivalent to minimum number of features present in `s.features` and `g2m.features`.
- `set.ident`: If true, sets identity to phase assignments Stashes old identities in 'old.ident'
- `...`: Arguments to be passed to `AddModuleScore`

Value

A Seurat object with the following columns added to object meta data: S.Score, G2M.Score, and Phase

See Also

`AddModuleScore`

Examples

```r
Not run:
data("pbmc_small")
pbmc_small doesn't have any cell-cycle genes
To run CellCycleScoring, please use a dataset with cell-cycle genes
An example is available at http://satijalab.org/seurat/cell_cycle_vignette.html
pbmc_small <- CellCycleScoring(
 object = pbmc_small,
 g2m.features = cc.genes$g2m.genes,
 s.features = cc.genes$s.genes
)
head(x = pbmc_small@meta.data)

End(Not run)
```
Description

Get Cell Names

Usage

```r
S3 method for class 'SCTModel'
Cells(x, ...)

S3 method for class 'SlideSeq'
Cells(x, ...)

S3 method for class 'STARmap'
Cells(x, ...)

S3 method for class 'VisiumV1'
Cells(x, ...)
```

Arguments

- `x` An object
- `...` Arguments passed to other methods

See Also

- `SeuratObject::Cells`

Description

CellScatter

Cell-cell scatter plot

Description

CellScatter creates a plot of scatter plot of features across two single cells. Pearson correlation between the two cells is displayed above the plot.
Usage

CellScatter(
  object,
  cell1,
  cell2,
  features = NULL,
  highlight = NULL,
  cols = NULL,
  pt.size = 1,
  smooth = FALSE,
  raster = NULL,
  raster.dpi = c(512, 512)
)

Arguments

object  Seurat object
cell1   Cell 1 name
cell2   Cell 2 name
features Features to plot (default, all features)
highlight Features to highlight
cols    Colors to use for identity class plotting.
pt.size Size of the points on the plot
smooth  Smooth the graph (similar to smoothScatter)
raster  Convert points to raster format, default is NULL which will automatically use raster if the number of points plotted is greater than 100,000
raster.dpi Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is c(512, 512).

Value

A ggplot object

Examples

data("pbmc_small")
CellScatter(object = pbmc_small, cell1 = 'ATAGGAGAACAGA', cell2 = 'CATCAGGATGCACA')
**CellSelector**  

**Cell Selector**

**Description**

Select points on a scatterplot and get information about them

**Usage**

CellSelector(plot, object = NULL, ident = "SelectedCells", ...)

FeatureLocator(plot, ...)

**Arguments**

- **plot**: A ggplot2 plot
- **object**: An optional Seurat object; if passes, will return an object with the identities of selected cells set to ident
- **ident**: An optional new identity class to assign the selected cells
- **...**: Ignored

**Value**

If object is NULL, the names of the points selected; otherwise, a Seurat object with the selected cells identity classes set to ident

**See Also**

DimPlot FeaturePlot

**Examples**

```r
Not run:
data("pbmc_small")
plot <- DimPlot(object = pbmc_small)
Follow instructions in the terminal to select points
cells.located <- CellSelector(plot = plot)
cells.located
Automatically set the identity class of selected cells and return a new Seurat object
pbmc_small <- CellSelector(plot = plot, object = pbmc_small, ident = 'SelectedCells')

End(Not run)
```
CollapseEmbeddingOutliers

Move outliers towards center on dimension reduction plot

Description

Move outliers towards center on dimension reduction plot

Usage

CollapseEmbeddingOutliers(
  object,
  reduction = "umap",
  dims = 1:2,
  group.by = "ident",
  outlier.sd = 2,
  reduction.key = "UMAP_"
)

Arguments

  object     Seurat object
  reduction  Name of DimReduc to adjust
  dims       Dimensions to visualize
  group.by   Group (color) cells in different ways (for example, orig.ident)
  outlier.sd Controls the outlier distance
  reduction.key Key for DimReduc that is returned

Value

Returns a DimReduc object with the modified embeddings

Examples

## Not run:
data("pbmc_small")
pbm_small <- FindClusters(pbmc_small, resolution = 1.1)
pbm_small <- RunUMAP(pbmc_small, dims = 1:5)
DimPlot(pbmc_small, reduction = "umap")
pbm_small["umap_new"] <- CollapseEmbeddingOutliers(pbmc_small,
  reduction = "umap", reduction.key = 'umap_', outlier.sd = 0.5)
DimPlot(pbmc_small, reduction = "umap_new")

## End(Not run)
**CollapseSpeciesExpressionMatrix**

*Slim down a multi-species expression matrix, when only one species is primarily of interest.*

---

**Description**

Valuable for CITE-seq analyses, where we typically spike in rare populations of ’negative control’ cells from a different species.

**Usage**

```r
CollapseSpeciesExpressionMatrix(
 object,
 prefix = "HUMAN_",
 controls = "MOUSE_",
 ncontrols = 100
)
```

**Arguments**

- **object**: A UMI count matrix. Should contain rownames that start with the ensuing arguments prefix.1 or prefix.2
- **prefix**: The prefix denoting rownames for the species of interest. Default is "HUMAN.". These rownames will have this prefix removed in the returned matrix.
- **controls**: The prefix denoting rownames for the species of ’negative control’ cells. Default is "MOUSE.".
- **ncontrols**: How many of the most highly expressed (average) negative control features (by default, 100 mouse genes), should be kept? All other rownames starting with prefix.2 are discarded.

**Value**

A UMI count matrix. Rownames that started with prefix have this prefix discarded. For rownames starting with controls, only the ncontrols most highly expressed features are kept, and the prefix is kept. All other rows are retained.

**Examples**

```r
Not run:
cbmc.rna.collapsed <- CollapseSpeciesExpressionMatrix(cbmc.rna)

End(Not run)
```
ColorDimSplit  

**Description**

Returns a DimPlot colored based on whether the cells fall in clusters to the left or to the right of a node split in the cluster tree.

**Usage**

```r
ColorDimSplit(
 object,
 node,
 left.color = "red",
 right.color = "blue",
 other.color = "grey50",
 ...
)
```

**Arguments**

- `object` Seurat object
- `node` Node in cluster tree on which to base the split
- `left.color` Color for the left side of the split
- `right.color` Color for the right side of the split
- `other.color` Color for all other cells
- `...` Arguments passed on to `DimPlot`
- `dims` Dimensions to plot, must be a two-length numeric vector specifying x- and y-dimensions
- `cells` Vector of cells to plot (default is all cells)
- `cols` Vector of colors, each color corresponds to an identity class. This may also be a single character or numeric value corresponding to a palette as specified by `brewer.pal.info`. By default, ggplot2 assigns colors. We also include a number of palettes from the pals package. See `DiscretePalette` for details.
- `pt.size` Adjust point size for plotting
- `reduction` Which dimensionality reduction to use. If not specified, first searches for umap, then tsne, then pca
- `group.by` Name of one or more metadata columns to group (color) cells by (for example, orig.ident); pass 'ident' to group by identity class
- `split.by` A factor in object metadata to split the plot by, pass 'ident' to split by cell identity
- `shape.by` If NULL, all points are circles (default). You can specify any cell attribute (that can be pulled with FetchData) allowing for both different colors and different shapes on cells. Only applicable if `raster` = FALSE.
order Specify the order of plotting for the idents. This can be useful for crowded plots if points of interest are being buried. Provide either a full list of valid ident names or a subset to be plotted last (on top).

shuffle Whether to randomly shuffle the order of points. This can be useful for crowded plots if points of interest are being buried. (default is FALSE)

seed Sets the seed if randomly shuffling the order of points.

label Whether to label the clusters

label.size Sets size of labels

label.color Sets the color of the label text

label.box Whether to put a box around the label text (geom_text vs geom_label)

alpha Alpha value for plotting (default is 1)

repel Repel labels

cells.highlight A list of character or numeric vectors of cells to highlight. If only one group of cells desired, can simply pass a vector instead of a list. If set, colors selected cells to the color(s) in cols.highlight and other cells black (white if dark.theme = TRUE); will also resize to the size(s) passed to sizes.highlight

cols.highlight A vector of colors to highlight the cells as; will repeat to the length groups in cells.highlight

sizes.highlight Size of highlighted cells; will repeat to the length groups in cells.highlight. If sizes.highlight = TRUE size of all points will be this value.

na.value Color value for NA points when using custom scale

ncol Number of columns for display when combining plots

combine Combine plots into a single patchworked ggplot object. If FALSE, return a list of ggplot objects

raster Convert points to raster format, default is NULL which automatically rasterizes if plotting more than 100,000 cells

raster.dpi Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is c(512, 512).

Value

Returns a DimPlot

See Also

DimPlot

Examples

```r
Not run:
if (requireNamespace("ape", quietly = TRUE)) {
 data("pbmc_small")
 pbmc_small <- BuildClusterTree(object = pbmc_small, verbose = FALSE)
 PlotClusterTree(pbmc_small)
 ColorDimSplit(pbmc_small, node = 5)
}
Combine ggplot2-based plots into a single plot

Description

Combine ggplot2-based plots into a single plot

Usage

CombinePlots(plots, ncol = NULL, legend = NULL, ...)

Arguments

- **plots**: A list of gg objects
- **ncol**: Number of columns
- **legend**: Combine legends into a single legend choose from 'right' or 'bottom'; pass 'none' to remove legends, or NULL to leave legends as they are
- **...**: Extra parameters passed to plot_grid

Value

A combined plot

Examples

data("pbmc_small")
pbmc_small[["group"]]<- sample(
x = c('g1', 'g2'),
size = ncol(x = pbmc_small),
replace = TRUE
)
plot1 <- FeaturePlot(
 object = pbmc_small,
 features = 'MS4A1',
 split.by = 'group'
)
plot2 <- FeaturePlot(
 object = pbmc_small,
 features = 'FCN1',
 split.by = 'group'
)
CombinePlots(
 plots = list(plot1, plot2),
)

End(Not run)
contrast-theory

```r
legend = 'none',
nrow = length(x = unique(x = pbmc_small[['group', drop = TRUE]]))
)
```

contrast-theory
Get the intensity and/or luminance of a color

Description

Get the intensity and/or luminance of a color

Usage

- `Intensity(color)`
- `Luminance(color)`

Arguments

- `color`
 A vector of colors

Value

A vector of intensities/luminances for each color

Source

Examples

- `Intensity(color = c('black', 'white', '#E7BF3'))`
- `Luminance(color = c('black', 'white', '#E7BF3'))`
CreateCategoryMatrix
Create one hot matrix for a given label

Description
Create one hot matrix for a given label

Usage
CreateCategoryMatrix(
 labels,
 method = c("aggregate", "average"),
 cells.name = NULL
)

Arguments
- labels : A vector of labels
- method : Method to aggregate cells with the same label. Either 'aggregate' or 'average'
- cells.name : A vector of cell names

CreateSCTAssayObject
Create a SCT Assay object

Description
Create a SCT object from a feature (e.g. gene) expression matrix and a list of SCTModels. The expected format of the input matrix is features x cells.

Usage
CreateSCTAssayObject(
 counts,
 data,
 scale.data = NULL,
 umi.assay = "RNA",
 min.cells = 0,
 min.features = 0,
 SCTModel.list = NULL
)
Arguments

- **counts**: Unnormalized data such as raw counts or TPMs
- **data**: Prenormalized data; if provided, do not pass counts
- **scale.data**: a residual matrix
- **umi.assay**: The UMI assay name. Default is RNA
- **min.cells**: Include features detected in at least this many cells. Will subset the counts matrix as well. To reintroduce excluded features, create a new object with a lower cutoff
- **min.features**: Include cells where at least this many features are detected
- **SCTModel.list**: list of SCTModels

Details

Non-unique cell or feature names are not allowed. Please make unique before calling this function.

CustomDistance
Run a custom distance function on an input data matrix

Description

Run a custom distance function on an input data matrix

Usage

CustomDistance(my.mat, my.function, ...)

Arguments

- **my.mat**: A matrix to calculate distance on
- **my.function**: A function to calculate distance
- **...**: Extra parameters to my.function

Value

A distance matrix

Author(s)

Jean Fan
Examples

data("pbmc_small")
Define custom distance matrix
manhattan.distance <- function(x, y) return(sum(abs(x-y)))

input.data <- GetAssayData(pbmc_small, assay.type = "RNA", slot = "scale.data")
cell.manhattan.dist <- CustomDistance(input.data, manhattan.distance)

DEenrichRPlot *DE and EnrichR pathway visualization barplot*

Description

DE and EnrichR pathway visualization barplot

Usage

DEenrichRPlot(
 object,
 ident.1 = NULL,
 ident.2 = NULL,
 balanced = TRUE,
 logfc.threshold = 0.25,
 assay = NULL,
 max.genes,
 test.use = "wilcox",
 p.val.cutoff = 0.05,
 cols = NULL,
 enrich.database = NULL,
 num.pathway = 10,
 return.gene.list = FALSE,
 ...
)

Arguments

- **object**: Name of object class Seurat.
- **ident.1**: Cell class identity 1.
- **ident.2**: Cell class identity 2.
- **balanced**: Option to display pathway enrichments for both negative and positive DE genes. If false, only positive DE gene will be displayed.
- **logfc.threshold**: Limit testing to genes which show, on average, at least X-fold difference (log-scale) between the two groups of cells. Default is 0.25. Increasing logfc.threshold speeds up the function, but can miss weaker signals.
DEenrichRPlot

assay

Assay to use in differential expression testing

max.genes

Maximum number of genes to use as input to enrichR.

test.use

Denotes which test to use. Available options are:

• "wilcox" : Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default); will use a fast implementation by Presto if installed
• "wilcox_limma" : Identifies differentially expressed genes between two groups of cells using the limma implementation of the Wilcoxon Rank Sum test; set this option to reproduce results from Seurat v4
• "bimod" : Likelihood-ratio test for single cell gene expression, (McDavid et al., Bioinformatics, 2013)
• "roc" : Identifies ’markers’ of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells.1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a ‘predictive power’ (abs(AUC-0.5) * 2) ranked matrix of putative differentially expressed genes.
• "t" : Identify differentially expressed genes between two groups of cells using the Student’s t-test.
• "negbinom" : Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets
• "poisson" : Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMI-based datasets
• "LR" : Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test.
• "MAST" : Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.
• "DESeq2" : Identifies differentially expressed genes between two groups of cells based on a model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014).This test does not support pre-filtering of genes based on average difference (or percent detection rate) between cell groups. However, genes may be pre-filtered based on their minimum detection rate (min.pct) across both cell groups. To use this method, please install DESeq2, using the instructions at https://bioconductor.org/packages/release/bioc/html/DESeq2.html

p.val.cutoff

Cutoff to select DE genes.

cols

A list of colors to use for barplots.

enrich.database

Database to use from enrichR.
DietSeurat

Number of pathways to display in barplot.

Return list of DE genes

Arguments passed to other methods and to specific DE methods

Value

Returns one (only enriched) or two (both enriched and depleted) barplots with the top enriched/depleted GO terms from EnrichR.

DietSeurat

Slim down a Seurat object

Description

Keep only certain aspects of the Seurat object. Can be useful in functions that utilize merge as it reduces the amount of data in the merge

Usage

DietSeurat(object, layers = NULL, features = NULL, assays = NULL, dimreducs = NULL, graphs = NULL, misc = TRUE, counts = deprecated(), data = deprecated(), scale.data = deprecated(), ...)

Arguments

object A Seurat object
layers A vector or named list of layers to keep
features Only keep a subset of features, defaults to all features
assays Only keep a subset of assays specified here
dimreducs Only keep a subset of DimReduces specified here (if NULL, remove all DimReduces)
graphs Only keep a subset of Graphs specified here (if NULL, remove all Graphs)
misc Preserve the misc slot; default is TRUE
counts Preserve the count matrices for the assays specified
DimHeatmap

Preserve the data matrices for the assays specified

scale.data

Preserve the scale data matrices for the assays specified

...

Ignored

Value

Object with only the sub-object specified retained

DimHeatmap

Dimensional reduction heatmap

Description

Draws a heatmap focusing on a principal component. Both cells and genes are sorted by their principal component scores. Allows for nice visualization of sources of heterogeneity in the dataset.

Usage

```r
DimHeatmap(
  object,
  dims = 1,
  nfeatures = 30,
  cells = NULL,
  reduction = "pca",
  disp.min = -2.5,
  disp.max = NULL,
  balanced = TRUE,
  projected = FALSE,
  ncol = NULL,
  fast = TRUE,
  raster = TRUE,
  slot = "scale.data",
  assays = NULL,
  combine = TRUE
)
```

Arguments

- **object**: Seurat object
- **dims**: Dimensions to plot
- **nfeatures**: Number of genes to plot
- **cells**: A list of cells to plot. If numeric, just plots the top cells.
- **reduction**: Which dimensional reduction to use
DimPlot

Minimum display value (all values below are clipped)

Maximum display value (all values above are clipped); defaults to 2.5 if slot is 'scale.data', 6 otherwise

Plot an equal number of genes with both + and - scores.

Use the full projected dimensional reduction

Number of columns to plot

If true, use image to generate plots; faster than using ggplot2, but not customiz-able

If true, plot with geom_raster, else use geom_tile. geom_raster may look blurry on some viewing applications such as Preview due to how the raster is interpolated. Set this to FALSE if you are encountering that issue (note that plots may take longer to produce/render).

Data slot to use, choose from 'raw.data', 'data', or 'scale.data'

A vector of assays to pull data from

Combine plots into a single patchworked ggplot object. If FALSE, return a list of ggplot objects

Extra parameters passed to DimHeatmap

No return value by default. If using fast = FALSE, will return a patchworked ggplot object if combine = TRUE, otherwise returns a list of ggplot objects

See Also

image geom_raster

Examples

data("pbmc_small")
DimHeatmap(object = pbmc_small)

DimPlot

Dimensional reduction plot

Description

Graphs the output of a dimensional reduction technique on a 2D scatter plot where each point is a cell and it’s positioned based on the cell embeddings determined by the reduction technique. By default, cells are colored by their identity class (can be changed with the group.by parameter).
Usage

DimPlot(
 object,
 dims = c(1, 2),
 cells = NULL,
 cols = NULL,
 pt.size = NULL,
 reduction = NULL,
 group.by = NULL,
 split.by = NULL,
 shape.by = NULL,
 order = NULL,
 shuffle = FALSE,
 seed = 1,
 label = FALSE,
 label.size = 4,
 label.color = "black",
 label.box = FALSE,
 repel = FALSE,
 alpha = 1,
 cells.highlight = NULL,
 cols.highlight = "#DE2D26",
 sizes.highlight = 1,
 na.value = "grey50",
 ncol = NULL,
 combine = TRUE,
 raster = NULL,
 raster.dpi = c(512, 512)
)

PCAPlot(object, ...)

TSNEPlot(object, ...)

UMAPPlot(object, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Seurat object</td>
</tr>
<tr>
<td>dims</td>
<td>Dimensions to plot, must be a two-length numeric vector specifying x- and y-dimensions</td>
</tr>
<tr>
<td>cells</td>
<td>Vector of cells to plot (default is all cells)</td>
</tr>
<tr>
<td>cols</td>
<td>Vector of colors, each color corresponds to an identity class. This may also be a single character or numeric value corresponding to a palette as specified by brewer.pal.info. By default, ggplot2 assigns colors. We also include a number of palettes from the pals package. See DiscretePalette for details.</td>
</tr>
<tr>
<td>pt.size</td>
<td>Adjust point size for plotting</td>
</tr>
</tbody>
</table>
`reduction` Which dimensionality reduction to use. If not specified, first searches for umap, then tsne, then pca

`group.by` Name of one or more metadata columns to group (color) cells by (for example, orig.ident); pass 'ident' to group by identity class

`split.by` A factor in object metadata to split the plot by, pass 'ident' to split by cell identity

`shape.by` If NULL, all points are circles (default). You can specify any cell attribute (that can be pulled with FetchData) allowing for both different colors and different shapes on cells. Only applicable if `raster = FALSE`.

`order` Specify the order of plotting for the idents. This can be useful for crowded plots if points of interest are being buried. Provide either a full list of valid idents or a subset to be plotted last (on top)

`shuffle` Whether to randomly shuffle the order of points. This can be useful for crowded plots if points of interest are being buried. (default is FALSE)

`seed` Sets the seed if randomly shuffling the order of points.

`label` Whether to label the clusters

`label.size` Sets size of labels

`label.color` Sets the color of the label text

`label.box` Whether to put a box around the label text (geom_text vs geom_label)

`repel` Repel labels

`alpha` Alpha value for plotting (default is 1)

`cells.highlight` A list of character or numeric vectors of cells to highlight. If only one group of cells desired, can simply pass a vector instead of a list. If set, colors selected cells to the color(s) in `cols.highlight` and other cells black (white if `dark.theme = TRUE`); will also resize to the size(s) passed to `sizes.highlight`

`cols.highlight` A vector of colors to highlight the cells as; will repeat to the length groups in `cells.highlight`

`sizes.highlight` Size of highlighted cells; will repeat to the length groups in `cells.highlight`. If sizes.highlight = TRUE size of all points will be this value.

`na.value` Color value for NA points when using custom scale

`ncol` Number of columns for display when combining plots

`combine` Combine plots into a single `patchwork`ed `ggplot` object. If FALSE, return a list of `ggplot` objects

`raster` Convert points to raster format, default is NULL which automatically rasterizes if plotting more than 100,000 cells

`raster.dpi` Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is c(512, 512).

`...` Extra parameters passed to `DimPlot`

Value

A `patchwork`ed `ggplot` object if `combine = TRUE`; otherwise, a list of `ggplot` objects
Note

For the old do.hover and do.identify functionality, please see HoverLocator and CellSelector, respectively.

See Also

FeaturePlot HoverLocator CellSelector FetchData

Examples

data("pbmc_small")
DimPlot(object = pbmc_small)
DimPlot(object = pbmc_small, split.by = 'letter.idents')

DimReduc-class

The DimReduc Class

Description

The DimReduc object stores a dimensionality reduction taken out in Seurat; for more details, please see the documentation in SeuratObject

See Also

SeuratObject::DimReduc-class

DiscretePalette

Discrete colour palettes from pals

Description

These are included here because pals depends on a number of compiled packages, and this can lead to increases in run time for Travis, and generally should be avoided when possible.

Usage

DiscretePalette(n, palette = NULL, shuffle = FALSE)

Arguments

n Number of colours to be generated.

palette Options are "alphabet", "alphabet2", "glasbey", "polychrome", "stepped", and "parade". Can be omitted and the function will use the one based on the requested n.

shuffle Shuffle the colors in the selected palette.
Details

These palettes are a much better default for data with many classes than the default ggplot2 palette.

Many thanks to Kevin Wright for writing the pals package.

Taken from the pals package (Licence: GPL-3). https://cran.r-project.org/package=pals

Credit: Kevin Wright

Value

A vector of colors

DoHeatmap Feature expression heatmap

Description

Draws a heatmap of single cell feature expression.

Usage

DoHeatmap(
 object,
 features = NULL,
 cells = NULL,
 group.by = "ident",
 group.bar = TRUE,
 group.colors = NULL,
 disp.min = -2.5,
 disp.max = NULL,
 slot = "scale.data",
 assay = NULL,
 label = TRUE,
 size = 5.5,
 hjust = 0,
 vjust = 0,
 angle = 45,
 raster = TRUE,
 draw.lines = TRUE,
 lines.width = NULL,
 group.bar.height = 0.02,
 combine = TRUE
)
Arguments

- **object**: Seurat object
- **features**: A vector of features to plot, defaults to `VariableFeatures(object = object)`
- **cells**: A vector of cells to plot
- **group.by**: A vector of variables to group cells by; pass 'ident' to group by cell identity
- **classes**: A vector of classes
- **group.bar**: Add a color bar showing group status for cells
- **group.colors**: Colors to use for the color bar
- **disp.min**: Minimum display value (all values below are clipped)
- **disp.max**: Maximum display value (all values above are clipped); defaults to 2.5 if `slot` is 'scale.data', 6 otherwise
- **slot**: Data slot to use, choose from 'raw.data', 'data', or 'scale.data'
- **assay**: Assay to pull from
- **label**: Label the cell identities above the color bar
- **size**: Size of text above color bar
- **hjust**: Horizontal justification of text above color bar
- **vjust**: Vertical justification of text above color bar
- **angle**: Angle of text above color bar
- **raster**: If true, plot with geom_raster, else use geom_tile. geom_raster may look blurry on some viewing applications such as Preview due to how the raster is interpolated. Set this to FALSE if you are encountering that issue (note that plots may take longer to produce/render).
- **draw.lines**: Include white lines to separate the groups
- **lines.width**: Integer number to adjust the width of the separating white lines. Corresponds to the number of "cells" between each group.
- **group.bar.height**: Scale the height of the color bar
- **combine**: Combine plots into a single patchworked ggplot object. If FALSE, return a list of ggplot objects

Value

A patchworked ggplot object if `combine` = TRUE; otherwise, a list of ggplot objects

Examples

```r
data("pbmc_small")
DoHeatmap(object = pbmc_small)
```
DotPlot

Dot plot visualization

Description

Intuitive way of visualizing how feature expression changes across different identity classes (clusters). The size of the dot encodes the percentage of cells within a class, while the color encodes the AverageExpression level across all cells within a class (blue is high).

Usage

```r
DotPlot(
  object,
  features,
  assay = NULL,
  cols = c("lightgrey", "blue"),
  col.min = -2.5,
  col.max = 2.5,
  dot.min = 0,
  dot.scale = 6,
  idents = NULL,
  group.by = NULL,
  split.by = NULL,
  cluster.idents = FALSE,
  scale = TRUE,
  scale.by = "radius",
  scale.min = NA,
  scale.max = NA
)
```

Arguments

- `object` Seurat object
- `features` Input vector of features, or named list of feature vectors if feature-grouped panels are desired (replicates the functionality of the old SplitDotPlotGG)
- `assay` Name of assay to use, defaults to the active assay
- `cols` Colors to plot: the name of a palette from RColorBrewer::brewer.pal.info, a pair of colors defining a gradient, or 3+ colors defining multiple gradients (if split.by is set)
- `col.min` Minimum scaled average expression threshold (everything smaller will be set to this)
- `col.max` Maximum scaled average expression threshold (everything larger will be set to this)
- `dot.min` The fraction of cells at which to draw the smallest dot (default is 0). All cell groups with less than this expressing the given gene will have no dot drawn.
ElbowPlot

Quickly Pick Relevant Dimensions

Description

Plots the standard deviations (or approximate singular values if running PCAFast) of the principle components for easy identification of an elbow in the graph. This elbow often corresponds well with the significant dims and is much faster to run than Jackstraw

Usage

ElbowPlot(object, ndims = 20, reduction = "pca")

Arguments

 object Seurat object
 ndims Number of dimensions to plot standard deviation for
 reduction Reduction technique to plot standard deviation for
Value

A ggplot object

Examples

data("pbmc_small")
ElbowPlot(object = pbmc_small)

ExpMean

Calculate the mean of logged values

Description

Calculate mean of logged values in non-log space (return answer in log-space)

Usage

ExpMean(x, ...)

Arguments

- `x` A vector of values
- `...` Other arguments (not used)

Value

Returns the mean in log-space

Examples

ExpMean(x = c(1, 2, 3))

ExpSD

Calculate the standard deviation of logged values

Description

Calculate SD of logged values in non-log space (return answer in log-space)

Usage

ExpSD(x)
ExpVar

Arguments

\[x \] A vector of values

Value

Returns the standard deviation in log-space

Examples

\[\text{ExpSD}(x = c(1, 2, 3)) \]

ExpVar

Calculate the variance of logged values

Description

Calculate variance of logged values in non-log space (return answer in log-space)

Usage

\[\text{ExpVar}(x) \]

Arguments

\[x \] A vector of values

Value

Returns the variance in log-space

Examples

\[\text{ExpVar}(x = c(1, 2, 3)) \]
FastRowScale

Scale and/or center matrix rowwise

Description

Performs row scaling and/or centering. Equivalent to using t(scale(t(mat))) in R except in the case of NA values.

Usage

FastRowScale(mat, center = TRUE, scale = TRUE, scale_max = 10)

Arguments

- mat: A matrix
- center: a logical value indicating whether to center the rows
- scale: a logical value indicating whether to scale the rows
- scale_max: clip all values greater than scale_max to scale_max. Don’t clip if Inf.

Value

Returns the center/scaled matrix

FastRPCAIntegration

Perform integration on the joint PCA cell embeddings.

Description

This is a convenience wrapper function around the following three functions that are often run together when perform integration. # FindIntegrationAnchors, RunPCA, IntegrateEmbeddings.

Usage

FastRPCAIntegration(
 object.list,
 reference = NULL,
 anchor.features = 2000,
 k.anchor = 20,
 dims = 1:30,
 scale = TRUE,
 normalization.method = c("LogNormalize", "SCT"),
 new.reduction.name = "integrated_dr",
 npcs = 50,
 findintegrationanchors.args = list(),
 verbose = TRUE
)
Arguments

- **object.list**
 A list of Seurat objects between which to find anchors for downstream integration.

- **reference**
 A vector specifying the object/s to be used as a reference during integration. If NULL (default), all pairwise anchors are found (no reference/s). If not NULL, the corresponding objects in object.list will be used as references. When using a set of specified references, anchors are first found between each query and each reference. The references are then integrated through pairwise integration. Each query is then mapped to the integrated reference.

- **anchor.features**
 Can be either:
 - A numeric value. This will call SelectIntegrationFeatures to select the provided number of features to be used in anchor finding
 - A vector of features to be used as input to the anchor finding process

- **k.anchor**
 How many neighbors (k) to use when picking anchors

- **dims**
 Which dimensions to use from the CCA to specify the neighbor search space

- **scale**
 Whether or not to scale the features provided. Only set to FALSE if you have previously scaled the features you want to use for each object in the object.list

- **normalization.method**
 Name of normalization method used: LogNormalize or SCT

- **new.reduction.name**
 Name of integrated dimensional reduction

- **npcs**
 Total Number of PCs to compute and store (50 by default)

- **findintegrationanchors.args**
 A named list of additional arguments to FindIntegrationAnchors

- **verbose**
 Print messages and progress

Value

Returns a Seurat object with integrated dimensional reduction

FeaturePlot

Visualize ‘features’ on a dimensional reduction plot

Description

Colors single cells on a dimensional reduction plot according to a ‘feature’ (i.e. gene expression, PC scores, number of genes detected, etc.)
Usage

```r
FeaturePlot(
    object,
    features,
    dims = c(1, 2),
    cells = NULL,
    cols = if (blend) {
        c("lightgrey", "#ff0000", "#00ff00")
    } else {
        c("lightgrey", "blue")
    },
    pt.size = NULL,
    alpha = 1,
    order = FALSE,
    min.cutoff = NA,
    max.cutoff = NA,
    reduction = NULL,
    split.by = NULL,
    keep.scale = "feature",
    shape.by = NULL,
    slot = "data",
    blend = FALSE,
    blend.threshold = 0.5,
    label = FALSE,
    label.size = 4,
    label.color = "black",
    repel = FALSE,
    ncol = NULL,
    coord.fixed = FALSE,
    by.col = TRUE,
    sort.cell = deprecated(),
    interactive = FALSE,
    combine = TRUE,
    raster = NULL,
    raster.dpi = c(512, 512)
)
```

Arguments

- **object**: Seurat object
- **features**: Vector of features to plot. Features can come from:
 - An Assay feature (e.g. a gene name - "MS4A1")
 - A column name from meta.data (e.g. mitochondrial percentage - "percent.mito")
 - A column name from a DimReduc object corresponding to the cell embedding values (e.g. the PC 1 scores - "PC_1")
Dimensions to plot, must be a two-length numeric vector specifying x- and y-dimensions

Vector of cells to plot (default is all cells)

The two colors to form the gradient over. Provide as string vector with the first color corresponding to low values, the second to high. Also accepts a Brewer color scale or vector of colors. Note: this will bin the data into number of colors provided. When blend is TRUE, takes anywhere from 1-3 colors:

1 color: Treated as color for double-negatives, will use default colors 2 and 3 for per-feature expression

2 colors: Treated as colors for per-feature expression, will use default color 1 for double-negatives

3+ colors: First color used for double-negatives, colors 2 and 3 used for per-feature expression, all others ignored

Adjust point size for plotting

Alpha value for plotting (default is 1)

Boolean determining whether to plot cells in order of expression. Can be useful if cells expressing given feature are getting buried.

Vector of minimum and maximum cutoff values for each feature, may specify quantile in the form of 'q##' where ‘##’ is the quantile (eg, ‘q1’, ‘q10’)

Which dimensionality reduction to use. If not specified, first searches for umap, then tsne, then pca

A factor in object metadata to split the plot by, pass 'ident' to split by cell identity

How to handle the color scale across multiple plots. Options are:

• “feature” (default; by row/feature scaling): The plots for each individual feature are scaled to the maximum expression of the feature across the conditions provided to split.by
• “all” (universal scaling): The plots for all features and conditions are scaled to the maximum expression value for the feature with the highest overall expression
• all (no scaling): Each individual plot is scaled to the maximum expression value of the feature in the condition provided to split.by. Be aware setting NULL will result in color scales that are not comparable between plots

If NULL, all points are circles (default). You can specify any cell attribute (that can be pulled with FetchData) allowing for both different colors and different shapes on cells. Only applicable if raster = FALSE.

Which slot to pull expression data from?

Scale and blend expression values to visualize coexpression of two features

The color cutoff from weak signal to strong signal; ranges from 0 to 1.

Whether to label the clusters

Sets size of labels
Description

FeatureScatter

Scatter plot of single cell data

Creates a scatter plot of two features (typically feature expression), across a set of single cells. Cells are colored by their identity class. Pearson correlation between the two features is displayed above the plot.
FeatureScatter

Usage

```r
FeatureScatter(
    object,
    feature1,
    feature2,
    cells = NULL,
    shuffle = FALSE,
    seed = 1,
    group.by = NULL,
    split.by = NULL,
    cols = NULL,
    pt.size = 1,
    shape.by = NULL,
    span = NULL,
    smooth = FALSE,
    combine = TRUE,
    slot = "data",
    plot.cor = TRUE,
    ncol = NULL,
    raster = NULL,
    raster.dpi = c(512, 512),
    jitter = FALSE,
    log = FALSE
)
```

Arguments

- **object**
 - Seurat object

- **feature1**
 - First feature to plot. Typically feature expression but can also be metrics, PC scores, etc. - anything that can be retrieved with `FetchData`

- **feature2**
 - Second feature to plot.

- **cells**
 - Cells to include on the scatter plot.

- **shuffle**
 - Whether to randomly shuffle the order of points. This can be useful for crowded plots if points of interest are being buried. (default is `FALSE`)

- **seed**
 - Sets the seed if randomly shuffling the order of points.

- **group.by**
 - Name of one or more metadata columns to group (color) cells by (for example, `orig.ident`); pass `ident` to group by identity class

- **split.by**
 - A factor in object metadata to split the feature plot by, pass `ident` to split by cell identity

- **cols**
 - Colors to use for identity class plotting.

- **pt.size**
 - Size of the points on the plot

- **shape.by**
 - Ignored for now

- **span**
 - Spline span in `loess` function call, if `NULL`, no spline added

- **smooth**
 - Smooth the graph (similar to `smoothScatter`)
combine: Combine plots into a single `patchworked` plot.
slot: Slot to pull data from, should be one of `counts`, `data`, or `scale.data`.
plot.cor: Display correlation in plot title.
ncol: Number of columns if plotting multiple plots.
raster: Convert points to raster format, default is `NULL` which will automatically use raster if the number of points plotted is greater than 100,000.
raster.dpi: Pixel resolution for rasterized plots, passed to `geom_scattermore()`. Default is `c(512, 512)`.
jitter: Jitter for easier visualization of crowded points (default is `FALSE`).
log: Plot features on the log scale (default is `FALSE`).

Value
A `ggplot` object.

Examples
```r
data("pbmc_small")
FeatureScatter(object = pbmc_small, feature1 = "CD9", feature2 = "CD3E")
```

Description
This function calls `sctransform::get_residuals`.

Usage
```r
FetchResiduals(
  object,
  features,
  assay = NULL,
  umi.assay = "RNA",
  layer = "counts",
  clip.range = NULL,
  reference.SCT.model = NULL,
  replace.value = FALSE,
  na.rm = TRUE,
  verbose = TRUE
)
```
Arguments

- **object**: A seurat object
- **features**: Name of features to add into the scale.data
- **assay**: Name of the assay of the seurat object generated by SCTransform
- **umi.assay**: Name of the assay of the seurat object containing UMI matrix and the default is RNA
- **layer**: Name (prefix) of the layer to pull counts from
- **clip.range**: Numeric of length two specifying the min and max values the Pearson residual will be clipped to
- **reference.SCT.model**: If a reference SCT model should be used for calculating the residuals. When set to not NULL, ignores the ‘SCTModel’ parameter.
- **replace.value**: Recalculate residuals for all features, even if they are already present. Useful if you want to change the clip.range.
- **na.rm**: For features where there is no feature model stored, return NA for residual value in scale.data when na.rm = FALSE. When na.rm is TRUE, only return residuals for features with a model stored for all cells.
- **verbose**: Whether to print messages and progress bars

Value

Returns a Seurat object containing Pearson residuals of added features in its scale.data

See Also

- **get_residuals**

FilterSlideSeq

Filter stray beads from Slide-seq puck

Description

This function is useful for removing stray beads that fall outside the main Slide-seq puck area. Essentially, it’s a circular filter where you set a center and radius defining a circle of beads to keep. If the center is not set, it will be estimated from the bead coordinates (removing the 1st and 99th quantile to avoid skewing the center by the stray beads). By default, this function will display a **SpatialDimPlot** showing which cells were removed for easy adjustment of the center and/or radius.
Usage

FilterSlideSeq(
 object,
 image = "image",
 center = NULL,
 radius = NULL,
 do.plot = TRUE
)

Arguments

object Seurat object with slide-seq data
image Name of the image where the coordinates are stored
center Vector specifying the x and y coordinates for the center of the inclusion circle
radius Radius of the circle of inclusion
do.plot Display a SpatialDimPlot with the cells being removed labeled.

Value

Returns a Seurat object with only the subset of cells that pass the circular filter

Examples

```r
## Not run:
# This example uses the ssHippo dataset which you can download
# using the SeuratData package.
library(SeuratData)
data("ssHippo")
# perform filtering of beads
ssHippo.filtered <- FilterSlideSeq(ssHippo, radius = 2300)
# This radius looks to small so increase and repeat until satisfied
## End(Not run)
```

FindAllMarkers Gene expression markers for all identity classes

Description

Finds markers (differentially expressed genes) for each of the identity classes in a dataset
Usage

```r
FindAllMarkers(
  object,
  assay = NULL,
  features = NULL,
  logfc.threshold = 0.1,
  test.use = "wilcox",
  slot = "data",
  min.pct = 0.01,
  min.diff.pct = -Inf,
  node = NULL,
  verbose = TRUE,
  only.pos = FALSE,
  max.cells.per.ident = Inf,
  random.seed = 1,
  latent.vars = NULL,
  min.cells.feature = 3,
  min.cells.group = 3,
  mean.fxn = NULL,
  fc.name = NULL,
  base = 2,
  return.thresh = 0.01,
  densify = FALSE,
  ...
)
```

Arguments

- **object**: An object
- **assay**: Assay to use in differential expression testing
- **features**: Genes to test. Default is to use all genes
- **logfc.threshold**: Limit testing to genes which show, on average, at least X-fold difference (log-scale) between the two groups of cells. Default is 0.1. Increasing logfc.threshold speeds up the function, but can miss weaker signals. If the slot parameter is "scale.data" no filtering is performed.
- **test.use**: Denotes which test to use. Available options are:
 - "wilcox": Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default); will use a fast implementation by Presto if installed
 - "wilcox_limma": Identifies differentially expressed genes between two groups of cells using the limma implementation of the Wilcoxon Rank Sum test; set this option to reproduce results from Seurat v4
 - "bimod": Likelihood-ratio test for single cell gene expression, (McDavid et al., Bioinformatics, 2013)
 - "roc": Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to
classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells.1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a ‘predictive power’ \(\text{abs}(\text{AUC}-0.5) \times 2 \) ranked matrix of putative differentially expressed genes.

- "t" : Identify differentially expressed genes between two groups of cells using the Student’s t-test.
- "negbinom" : Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets.
- "poisson" : Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMI-based datasets.
- "LR" : Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test.
- "MAST" : Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.
- "DESeq2" : Identifies differentially expressed genes between two groups of cells based on a model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014). This test does not support pre-filtering of genes based on average difference (or percent detection rate) between cell groups. However, genes may be pre-filtered based on their minimum detection rate (min.pct) across both cell groups. To use this method, please install DESeq2, using the instructions at https://bioconductor.org/packages/release/bioc/html/DESeq2.html

slot
Slot to pull data from; note that if test.use is "negbinom", "poisson", or "DESeq2", slot will be set to "counts"

min.pct
only test genes that are detected in a minimum fraction of min.pct cells in either of the two populations. Meant to speed up the function by not testing genes that are very infrequently expressed. Default is 0.01

min.diff.pct
only test genes that show a minimum difference in the fraction of detection between the two groups. Set to -Inf by default

node
A node to find markers for and all its children; requires BuildClusterTree to have been run previously; replaces FindAllMarkersNode

verbose
Print a progress bar once expression testing begins

only.pos
Only return positive markers (FALSE by default)

max.cells.per.ident
Down sample each identity class to a max number. Default is no downsampling. Not activated by default (set to Inf)

random.seed
Random seed for downsampling

latent.vars
Variables to test, used only when test.use is one of ‘LR’, ‘negbinom’, ‘poisson’, or ‘MAST’
min.cells.feature
Minimum number of cells expressing the feature in at least one of the two
groups, currently only used for poisson and negative binomial tests

min.cells.group
Minimum number of cells in one of the groups

mean.fx
Function to use for fold change or average difference calculation. The default
depends on the the value of fc.slot:

• "counts" : difference in the log of the mean counts, with pseudocount.
• "data" : difference in the log of the average exponentiated data, with pseu-
docount. This adjusts for differences in sequencing depth between cells,
and assumes that "data" has been log-normalized.
• "scale.data" : difference in the means of scale.data.

fc.name
Name of the fold change, average difference, or custom function column in the
output data.frame. If NULL, the fold change column will be named according to
the logarithm base (eg. "avg_log2FC"), or if using the scale.data slot "avg_diff".

base
The base with respect to which logarithms are computed.

return.thresh
Only return markers that have a p-value < return.thresh, or a power > return.thresh
(if the test is ROC)

densify
Convert the sparse matrix to a dense form before running the DE test. This can
provide speedups but might require higher memory; default is FALSE

... Arguments passed to other methods and to specific DE methods

Value
Matrix containing a ranked list of putative markers, and associated statistics (p-values, ROC score,
etc.)

Examples

data("pbmc_small")
Find markers for all clusters
all.markers <- FindAllMarkers(object = pbmc_small)
head(x = all.markers)
Not run:
Pass a value to node as a replacement for FindAllMarkersNode
pbmc_small <- BuildClusterTree(object = pbmc_small)
all.markers <- FindAllMarkers(object = pbmc_small, node = 4)
head(x = all.markers)
End(Not run)
FindBridgeIntegrationAnchors

Find integration bridge anchors between query and extended bridge-reference

Description

Find a set of anchors between unimodal query and the other unimodal reference using a pre-computed BridgeReferenceSet. These integration anchors can later be used to integrate query and reference using the IntegrateEmbeddings object.

Usage

FindBridgeIntegrationAnchors(
 extended.reference,
 query,
 query.assay = NULL,
 dims = 1:30,
 scale = FALSE,
 reduction = c("lsiproject", "pcaproject"),
 integration.reduction = c("direct", "cca"),
 verbose = TRUE
)

Arguments

extended.reference
 BridgeReferenceSet object generated from PrepareBridgeReference

query
 A query Seurat object

query.assay
 Assay name for query-bridge integration

dims
 Number of dimensions for query-bridge integration

scale
 Determine if scale the query data for projection

reduction
 Dimensional reduction to perform when finding anchors. Options are:
 • pcaproject: Project the PCA from the bridge onto the query. We recommend using PCA when bridge and query datasets are from scRNA-seq
 • lsiproject: Project the LSI from the bridge onto the query. We recommend using LSI when bridge and query datasets are from scATAC-seq or scCUT&TAG data. This requires that LSI or supervised LSI has been computed for the bridge dataset, and the same features (e.g., peaks or genome bins) are present in both the bridge and query.

integration.reduction
 Dimensional reduction to perform when finding anchors between query and reference. Options are:
 • direct: find anchors directly on the bridge representation space
• cca: perform cca on the on the bridge representation space and then find anchors

verbose: Print messages and progress

Value

Returns an AnchorSet object that can be used as input to IntegrateEmbeddings.

Description

Find a set of anchors between unimodal query and the other unimodal reference using a pre-computed BridgeReferenceSet. This function performs three steps: 1. Harmonize the bridge and query cells in the bridge query reduction space 2. Construct the bridge dictionary representations for query cells 3. Find a set of anchors between query and reference in the bridge graph laplacian eigenspace. These anchors can later be used to integrate embeddings or transfer data from the reference to query object using the MapQuery object.

Usage

FindBridgeTransferAnchors(
 extended.reference,
 query,
 query.assay = NULL,
 dims = 1:30,
 scale = FALSE,
 reduction = c("lsiproject", "pcaproject"),
 bridge.reduction = c("direct", "cca"),
 verbose = TRUE
)

Arguments

extended.reference: BridgeReferenceSet object generated from PrepareBridgeReference

query: A query Seurat object

query.assay: Assay name for query-bridge integration

dims: Number of dimensions for query-bridge integration

scale: Determine if scale the query data for projection

reduction: Dimensional reduction to perform when finding anchors. Options are:

• pcaproject: Project the PCA from the bridge onto the query. We recommend using PCA when bridge and query datasets are from scRNA-seq
• lsiproject: Project the LSI from the bridge onto the query. We recommend using LSI when bridge and query datasets are from scATAC-seq or scCUT&TAG data. This requires that LSI or supervised LSI has been computed for the bridge dataset, and the same features (e.g., peaks or genome bins) are present in both the bridge and query.

bridge.reduction
Dimensional reduction to perform when finding anchors. Can be one of:
• cca: Canonical correlation analysis
• direct: Use assay data as a dimensional reduction

verbose
Print messages and progress

Value
Returns an AnchorSet object that can be used as input to TransferData, IntegrateEmbeddings and MapQuery.

FindClusters

Description
Identify clusters of cells by a shared nearest neighbor (SNN) modularity optimization based clustering algorithm. First calculate k-nearest neighbors and construct the SNN graph. Then optimize the modularity function to determine clusters. For a full description of the algorithms, see Waltman and van Eck (2013) The European Physical Journal B. Thanks to Nigel Delaney (evolvedmicrobe@github) for the rewrite of the Java modularity optimizer code in Rcpp!

Usage
FindClusters(object, ...)

Default S3 method:
FindClusters(
 object,
 modularity.fxn = 1,
 initial.membership = NULL,
 node.sizes = NULL,
 resolution = 0.8,
 method = "matrix",
 algorithm = 1,
 n.start = 10,
 n.iter = 10,
 random.seed = 0,
 group.singletons = TRUE,
 temp.file.location = NULL,
 edge.file.name = NULL,
FindClusters

verbose = TRUE,
...
)

S3 method for class 'Seurat'
FindClusters(
 object,
 graph.name = NULL,
 cluster.name = NULL,
 modularity.fxn = 1,
 initial.membership = NULL,
 node.sizes = NULL,
 resolution = 0.8,
 method = "matrix",
 algorithm = 1,
 n.start = 10,
 n.iter = 10,
 random.seed = 0,
 group.singletons = TRUE,
 temp.file.location = NULL,
 edge.file.name = NULL,
 verbose = TRUE,
...
)

Arguments

object
An object

... Arguments passed to other methods

modularity.fxn
Modularity function (1 = standard; 2 = alternative).

initial.membership, node.sizes
Parameters to pass to the Python leidenalg function.

resolution
Value of the resolution parameter, use a value above (below) 1.0 if you want to obtain a larger (smaller) number of communities.

method
Method for running leiden (defaults to matrix which is fast for small datasets). Enable method = "igraph" to avoid casting large data to a dense matrix.

algorithm
Algorithm for modularity optimization (1 = original Louvain algorithm; 2 = Louvain algorithm with multilevel refinement; 3 = SLM algorithm; 4 = Leiden algorithm). Leiden requires the leidenalg python.

n.start
Number of random starts.

n.iter
Maximal number of iterations per random start.

random.seed
Seed of the random number generator.

group.singletons
Group singletons into nearest cluster. If FALSE, assign all singletons to a "singleton" group.
FindConservedMarkers

Finds markers that are conserved between the groups

Description

Finds markers that are conserved between the groups

Usage

FindConservedMarkers(
 object,
 ident.1,
 ident.2 = NULL,
 grouping.var,
 assay = "RNA",
 slot = "data",
 min.cells.group = 3,
 meta.method = metap::minimump,
 verbose = TRUE,
 ...
)
FindIntegrationAnchors

Arguments

- **object**
 - An object

- **ident.1**
 - Identity class to define markers for

- **ident.2**
 - A second identity class for comparison. If NULL (default) - use all other cells for comparison.

- **grouping.var**
 - grouping variable

- **assay**
 - of assay to fetch data for (default is RNA)

- **slot**
 - Slot to pull data from; note that if test.use is "negbinom", "poisson", or "DESeq2", slot will be set to "counts"

- **min.cells.group**
 - Minimum number of cells in one of the groups

- **meta.method**
 - method for combining p-values. Should be a function from the metap package (NOTE: pass the function, not a string)

- **verbose**
 - Print a progress bar once expression testing begins

- **...**
 - parameters to pass to FindMarkers

Value

data.frame containing a ranked list of putative conserved markers, and associated statistics (p-values within each group and a combined p-value (such as Fishers combined p-value or others from the metap package), percentage of cells expressing the marker, average differences). Name of group is appended to each associated output column (e.g. CTRL_p_val). If only one group is tested in the grouping.var, max and combined p-values are not returned.

Examples

```r
## Not run:
data("pbmc_small")
pbmc_small
# Create a simulated grouping variable
pbmc_small[['groups']] <- sample(x = c('g1', 'g2'), size = ncol(x = pbmc_small), replace = TRUE)
FindConservedMarkers(pbmc_small, ident.1 = 0, ident.2 = 1, grouping.var = "groups")
## End(Not run)
```

FindIntegrationAnchors

Find integration anchors

Description

Find a set of anchors between a list of Seurat objects. These anchors can later be used to integrate the objects using the IntegrateData function.
Usage

FindIntegrationAnchors(
 object.list = NULL,
 assay = NULL,
 reference = NULL,
 anchor.features = 2000,
 scale = TRUE,
 normalization.method = c("LogNormalize", "SCT"),
 sct.clip.range = NULL,
 reduction = c("cca", "rpca", "jpca", "rlsi"),
 l2.norm = TRUE,
 dims = 1:30,
 k.anchor = 5,
 k.filter = 200,
 k.score = 30,
 max.features = 200,
 nn.method = "annoy",
 n.trees = 50,
 eps = 0,
 verbose = TRUE
)

Arguments

object.list A list of Seurat objects between which to find anchors for downstream integration.
assay A vector of assay names specifying which assay to use when constructing anchors. If NULL, the current default assay for each object is used.
reference A vector specifying the object/s to be used as a reference during integration. If NULL (default), all pairwise anchors are found (no reference/s). If not NULL, the corresponding objects in object.list will be used as references. When using a set of specified references, anchors are first found between each query and each reference. The references are then integrated through pairwise integration. Each query is then mapped to the integrated reference.
anchor.features Can be either:
 • A numeric value. This will call SelectIntegrationFeatures to select the provided number of features to be used in anchor finding
 • A vector of features to be used as input to the anchor finding process
scale Whether or not to scale the features provided. Only set to FALSE if you have previously scaled the features you want to use for each object in the object.list
normalization.method Name of normalization method used: LogNormalize or SCT
sct.clip.range Numeric of length two specifying the min and max values the Pearson residual will be clipped to
reduction Dimensional reduction to perform when finding anchors. Can be one of:
• cca: Canonical correlation analysis
• rpca: Reciprocal PCA
• j pca: Joint PCA
• rlsi: Reciprocal LSI

12.norm Perform L2 normalization on the CCA cell embeddings after dimensional reduction
dims Which dimensions to use from the CCA to specify the neighbor search space
k.anchor How many neighbors (k) to use when picking anchors
k.filter How many neighbors (k) to use when filtering anchors
k.score How many neighbors (k) to use when scoring anchors
max.features The maximum number of features to use when specifying the neighborhood search space in the anchor filtering
nn.method Method for nearest neighbor finding. Options include: rann, annoy
n.trees More trees gives higher precision when using annoy approximate nearest neighbor search
eps Error bound on the neighbor finding algorithm (from RANN/Annoy)
verbose Print progress bars and output

Details

The main steps of this procedure are outlined below. For a more detailed description of the methodology, please see Stuart, Butler, et al Cell 2019: doi:10.1016/j.cell.2019.05.031; doi:10.1101/460147

First, determine anchor.features if not explicitly specified using SelectIntegrationFeatures. Then for all pairwise combinations of reference and query datasets:

• Perform dimensional reduction on the dataset pair as specified via the reduction parameter. If 12.norm is set to TRUE, perform L2 normalization of the embedding vectors.
• Identify anchors - pairs of cells from each dataset that are contained within each other’s neighborhoods (also known as mutual nearest neighbors).
• Filter low confidence anchors to ensure anchors in the low dimension space are in broad agreement with the high dimensional measurements. This is done by looking at the neighbors of each query cell in the reference dataset using max.features to define this space. If the reference cell isn’t found within the first k.filter neighbors, remove the anchor.
• Assign each remaining anchor a score. For each anchor cell, determine the nearest k.score anchors within its own dataset and within its pair’s dataset. Based on these neighborhoods, construct an overall neighbor graph and then compute the shared neighbor overlap between anchor and query cells (analogous to an SNN graph). We use the 0.01 and 0.90 quantiles on these scores to dampen outlier effects and rescale to range between 0-1.

Value

Returns an AnchorSet object that can be used as input to IntegrateData.
FindMarkers

Gene expression markers of identity classes

Description

Finds markers (differentially expressed genes) for identity classes

Usage

```r
FindMarkers(object, ...)
```

Default S3 method:

```r
FindMarkers(
  object,
  slot = "data",
  cells.1 = NULL,
```
FindMarkers

```r
# Simple method signature

FindMarkers(
  object,
  cells.1 = NULL,
  cells.2 = NULL,
  features = NULL,
  logfc.threshold = 0.1,
  test.use = "wilcoxon",
  min.pct = 0.01,
  min.diff.pct = -Inf,
  verbose = TRUE,
  only.pos = FALSE,
  max.cells.per.ident = Inf,
  random.seed = 1,
  latent.vars = NULL,
  min.cells.feature = 3,
  min.cells.group = 3,
  fc.results = NULL,
  densify = FALSE,
  ...
)

## S3 method for class 'Assay'

FindMarkers(
  object,
  slot = "data",
  cells.1 = NULL,
  cells.2 = NULL,
  features = NULL,
  test.use = "wilcoxon",
  fc.slot = "data",
  pseudocount.use = 1,
  norm.method = NULL,
  mean.fxn = NULL,
  fc.name = NULL,
  base = 2,
  ...
)

## S3 method for class 'SCTAssay'

FindMarkers(
  object,
  cells.1 = NULL,
  cells.2 = NULL,
  features = NULL,
  test.use = "wilcoxon",
  pseudocount.use = 1,
  slot = "data",
  fc.slot = "data",
  mean.fxn = NULL,
  fc.name = NULL,
  base = 2,
  ...
)
```
recorrect_umi = TRUE,
...
)

S3 method for class 'DimReduc'
FindMarkers(
 object,
 cells.1 = NULL,
 cells.2 = NULL,
 features = NULL,
 logfc.threshold = 0.1,
 test.use = "wilcox",
 min.pct = 0.01,
 min.diff.pct = -Inf,
 verbose = TRUE,
 only.pos = FALSE,
 max.cells.per.ident = Inf,
 random.seed = 1,
 latent.vars = NULL,
 min.cells.feature = 3,
 min.cells.group = 3,
 densify = FALSE,
 mean.fxn = rowMeans,
 fc.name = NULL,
 ...
)

S3 method for class 'Seurat'
FindMarkers(
 object,
 ident.1 = NULL,
 ident.2 = NULL,
 latent.vars = NULL,
 group.by = NULL,
 subset.ident = NULL,
 assay = NULL,
 reduction = NULL,
 ...
)

Arguments

object An object

... Arguments passed to other methods and to specific DE methods

slot Slot to pull data from; note that if test.use is "negbinom", "poisson", or "DE-Seq2", slot will be set to "counts"

cells.1 Vector of cell names belonging to group 1

cells.2 Vector of cell names belonging to group 2
features

Genes to test. Default is to use all genes

logfc.threshold

Limit testing to genes which show, on average, at least X-fold difference (log-scale) between the two groups of cells. Default is 0.1 Increasing logfc.threshold speeds up the function, but can miss weaker signals. If the slot parameter is "scale.data" no filtering is performed.

test.use

Denotes which test to use. Available options are:

• "wilcox" : Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default); will use a fast implementation by Presto if installed
• "wilcox_limma" : Identifies differentially expressed genes between two groups of cells using the limma implementation of the Wilcoxon Rank Sum test; set this option to reproduce results from Seurat v4
• "bimod" : Likelihood-ratio test for single cell gene expression, (McDavid et al., Bioinformatics, 2013)
• "roc" : Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells.1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC-0.5) * 2) ranked matrix of putative differentially expressed genes.
• "t" : Identify differentially expressed genes between two groups of cells using the Student’s t-test.
• "negbinom" : Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets
• "poisson" : Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMI-based datasets
• "LR" : Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test.
• "MAST" : Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.
• "DESeq2" : Identifies differentially expressed genes between two groups of cells based on a model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014). This test does not support pre-filtering of genes based on average difference (or percent detection rate) between cell groups. However, genes may be pre-filtered based on their minimum detection rate (min.pct) across both cell groups. To use this method, please install DESeq2, using the instructions at https://bioconductor.org/packages/release/bioc/html/DESeq2.html
FindMarkers

- **min.pct**: only test genes that are detected in a minimum fraction of min.pct cells in either of the two populations. Meant to speed up the function by not testing genes that are very infrequently expressed. Default is 0.01
- **min.diff.pct**: only test genes that show a minimum difference in the fraction of detection between the two groups. Set to -Inf by default
- **verbose**: Print a progress bar once expression testing begins
- **only.pos**: Only return positive markers (FALSE by default)
- **max.cells.per.ident**: Down sample each identity class to a max number. Default is no downsampling. Not activated by default (set to Inf)
- **random.seed**: Random seed for downsampling
- **latent.vars**: Variables to test, used only when test.use is one of 'LR', 'negbinom', 'poisson', or 'MAST'
- **min.cells.feature**: Minimum number of cells expressing the feature in at least one of the two groups, currently only used for poisson and negative binomial tests
- **min.cells.group**: Minimum number of cells in one of the groups
- **fc.results**: data.frame from FoldChange
- **densify**: Convert the sparse matrix to a dense form before running the DE test. This can provide speedups but might require higher memory; default is FALSE
- **fc.slot**: Slot used to calculate fold-change - will also affect the default for mean.fxn, see below for more details.
- **pseudocount.use**: Pseudocount to add to averaged expression values when calculating logFC. 1 by default.
- **norm.method**: Normalization method for fold change calculation when slot is "data"
- **mean.fxn**: Function to use for fold change or average difference calculation. The default depends on the the value of fc.slot:
 - "counts": difference in the log of the mean counts, with pseudocount.
 - "data": difference in the log of the average exponentiated data, with pseudocount. This adjusts for differences in sequencing depth between cells, and assumes that "data" has been log-normalized.
 - "scale.data": difference in the means of scale.data.
- **fc.name**: Name of the fold change, average difference, or custom function column in the output data.frame. If NULL, the fold change column will be named according to the logarithm base (eg, "avg_log2FC"), or if using the scale.data slot "avg_diff".
- **base**: The base with respect to which logarithms are computed.
- **recorrect_umi**: Recalculate corrected UMI counts using minimum of the median UMIs when performing DE using multiple SCT objects; default is TRUE
- **ident.1**: Identity class to define markers for; pass an object of class phylo or 'clustertree' to find markers for a node in a cluster tree; passing 'clustertree' requires BuildClusterTree to have been run
FindMarkers

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ident.2</td>
<td>A second identity class for comparison; if <code>NULL</code>, use all other cells for comparison; if an object of class <code>phylo</code> or 'clustertree' is passed to <code>ident.1</code>, must pass a node to find markers for.</td>
</tr>
<tr>
<td>group.by</td>
<td>Regroup cells into a different identity class prior to performing differential expression (see example)</td>
</tr>
<tr>
<td>subset.ident</td>
<td>Subset a particular identity class prior to regrouping. Only relevant if <code>group.by</code> is set (see example)</td>
</tr>
<tr>
<td>assay</td>
<td>Assay to use in differential expression testing</td>
</tr>
<tr>
<td>reduction</td>
<td>Reduction to use in differential expression testing - will test for DE on cell embeddings</td>
</tr>
</tbody>
</table>

Details

p-value adjustment is performed using bonferroni correction based on the total number of genes in the dataset. Other correction methods are not recommended, as Seurat pre-filters genes using the arguments above, reducing the number of tests performed. Lastly, as Aaron Lun has pointed out, p-values should be interpreted cautiously, as the genes used for clustering are the same genes tested for differential expression.

Value

data.frame with a ranked list of putative markers as rows, and associated statistics as columns (p-values, ROC score, etc., depending on the test used (`test.use`)). The following columns are always present:

- `avg_logFC`: log fold-change of the average expression between the two groups. Positive values indicate that the gene is more highly expressed in the first group
- `pct.1`: The percentage of cells where the gene is detected in the first group
- `pct.2`: The percentage of cells where the gene is detected in the second group
- `p_val_adj`: Adjusted p-value, based on bonferroni correction using all genes in the dataset

References

See Also

FoldChange
FindMultiModalNeighbors

Construct weighted nearest neighbor graph

Description

This function will construct a weighted nearest neighbor (WNN) graph. For each cell, we identify the nearest neighbors based on a weighted combination of two modalities. Takes as input two dimensional reductions, one computed for each modality. Other parameters are listed for debugging, but can be left as default values.

Usage

FindMultiModalNeighbors(
 object,
 reduction.list,
 dims.list,
 k.nn = 20,
 12.norm = TRUE,
 knn.graph.name = "wknn",
 snn.graph.name = "wsnn",
 weighted.nn.name = "weighted.nn",
 modality.weight.name = NULL,
 knn.range = 200,
 prune.SNN = 1/15,
)
sd.scale = 1,
cross.contant.list = NULL,
smooth = FALSE,
return.intermediate = FALSE,
modality.weight = NULL,
verbose = TRUE
)

Arguments

object: A Seurat object
reduction.list: A list of two dimensional reductions, one for each of the modalities to be integrated
dims.list: A list containing the dimensions for each reduction to use
k.nn: the number of multimodal neighbors to compute. 20 by default
l2.norm: Perform L2 normalization on the cell embeddings after dimensional reduction. TRUE by default.
knn.graph.name: Multimodal knn graph name
snn.graph.name: Multimodal snn graph name
weighted.nn.name: Multimodal neighbor object name
modality.weight.name: Variable name to store modality weight in object meta data
knn.range: The number of approximate neighbors to compute
prune.SNN: Cutoff not to discard edge in SNN graph
sd.scale: The scaling factor for kernel width. 1 by default
cross.contant.list: Constant used to avoid divide-by-zero errors. 1e-4 by default
smooth: Smoothing modality score across each individual modality neighbors. FALSE by default
return.intermediate: Store intermediate results in misc
modality.weight: A ModalityWeights object generated by FindModalityWeights
verbose: Print progress bars and output

Value

Seurat object containing a nearest-neighbor object, KNN graph, and SNN graph - each based on a weighted combination of modalities.
FindNeighbors

(Shared) Nearest-neighbor graph construction

Description

Computes the k.param nearest neighbors for a given dataset. Can also optionally (via compute.SNN), construct a shared nearest neighbor graph by calculating the neighborhood overlap (Jaccard index) between every cell and its k.param nearest neighbors.

Usage

FindNeighbors(object, ...)

Default S3 method:
FindNeighbors(
 object,
 query = NULL,
 distance.matrix = FALSE,
 k.param = 20,
 return.neighbor = FALSE,
 compute.SNN = !return.neighbor,
 prune.SNN = 1/15,
 nn.method = "annoy",
 n.trees = 50,
 annoy.metric = "euclidean",
 nn.eps = 0,
 verbose = TRUE,
 l2.norm = FALSE,
 cache.index = FALSE,
 index = NULL,
 ...
)

S3 method for class 'Assay'
FindNeighbors(
 object,
 features = NULL,
 k.param = 20,
 return.neighbor = FALSE,
 compute.SNN = !return.neighbor,
 prune.SNN = 1/15,
 nn.method = "annoy",
 n.trees = 50,
 annoy.metric = "euclidean",
 nn.eps = 0,
 verbose = TRUE,
 l2.norm = FALSE,
S3 method for class 'dist'
FindNeighbors{
 object,
 k.param = 20,
 return.neighbor = FALSE,
 compute.SNN = !return.neighbor,
 prune.SNN = 1/15,
 nn.method = "annoy",
 n.trees = 50,
 annoy.metric = "euclidean",
 nn.eps = 0,
 verbose = TRUE,
 l2.norm = FALSE,
 cache.index = FALSE,
 ...
}

S3 method for class 'Seurat'
FindNeighbors{
 object,
 reduction = "pca",
 dims = 1:10,
 assay = NULL,
 features = NULL,
 k.param = 20,
 return.neighbor = FALSE,
 compute.SNN = !return.neighbor,
 prune.SNN = 1/15,
 nn.method = "annoy",
 n.trees = 50,
 annoy.metric = "euclidean",
 nn.eps = 0,
 verbose = TRUE,
 do.plot = FALSE,
 graph.name = NULL,
 l2.norm = FALSE,
 cache.index = FALSE,
 ...
}

Arguments

object An object

... Arguments passed to other methods
FindNeighbors

- **query**: Matrix of data to query against object. If missing, defaults to object.
- **distance.matrix**: Boolean value of whether the provided matrix is a distance matrix; note, for objects of class `dist`, this parameter will be set automatically.
- **k.param**: Defines k for the k-nearest neighbor algorithm.
- **return.neighbor**: Return result as `Neighbor` object. Not used with distance matrix input.
- **compute.SNN**: Also compute the shared nearest neighbor graph.
- **prune.SNN**: Sets the cutoff for acceptable Jaccard index when computing the neighborhood overlap for the SNN construction. Any edges with values less than or equal to this will be set to 0 and removed from the SNN graph. Essentially sets the stringency of pruning (0 — no pruning, 1 — prune everything).
- **nn.method**: Method for nearest neighbor finding. Options include: rann, annoy.
- **n.trees**: More trees gives higher precision when using annoy approximate nearest neighbor search.
- **annoy.metric**: Distance metric for annoy. Options include: euclidean, cosine, manhattan, and hamming.
- **nn.eps**: Error bound when performing nearest neighbor search using RANN; default of 0.0 implies exact nearest neighbor search.
- **verbose**: Whether or not to print output to the console.
- **l2.norm**: Take L2Norm of the data.
- **cache.index**: Include cached index in returned Neighbor object (only relevant if return.neighbor = TRUE).
- **index**: Precomputed index. Useful if querying new data against existing index to avoid recomputing.
- **features**: Features to use as input for building the (S)NN; used only when dims is NULL.
- **reduction**: Reduction to use as input for building the (S)NN.
- **dims**: Dimensions of reduction to use as input.
- **assay**: Assay to use in construction of (S)NN; used only when dims is NULL.
- **do.plot**: Plot SNN graph on tSNE coordinates.
- **graph.name**: Optional naming parameter for stored (S)NN graph (or Neighbor object, if return.neighbor = TRUE). Default is assay.name_(s)nn. To store both the neighbor graph and the shared nearest neighbor (SNN) graph, you must supply a vector containing two names to the graph.name parameter. The first element in the vector will be used to store the nearest neighbor (NN) graph, and the second element used to store the SNN graph. If only one name is supplied, only the NN graph is stored.

Value

This function can either return a `Neighbor` object with the KNN information or a list of `Graph` objects with the KNN and SNN depending on the settings of return.neighbor and compute.SNN. When running on a `Seurat` object, this returns the `Seurat` object with the Graphs or Neighbor objects stored in their respective slots. Names of the Graph or Neighbor object can be found with `Graphs` or `Neighbors`.
Examples

data("pbmc_small")

pbmc_small
Compute an SNN on the gene expression level
pbmc_small <- FindNeighbors(pbmc_small, features = VariableFeatures(object = pbmc_small))

More commonly, we build the SNN on a dimensionally reduced form of the data
such as the first 10 principle components.

pbmc_small <- FindNeighbors(pbmc_small, reduction = "pca", dims = 1:10)

FindSpatiallyVariableFeatures

Find spatially variable features

Description

Identify features whose variability in expression can be explained to some degree by spatial location.

Usage

FindSpatiallyVariableFeatures(object, ...)

Default S3 method:
FindSpatiallyVariableFeatures(
 object,
 spatial.location,
 selection.method = c("markvariogram", "moransi"),
 r.metric = 5,
 x.cuts = NULL,
 y.cuts = NULL,
 verbose = TRUE,
 ...
)

S3 method for class `Assay`
FindSpatiallyVariableFeatures(
 object,
 slot = "scale.data",
 spatial.location,
 selection.method = c("markvariogram", "moransi"),
 features = NULL,
 r.metric = 5,
 x.cuts = NULL,
 y.cuts = NULL,
 nfeatures = nfeatures,
)
Arguments

object A Seurat object, assay, or expression matrix
... Arguments passed to other methods
spatial.location Coordinates for each cell/spot/bead
selection.method Method for selecting spatially variable features.
 • markvariogram: See RunMarkVario for details
 • moransi: See RunMoransI for details.

r.metric r value at which to report the "trans" value of the mark variogram
x.cuts Number of divisions to make in the x direction, helps define the grid over which binning is performed
FindSubCluster

y.cuts Number of divisions to make in the y direction, helps define the grid over which binning is performed
verbose Print messages and progress
slot Slot in the Assay to pull data from
features If provided, only compute on given features. Otherwise, compute for all features.
nfeatures Number of features to mark as the top spatially variable.
assay Assay to pull the features (marks) from
image Name of image to pull the coordinates from
layer Layer in the Assay5 to pull data from

FindSubCluster Find subclusters under one cluster

Description

Find subclusters under one cluster

Usage

FindSubCluster(
 object,
 cluster,
 graph.name,
 subcluster.name = "sub.cluster",
 resolution = 0.5,
 algorithm = 1
)

Arguments

object An object
cluster the cluster to be sub-clustered
graph.name Name of graph to use for the clustering algorithm
subcluster.name the name of sub cluster added in the meta.data
resolution Value of the resolution parameter, use a value above (below) 1.0 if you want to obtain a larger (smaller) number of communities.
algoritham Algorithm for modularity optimization (1 = original Louvain algorithm; 2 = Louvain algorithm with multilevel refinement; 3 = SLM algorithm; 4 = Leiden algorithm). Leiden requires the leidenalg python.

Value

return a object with sub cluster labels in the sub-cluster.name variable
FindTransferAnchors
Find transfer anchors

Description

Find a set of anchors between a reference and query object. These anchors can later be used to transfer data from the reference to query object using the `TransferData` object.

Usage

```r
FindTransferAnchors(
  reference,  
  query,  
  normalization.method = "LogNormalize",  
  recompute.residuals = TRUE,  
  reference.assay = NULL,  
  reference.neighbors = NULL,  
  query.assay = NULL,  
  reduction = "pcaproject",  
  reference.reduction = NULL,  
  project.query = FALSE,  
  features = NULL,  
  scale = TRUE,  
 npcs = 30,  
  l2.norm = TRUE,  
  dims = 1:30,  
  k.anchor = 5,  
  k.filter = NA,  
  k.score = 30,  
  max.features = 200,  
  nn.method = "annoy",  
  n.trees = 50,  
  eps = 0,  
  approx.pca = TRUE,  
  mapping.score.k = NULL,  
  verbose = TRUE
)
```

Arguments

- `reference`
 Seurat object to use as the reference
- `query`
 Seurat object to use as the query
- `normalization.method`
 Name of normalization method used: LogNormalize or SCT.
- `recompute.residuals`
 If using SCT as a normalization method, compute query Pearson residuals using the reference SCT model parameters.
reference.assay
Name of the Assay to use from reference

reference.neighbors
Name of the Neighbor to use from the reference. Optionally enables reuse of precomputed neighbors.

query.assay
Name of the Assay to use from query

reduction
Dimensional reduction to perform when finding anchors. Options are:
• pcaproject: Project the PCA from the reference onto the query. We recommend using PCA when reference and query datasets are from scRNA-seq
• lsiproject: Project the LSI from the reference onto the query. We recommend using LSI when reference and query datasets are from scATAC-seq. This requires that LSI has been computed for the reference dataset, and the same features (eg, peaks or genome bins) are present in both the reference and query. See RunTFIDF and RunSVD
• rpca: Project the PCA from the reference onto the query, and the PCA from the query onto the reference (reciprocal PCA projection).
• cca: Run a CCA on the reference and query

reference.reduction
Name of dimensional reduction to use from the reference if running the pcaproject workflow. Optionally enables reuse of precomputed reference dimensional reduction. If NULL (default), use a PCA computed on the reference object.

project.query
Project the PCA from the query dataset onto the reference. Use only in rare cases where the query dataset has a much larger cell number, but the reference dataset has a unique assay for transfer. In this case, the default features will be set to the variable features of the query object that are also present in the reference.

features
Features to use for dimensional reduction. If not specified, set as variable features of the reference object which are also present in the query.

scale
Scale query data.

npcs
Number of PCs to compute on reference if reference.reduction is not provided.

l2.norm
Perform L2 normalization on the cell embeddings after dimensional reduction

dims
Which dimensions to use from the reduction to specify the neighbor search space

k.anchor
How many neighbors (k) to use when finding anchors

k.filter
How many neighbors (k) to use when filtering anchors. Set to NA to turn off filtering.

k.score
How many neighbors (k) to use when scoring anchors

max.features
The maximum number of features to use when specifying the neighborhood search space in the anchor filtering

nn.method
Method for nearest neighbor finding. Options include: rann, annoy

n.trees
More trees gives higher precision when using annoy approximate nearest neighbor search

eps
Error bound on the neighbor finding algorithm (from RANN or RcppAnnoy)

approx.pca
Use truncated singular value decomposition to approximate PCA
FindTransferAnchors

mapping.score.k

Compute and store nearest k query neighbors in the AnchorSet object that is returned. You can optionally set this if you plan on computing the mapping score and want to enable reuse of some downstream neighbor calculations to make the mapping score function more efficient.

verbose

Print progress bars and output

Details

The main steps of this procedure are outlined below. For a more detailed description of the methodology, please see Stuart, Butler, et al Cell 2019. doi:10.1016/j.cell.2019.05.031; doi:10.1101/460147

• Perform dimensional reduction. Exactly what is done here depends on the values set for the reduction and project.query parameters. If reduction = "pcaproject", a PCA is performed on either the reference (if project.query = FALSE) or the query (if project.query = TRUE), using the features specified. The data from the other dataset is then projected onto this learned PCA structure. If reduction = "cca", then CCA is performed on the reference and query for this dimensional reduction step. If reduction = "lsiproject", the stored LSI dimension reduction in the reference object is used to project the query dataset onto the reference. If l2.norm is set to TRUE, perform L2 normalization of the embedding vectors.

• Identify anchors between the reference and query - pairs of cells from each dataset that are contained within each other’s neighborhoods (also known as mutual nearest neighbors).

• Filter low confidence anchors to ensure anchors in the low dimension space are in broad agreement with the high dimensional measurements. This is done by looking at the neighbors of each query cell in the reference dataset using max.features to define this space. If the reference cell isn’t found within the first k.filter neighbors, remove the anchor.

• Assign each remaining anchor a score. For each anchor cell, determine the nearest k.score anchors within its own dataset and within its pair’s dataset. Based on these neighborhoods, construct an overall neighbor graph and then compute the shared neighbor overlap between anchor and query cells (analogous to an SNN graph). We use the 0.01 and 0.90 quantiles on these scores to dampen outlier effects and rescale to range between 0-1.

Value

Returns an AnchorSet object that can be used as input to TransferData, IntegrateEmbeddings and MapQuery. The dimension reduction used for finding anchors is stored in the AnchorSet object and can be used for computing anchor weights in downstream functions. Note that only the requested dimensions are stored in the dimension reduction object in the AnchorSet. This means that if dims=2:20 is used, for example, the dimension of the stored reduction is 1:19.

References

FindVariableFeatures

Examples

Not run:
to install the SeuratData package see https://github.com/satijalab/seurat-data
library(SeuratData)
data("pbmc3k")

for demonstration, split the object into reference and query
pbmc.reference <- pbmc3k[, 1:1350]
pbmc.query <- pbmc3k[, 1351:2700]

perform standard preprocessing on each object
pbmc.reference <- NormalizeData(pbmc.reference)
pbmc.reference <- FindVariableFeatures(pbmc.reference)
pbmc.reference <- ScaleData(pbmc.reference)

pbmc.query <- NormalizeData(pbmc.query)
pbmc.query <- FindVariableFeatures(pbmc.query)
pbmc.query <- ScaleData(pbmc.query)

find anchors
anchors <- FindTransferAnchors(reference = pbmc.reference, query = pbmc.query)

transfer labels
predictions <- TransferData(
 anchorset = anchors,
 refdata = pbmc.reference$seurat_annotations
)
pbmc.query <- AddMetaData(object = pbmc.query, metadata = predictions)

End(Not run)

FindVariableFeatures Find variable features

Description

Identifies features that are outliers on a 'mean variability plot'.

Usage

FindVariableFeatures(object, ...)

S3 method for class 'V3Matrix'
FindVariableFeatures(
 object,
 selection.method = "vst",
 loess.span = 0.3,
 clip.max = "auto",
)
mean.function = FastExpMean,
dispersion.function = FastLogVMR,
num.bin = 20,
binning.method = "equal_width",
verbose = TRUE,
...
)

S3 method for class 'Assay'
FindVariableFeatures(
 object,
 selection.method = "vst",
 loess.span = 0.3,
 clip.max = "auto",
 mean.function = FastExpMean,
 dispersion.function = FastLogVMR,
 num.bin = 20,
 binning.method = "equal_width",
nfeatures = 2000,
 mean.cutoff = c(0.1, 8),
 dispersion.cutoff = c(1, Inf),
 verbose = TRUE,
 ...
)

S3 method for class 'SCTAssay'
FindVariableFeatures(object, nfeatures = 2000, ...)

S3 method for class 'Seurat'
FindVariableFeatures(
 object,
 assay = NULL,
 selection.method = "vst",
 loess.span = 0.3,
 clip.max = "auto",
 mean.function = FastExpMean,
 dispersion.function = FastLogVMR,
 num.bin = 20,
 binning.method = "equal_width",
nfeatures = 2000,
 mean.cutoff = c(0.1, 8),
 dispersion.cutoff = c(1, Inf),
 verbose = TRUE,
 ...
)

Arguments

object An object
Arguments passed to other methods

selection.method

How to choose top variable features. Choose one of:

- "vst": First, fits a line to the relationship of log(variance) and log(mean) using local polynomial regression (loess). Then standardizes the feature values using the observed mean and expected variance (given by the fitted line). Feature variance is then calculated on the standardized values after clipping to a maximum (see clip.max parameter).
- "mean.var.plot" (mvp): First, uses a function to calculate average expression (mean.function) and dispersion (dispersion.function) for each feature. Next, divides features into num.bin (default 20) bins based on their average expression, and calculates z-scores for dispersion within each bin. The purpose of this is to identify variable features while controlling for the strong relationship between variability and average expression
- "dispersion" (disp): selects the genes with the highest dispersion values

loess.span
(vst method) Loess span parameter used when fitting the variance-mean relationship

clip.max
(vst method) After standardization values larger than clip.max will be set to clip.max; default is 'auto' which sets this value to the square root of the number of cells

mean.function
Function to compute x-axis value (average expression). Default is to take the mean of the detected (i.e. non-zero) values

dispersion.function
Function to compute y-axis value (dispersion). Default is to take the standard deviation of all values

num.bin
Total number of bins to use in the scaled analysis (default is 20)

binning.method
Specifies how the bins should be computed. Available methods are:

- "equal_width": each bin is of equal width along the x-axis (default)
- "equal_frequency": each bin contains an equal number of features (can increase statistical power to detect overdispersed features at high expression values, at the cost of reduced resolution along the x-axis)

verbose
show progress bar for calculations

nfeatures
Number of features to select as top variable features; only used when selection.method is set to 'dispersion' or 'vst'

mean.cutoff
A two-length numeric vector with low- and high-cutoffs for feature means

dispersion.cutoff
A two-length numeric vector with low- and high-cutoffs for feature dispersions

assay
Assay to use

Details

For the mean.var.plot method: Exact parameter settings may vary empirically from dataset to dataset, and based on visual inspection of the plot. Setting the y.cutoff parameter to 2 identifies features that are more than two standard deviations away from the average dispersion within a bin.
The default X-axis function is the mean expression level, and for Y-axis it is the log(Variance/mean). All mean/variance calculations are not performed in log-space, but the results are reported in log-space - see relevant functions for exact details.

Description

Calculate log fold change and percentage of cells expressing each feature for different identity classes.

Usage

```
FoldChange(object, ...)
```

Default S3 method:
```
FoldChange(object, cells.1, cells.2, mean.fxn, fc.name, features = NULL, ...)
```

S3 method for class 'Assay'
```
FoldChange(
  object,
  cells.1,
  cells.2,
  features = NULL,
  slot = "data",
  pseudocount.use = 1,
  fc.name = NULL,
  mean.fxn = NULL,
  base = 2,
  norm.method = NULL,
  ...)
```

S3 method for class 'SCTAssay'
```
FoldChange(
  object,
  cells.1,
  cells.2,
  features = NULL,
  slot = "data",
  pseudocount.use = 1,
  fc.name = NULL,
  mean.fxn = NULL,
  base = 2,
  ...)
```
S3 method for class 'DimReduc'

```
FoldChange(
  object,
  cells.1,
  cells.2,
  features = NULL,
  slot = NULL,
  pseudocount.use = 1,
  fc.name = NULL,
  mean.fxn = NULL,
  ...
)
```

S3 method for class 'Seurat'

```
FoldChange(
  object,
  ident.1 = NULL,
  ident.2 = NULL,
  group.by = NULL,
  subset.ident = NULL,
  assay = NULL,
  slot = "data",
  reduction = NULL,
  features = NULL,
  pseudocount.use = 1,
  mean.fxn = NULL,
  base = 2,
  fc.name = NULL,
  ...
)
```

Arguments

- **object**: A Seurat object
- **...**: Arguments passed to other methods
- **cells.1**: Vector of cell names belonging to group 1
- **cells.2**: Vector of cell names belonging to group 2
- **mean.fxn**: Function to use for fold change or average difference calculation
- **fc.name**: Name of the fold change, average difference, or custom function column in the output data.frame
- **features**: Features to calculate fold change for. If NULL, use all features
- **slot**: Slot to pull data from
- **pseudocount.use**: Pseudocount to add to averaged expression values when calculating logFC.
- **base**: The base with respect to which logarithms are computed.
GetAssay

Description

Get an Assay object from a given Seurat object.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>norm.method</td>
<td>Normalization method for mean function selection when slot is “data”</td>
</tr>
<tr>
<td>ident.1</td>
<td>Identity class to calculate fold change for; pass an object of class phylo or 'clustertree' to calculate fold change for a node in a cluster tree; passing 'clustertree' requires BuildClusterTree to have been run</td>
</tr>
<tr>
<td>ident.2</td>
<td>A second identity class for comparison; if NULL, use all other cells for comparison; if an object of class phylo or 'clustertree' is passed to ident.1, must pass a node to calculate fold change for</td>
</tr>
<tr>
<td>group.by</td>
<td>Regroup cells into a different identity class prior to calculating fold change (see example in FindMarkers)</td>
</tr>
<tr>
<td>subset.ident</td>
<td>Subset a particular identity class prior to regrouping. Only relevant if group.by is set (see example in FindMarkers)</td>
</tr>
<tr>
<td>assay</td>
<td>Assay to use in fold change calculation</td>
</tr>
<tr>
<td>reduction</td>
<td>Reduction to use - will calculate average difference on cell embeddings</td>
</tr>
</tbody>
</table>

Details

If the slot is scale.data or a reduction is specified, average difference is returned instead of log fold change and the column is named "avg_diff". Otherwise, log2 fold change is returned with column named "avg_log2_FC".

Value

Returns a data.frame

See Also

FindMarkers

Examples

```r
## Not run:
data("pbmc_small")
FoldChange(pbmc_small, ident.1 = 1)

## End(Not run)
```

Usage

GetAssay(object, ...)

S3 method for class 'Seurat'
GetAssay(object, assay = NULL, ...)

Arguments

object An object
...
Arguments passed to other methods
assay Assay to get

Value

Returns an Assay object

Examples

data("pbmc_small")
GetAssay(object = pbmc_small, assay = "RNA")

GetImage.SlideSeq Get Image Data

Description

Get Image Data

Usage

S3 method for class 'SlideSeq'
GetImage(object, mode = c("grob", "raster", "plotly", "raw"), ...)

S3 method for class 'STARmap'
GetImage(object, mode = c("grob", "raster", "plotly", "raw"), ...)

S3 method for class 'VisiumV1'
GetImage(object, mode = c("grob", "raster", "plotly", "raw"), ...)

Arguments

object An object
mode How to return the image; should accept one of "grob", "raster", "plotly", or "raw"
...
Arguments passed to other methods
See Also

SeuratObject::GetImage

GetIntegrationData Get integration data

Description

Get integration data

Usage

GetIntegrationData(object, integration.name, slot)

Arguments

object Seurat object
integration.name Name of integration object
slot Which slot in integration object to get

Value

Returns data from the requested slot within the integrated object

GetResidual Calculate pearson residuals of features not in the scale.data

Description

This function calls sctransform::get_residuals.

Usage

GetResidual(
 object,
 features,
 assay = NULL,
 umi.assay = "RNA",
 clip.range = NULL,
 replace.value = FALSE,
 na.rm = TRUE,
 verbose = TRUE
)
Arguments

- **object**: A seurat object
- **features**: Name of features to add into the scale.data
- **assay**: Name of the assay of the seurat object generated by SCTransform
- **umi.assay**: Name of the assay of the seurat object containing UMI matrix and the default is RNA
- **clip.range**: Numeric of length two specifying the min and max values the Pearson residual will be clipped to
- **replace.value**: Recalculate residuals for all features, even if they are already present. Useful if you want to change the clip.range.
- **na.rm**: For features where there is no feature model stored, return NA for residual value in scale.data when na.rm = FALSE. When na.rm is TRUE, only return residuals for features with a model stored for all cells.
- **verbose**: Whether to print messages and progress bars

Value

Returns a Seurat object containing Pearson residuals of added features in its scale.data

See Also

get_residuals

Examples

```r
## Not run:
data("pbmc_small")
pbmc_small <- SCTransform(object = pbmc_small, variable.features.n = 20)
pbmc_small <- GetResidual(object = pbmc_small, features = c("MS4A1", "TCL1A"))
## End(Not run)
```
GetTransferPredictions

Usage

S3 method for class 'SlideSeq'
GetTissueCoordinates(object, ...)

S3 method for class 'STARmap'
GetTissueCoordinates(object, qhulls = FALSE, ...)

S3 method for class 'VisiumV1'
GetTissueCoordinates(
 object,
 scale = "lowres",
 cols = c("imagerow", "imagecol"),
 ...
)

S3 method for class 'VisiumV2'
GetTissueCoordinates(object, scale = NULL, ...)

Arguments

object An object

... Arguments passed to other methods

qhulls return qhulls instead of centroids

scale A factor to scale the coordinates by; choose from: 'tissue', 'fiducial', 'hires', 'lowres', or NULL for no scaling

cols Columns of tissue coordinates data.frame to pull

See Also

SeuratObject::GetTissueCoordinates

GetTransferPredictions

Get the predicted identity

Description

Utility function to easily pull out the name of the class with the maximum prediction. This is useful if you've set prediction.assay = TRUE in TransferData and want to have a vector with the predicted class.
Usage

GetTransferPredictions(
 object,
 assay = "predictions",
 slot = "data",
 score.filter = 0.75
)

Arguments

object Seurat object
assay Name of the assay holding the predictions
slot Slot of the assay in which the prediction scores are stored
score.filter Return "Unassigned" for any cell with a score less than this value

Value

Returns a vector of predicted class names

Examples

Not run:
 prediction.assay <- TransferData(anchorset = anchors, refdata = reference$class)
 query[["predictions"]]<- prediction.assay
 query$predicted.id <- GetTransferPredictions(query)

End(Not run)

Graph-class The Graph Class

Description

For more details, please see the documentation in SeuratObject

See Also

SeuratObject::Graph-class
GroupCorrelation

Compute the correlation of features broken down by groups with another covariate

Description

Compute the correlation of features broken down by groups with another covariate

Usage

GroupCorrelation(
 object,
 assay = NULL,
 slot = "scale.data",
 var = NULL,
 group.assay = NULL,
 min.cells = 5,
 ngroups = 6,
 do.plot = TRUE
)

Arguments

object Seurat object
assay Assay to pull the data from
slot Slot in the assay to pull feature expression data from (counts, data, or scale.data)
var Variable with which to correlate the features
group.assay Compute the gene groups based off the data in this assay.
min.cells Only compute for genes in at least this many cells
ngroups Number of groups to split into
do.plot Display the group correlation boxplot (via GroupCorrelationPlot)

Value

A Seurat object with the correlation stored in metafeatures
GroupCorrelationPlot

Description

Boxplot of correlation of a variable (e.g. number of UMIs) with expression data

Usage

GroupCorrelationPlot(
 object,
 assay = NULL,
 feature.group = "feature.grp",
 cor = "nCount_RNA_cor"
)

Arguments

object Seurat object
assay Assay where the feature grouping info and correlations are stored
feature.group Name of the column in meta.features where the feature grouping info is stored
cor Name of the column in meta.features where correlation info is stored

Value

Returns a ggplot boxplot of correlations split by group

HarmonyIntegration

Description

Harmony Integration

Usage

HarmonyIntegration(
 object,
 orig,
 features = NULL,
 scale.layer = "scale.data",
 new.reduction = "harmony",
 layers = NULL,
 npcs = 50L,
key = "harmony_",
theta = NULL,
lambda = NULL,
sigma = 0.1,
nclust = NULL,
tau = 0,
block.size = 0.05,
max.iter.harmony = 10L,
max.iter.cluster = 20L,
epsilon.cluster = 1e-05,
epsilon.harmony = 1e-04,
verbose = TRUE,
...
)

Arguments

object An Assay5 object
orig A dimensional reduction to correct
features Ignored
scale.layer Ignored
new.reduction Name of new integrated dimensional reduction
layers Ignored
npcs If doing PCA on input matrix, number of PCs to compute
key Key for Harmony dimensional reduction
theta Diversity clustering penalty parameter
lambda Ridge regression penalty parameter
sigma Width of soft kmeans clusters
nclust Number of clusters in model
tau Protection against overclustering small datasets with large ones
block.size What proportion of cells to update during clustering
max.iter.harmony Maximum number of rounds to run Harmony
max.iter.cluster Maximum number of rounds to run clustering at each round of Harmony
epsilon.cluster Convergence tolerance for clustering round of Harmony
epsilon.harmony Convergence tolerance for Harmony
verbose Whether to print progress messages. TRUE to print, FALSE to suppress
... Ignored

Value

...
HoverLocator

Note

This function requires the **harmony** package to be installed.

See Also

`harmony::HarmonyMatrix()`

Examples

```r
## Not run:
# Preprocessing
obj <- SeuratData::LoadData("pbmcsca")
obj[["RNA"]][[split(obj[["RNA"]], f = obj$Method)]
obj <- NormalizeData(obj)
obj <- FindVariableFeatures(obj)
obj <- ScaleData(obj)
obj <- RunPCA(obj)

# After preprocessing, we integrate layers with added parameters specific to Harmony:
obj <- IntegrateLayers(object = obj, method = HarmonyIntegration, orig.reduction = "pca",
                     new.reduction = 'harmony', verbose = FALSE)

# Modifying Parameters
# We can also add arguments specific to Harmony such as theta, to give more diverse clusters
obj <- IntegrateLayers(object = obj, method = HarmonyIntegration, orig.reduction = "pca",
                     new.reduction = 'harmony', verbose = FALSE, theta = 3)

# Integrating SCTransformed data
obj <- SCTransform(object = obj)
obj <- IntegrateLayers(object = obj, method = HarmonyIntegration, orig.reduction = "pca",
                     new.reduction = 'harmony', verbose = FALSE, assay = "SCT")

## End(Not run)
```

Description

Get quick information from a scatterplot by hovering over points.

Usage

```r
HoverLocator(plot, information = NULL, axes = TRUE, dark.theme = FALSE, ...)
```
HTODemux

Demultiplex samples based on data from cell ‘hashing’

Description

Assign sample-of-origin for each cell, annotate doublets.

Usage

```
HTODemux(
    object, 
    assay = "HTO", 
    positive.quantile = 0.99, 
    init = NULL, 
    nstarts = 100, 
    kfunc = "clara", 
    nsamples = 100, 
    seed = 42, 
    verbose = TRUE
)
```

Arguments

- **plot**: A ggplot2 plot
- **information**: An optional dataframe or matrix of extra information to be displayed on hover
- **axes**: Display or hide x- and y-axes
- **dark.theme**: Plot using a dark theme?
- **...**: Extra parameters to be passed to `layout`

See Also

`layout`, `ggplot_build`, `DimPlot`, `FeaturePlot`

Examples

```r
## Not run:
data("pbmc_small")
plot <- DimPlot(object = pbmc_small)
HoverLocator(plot = plot, information = FetchData(object = pbmc_small, vars = 'percent.mito'))
## End(Not run)
```
Arguments

- **object**: Seurat object. Assumes that the hash tag oligo (HTO) data has been added and normalized.
- **assay**: Name of the Hashtag assay (HTO by default)
- **positive.quantile**: The quantile of inferred 'negative' distribution for each hashtag - over which the cell is considered 'positive'. Default is 0.99
- **init**: Initial number of clusters for hashtags. Default is the # of hashtag oligo names + 1 (to account for negatives)
- **nstarts**: nstarts value for k-means clustering (for kfunc = "kmeans"). 100 by default
- **kfunc**: Clustering function for initial hashtag grouping. Default is "clara" for fast k-medoids clustering on large applications, also support "kmeans" for kmeans clustering
- **nsamples**: Number of samples to be drawn from the dataset used for clustering, for kfunc = "clara"
- **seed**: Sets the random seed. If NULL, seed is not set
- **verbose**: Prints the output

Value

The Seurat object with the following demultiplexed information stored in the meta data:

- **hash.maxID**: Name of hashtag with the highest signal
- **hash.secondID**: Name of hashtag with the second highest signal
- **hash.margin**: The difference between signals for hash.maxID and hash.secondID
- **classification**: Classification result, with doublets/multiplets named by the top two highest hashtags
- **classification.global**: Global classification result (singlet, doublet or negative)
- **hash.ID**: Classification result where doublet IDs are collapsed

See Also

- HTOHeatmap

Examples

```r
## Not run:
object <- HTODemux(object)

## End(Not run)
```
HTOHeatmap

Description

Draws a heatmap of hashtag oligo signals across singlets/doublets/negative cells. Allows for the visualization of HTO demultiplexing results.

Usage

```r
HTOHeatmap(
  object,
  assay = "HTO",
  classification = paste0(assay, "_classification"),
  global.classification = paste0(assay, "_classification.global"),
  ncells = 5000,
  singlet.names = NULL,
  raster = TRUE
)
```

Arguments

- **object**: Seurat object. Assumes that the hash tag oligo (HTO) data has been added and normalized, and demultiplexing has been run with HTODemux().
- **assay**: Hashtag assay name.
- **classification**: The naming for metadata column with classification result from HTODemux().
- **global.classification**: The slot for metadata column specifying a cell as singlet/doublet/negative.
- **ncells**: Number of cells to plot. Default is to choose 5000 cells by random subsampling, to avoid having to draw exceptionally large heatmaps.
- **singlet.names**: Namings for the singlets. Default is to use the same names as HTOs.
- **raster**: If true, plot with geom_raster, else use geom_tile. geom_raster may look blurry on some viewing applications such as Preview due to how the raster is interpolated. Set this to FALSE if you are encountering that issue (note that plots may take longer to produce/render).

Value

Returns a ggplot2 plot object.

See Also

HTODemux
Not run:
object <- HTODemux(object)
HTOHeatmap(object)

End(Not run)

Description

Get variable feature information from `SCTAssay` objects

Usage

```r
## S3 method for class 'SCTAssay'
HVFInfo(object, method, status = FALSE, ...)
```

Arguments

- `object`: An object
- `method`: method to determine variable features
- `status`: Add variable status to the resulting data frame
- `...`: Arguments passed to other methods

See Also

`HVFInfo`

Examples

```r
## Not run:
# Get the HVF info directly from an SCTAssay object
pbmc_small <- SCTransform(pbmc_small)
HVFInfo(pbmc_small[["SCT"]], method = 'sct')[1:5, ]

## End(Not run)
```
IFeaturePlot
Visualize features in dimensional reduction space interactively

Description
Visualize features in dimensional reduction space interactively

Usage

```r
IFeaturePlot(object, feature, dims = c(1, 2), reduction = NULL, slot = "data")
```

Arguments
- **object**: Seurat object
- **feature**: Feature to plot
- **dims**: Dimensions to plot, must be a two-length numeric vector specifying x- and y-dimensions
- **reduction**: Which dimensionality reduction to use. If not specified, first searches for umap, then tsne, then pca
- **slot**: Which slot to pull expression data from?

Value
Returns the final plot as a ggplot object

ImageDimPlot
Spatial Cluster Plots

Description
Visualize clusters or other categorical groupings in a spatial context

Usage

```r
ImageDimPlot(
  object,
  fov = NULL,
  boundaries = NULL,
  group.by = NULL,
  split.by = NULL,
  cols = NULL,
  shuffle.cols = FALSE,
  size = 0.5,
  molecules = NULL,
)```

---

ImageDimPlot

- **object**: Seurat object
- **fov**: Field of view
- **boundaries**: Boundaries
- **group.by**: Group by
- **split.by**: Split by
- **cols**: Colors
- **shuffle.cols**: Shuffle colors
- **size**: Size
- **molecules**: Molecules
mols.size = 0.1,
mols.cols = NULL,
mols.alpha = 1,
nmols = 1000,
alpha = 1,
border.color = "white",
border.size = NULL,
na.value = "grey50",
dark.background = TRUE,
crop = FALSE,
cells = NULL,
overlap = FALSE,
axes = FALSE,
combine = TRUE,
coord.fixed = TRUE,
flip_xy = TRUE
)

Arguments

object A Seurat object
fov Name of FOV to plot
boundaries A vector of segmentation boundaries per image to plot; can be a character vector,
a named character vector, or a named list. Names should be the names of FOVs
and values should be the names of segmentation boundaries

group.by Name of one or more metadata columns to group (color) cells by (for example,
orig.ident); pass 'ident' to group by identity class

split.by A factor in object metadata to split the plot by, pass 'ident' to split by cell identity'

cols Vector of colors, each color corresponds to an identity class. This may also
be a single character or numeric value corresponding to a palette as specified
by brewer.pal.info. By default, ggplot2 assigns colors. We also include a
number of palettes from the pals package. See DiscretePalette for details.

shuffle.cols Randomly shuffle colors when a palette or vector of colors is provided to cols

size Point size for cells when plotting centroids

molecules A vector of molecules to plot

mols.size Point size for molecules

mols.cols A vector of color for molecules. The "Set1" palette from RColorBrewer is used
by default.

mols.alpha Alpha value for molecules, should be between 0 and 1

nmols Max number of each molecule specified in 'molecules' to plot

alpha Alpha value for plotting (default is 1)

border.color Color of cell segmentation border; pass NA to suppress borders for segmentation-
based plots
border.size  Thickness of cell segmentation borders; pass NA to suppress borders for centroid-based plots
na.value     Color value for NA points when using custom scale
dark.background  Set plot background to black
crop         Crop the plots to area with cells only
cells        Vector of cells to plot (default is all cells)
overlap      Overlay boundaries from a single image to create a single plot; if TRUE, then boundaries are stacked in the order they’re given (first is lowest)
axes         Keep axes and panel background
combine      Combine plots into a single patchwork ggplot object. If FALSE, return a list of ggplot objects
coord.fixed  Plot cartesian coordinates with fixed aspect ratio
flip_xy      Flag to flip X and Y axes. Default is FALSE.

Value

If combine = TRUE, a patchwork ggplot object; otherwise, a list of ggplot objects

---

**ImageFeaturePlot**

**Spatial Feature Plots**

**Description**

Visualize expression in a spatial context

**Usage**

```r
ImageFeaturePlot(
 object,
 features,
 fov = NULL,
 boundaries = NULL,
 cols = if (isTRUE(x = blend)) {
 c("lightgrey", "#ff0000", "#00ff00")
 } else {
 c("lightgrey", "firebrick1")
 },
 size = 0.5,
 min.cutoff = NA,
 max.cutoff = NA,
 split.by = NULL,
 molecules = NULL,
```

mols.size = 0.1,
mols.cols = NULL,
nmols = 1000,
alpha = 1,
border.color = "white",
border.size = NULL,
dark.background = TRUE,
blend = FALSE,
blend.threshold = 0.5,
crop = FALSE,
cells = NULL,
scale = c("feature", "all", "none"),
overlap = FALSE,
axes = FALSE,
combine = TRUE,
coord.fixed = TRUE
)

Arguments

object: Seurat object

features: Vector of features to plot. Features can come from:

• An Assay feature (e.g. a gene name - "MS4A1")
• A column name from meta.data (e.g. mitochondrial percentage - "percent.mito")
• A column name from a DimReduce object corresponding to the cell embedding values (e.g. the PC 1 scores - "PC_1")

fov: Name of FOV to plot

boundaries: A vector of segmentation boundaries per image to plot; can be a character vector, a named character vector, or a named list. Names should be the names of FOVs and values should be the names of segmentation boundaries

cols: The two colors to form the gradient over. Provide as string vector with the first color corresponding to low values, the second to high. Also accepts a Brewer color scale or vector of colors. Note: this will bin the data into number of colors provided. When blend is TRUE, takes anywhere from 1-3 colors:

1 color: Treated as color for double-negatives, will use default colors 2 and 3 for per-feature expression

2 colors: Treated as colors for per-feature expression, will use default color 1 for double-negatives

3+ colors: First color used for double-negatives, colors 2 and 3 used for per-feature expression, all others ignored

size: Point size for cells when plotting centroids

min.cutoff, max.cutoff: Vector of minimum and maximum cutoff values for each feature, may specify quantile in the form of 'q##' where '##' is the quantile (eg, 'q1', 'q10')
split.by  A factor in object metadata to split the plot by, pass ‘ident’ to split by cell identity
molecules A vector of molecules to plot
mols.size  Point size for molecules
mols.cols A vector of color for molecules. The “Set1” palette from RColorBrewer is used by default.
nmols  Max number of each molecule specified in ‘molecules’ to plot
alpha  Alpha value for plotting (default is 1)
border.color  Color of cell segmentation border; pass NA to suppress borders for segmentation-based plots
border.size Thickness of cell segmentation borders; pass NA to suppress borders for centroid-based plots
dark.background  Set plot background to black
blend  Scale and blend expression values to visualize coexpression of two features
blend.threshold  The color cutoff from weak signal to strong signal; ranges from 0 to 1.
crop  Crop the plots to area with cells only
cells  Vector of cells to plot (default is all cells)
scale  Set color scaling across multiple plots; choose from:
    • “feature”: Plots per-feature are scaled across splits
    • “all”: Plots per-feature are scaled across all features
    • “none”: Plots are not scaled; note: setting scale to “none” will result in color scales that are not comparable between plots
    Ignored if blend = TRUE
overlap Overlay boundaries from a single image to create a single plot; if TRUE, then boundaries are stacked in the order they’re given (first is lowest)
axes  Keep axes and panel background
combine Combine plots into a single patchwork ggplot object. If FALSE, return a list of ggplot objects
coord.fixed  Plot cartesian coordinates with fixed aspect ratio

Value

If combine = TRUE, a patchwork ggplot object; otherwise, a list of ggplot objects
Description

Perform dataset integration using a pre-computed AnchorSet.

Usage

IntegrateData(
    anchorset,
    new.assay.name = "integrated",
    normalization.method = c("LogNormalize", "SCT"),
    features = NULL,
    features.to.integrate = NULL,
    dims = 1:30,
    k.weight = 100,
    weight.reduction = NULL,
    sd.weight = 1,
    sample.tree = NULL,
    preserve.order = FALSE,
    eps = 0,
    verbose = TRUE
)

Arguments

anchorset An AnchorSet object generated by FindIntegrationAnchors
new.assay.name Name for the new assay containing the integrated data
normalization.method Name of normalization method used: LogNormalize or SCT
features Vector of features to use when computing the PCA to determine the weights. Only set if you want a different set from those used in the anchor finding process
features.to.integrate Vector of features to integrate. By default, will use the features used in anchor finding.
dims Number of dimensions to use in the anchor weighting procedure
k.weight Number of neighbors to consider when weighting anchors
weight.reduction Dimension reduction to use when calculating anchor weights. This can be one of:
  • A string, specifying the name of a dimension reduction present in all objects to be integrated
  • A vector of strings, specifying the name of a dimension reduction to use for each object to be integrated
• A vector of DimReduc objects, specifying the object to use for each object in the integration
• NULL, in which case a new PCA will be calculated and used to calculate anchor weights

Note that, if specified, the requested dimension reduction will only be used for calculating anchor weights in the first merge between reference and query, as the merged object will subsequently contain more cells than was in query, and weights will need to be calculated for all cells in the object.

sd.weight Controls the bandwidth of the Gaussian kernel for weighting

Specify the order of integration. Order of integration should be encoded in a matrix, where each row represents one of the pairwise integration steps. Negative numbers specify a dataset, positive numbers specify the integration results from a given row (the format of the merge matrix included in the hclust function output). For example:

```r
matrix(c(-2, 1, -3, -1), ncol = 2)
```

Which would cause dataset 2 and 3 to be integrated first, then the resulting object integrated with dataset 1.

If NULL, the sample tree will be computed automatically.

preserve.order Do not reorder objects based on size for each pairwise integration.

eps Error bound on the neighbor finding algorithm (from RANN)

verbose Print progress bars and output

Details

The main steps of this procedure are outlined below. For a more detailed description of the methodology, please see Stuart, Butler, et al Cell 2019. doi:10.1016/j.cell.2019.05.031; doi:10.1101/460147

For pairwise integration:

• Construct a weights matrix that defines the association between each query cell and each anchor. These weights are computed as 1 - the distance between the query cell and the anchor divided by the distance of the query cell to the k.weightth anchor multiplied by the anchor score computed in FindIntegrationAnchors. We then apply a Gaussian kernel width a bandwidth defined by sd.weight and normalize across all k.weight anchors.

• Compute the anchor integration matrix as the difference between the two expression matrices for every pair of anchor cells

• Compute the transformation matrix as the product of the integration matrix and the weights matrix.

• Subtract the transformation matrix from the original expression matrix.

For multiple dataset integration, we perform iterative pairwise integration. To determine the order of integration (if not specified via sample.tree), we
IntegrateData

- Define a distance between datasets as the total number of cells in the smaller dataset divided by the total number of anchors between the two datasets.
- Compute all pairwise distances between datasets
- Cluster this distance matrix to determine a guide tree

Value

Returns a Seurat object with a new integrated Assay. If normalization.method = "LogNormalize", the integrated data is returned to the data slot and can be treated as log-normalized, corrected data. If normalization.method = "SCT", the integrated data is returned to the scale.data slot and can be treated as centered, corrected Pearson residuals.

References


Examples

```r
Not run:
to install the SeuratData package see https://github.com/satijalab/seurat-data
library(SeuratData)
data("panc8")

panc8 is a merged Seurat object containing 8 separate pancreas datasets
split the object by dataset
pancreas.list <- SplitObject(panc8, split.by = "tech")

perform standard preprocessing on each object
for (i in 1:length(pancreas.list)) {
 pancreas.list[[i]] <- NormalizeData(pancreas.list[[i]], verbose = FALSE)
 pancreas.list[[i]] <- FindVariableFeatures(
 pancreas.list[[i]], selection.method = "vst",
 nfeatures = 2000, verbose = FALSE
)
}

find anchors
anchors <- FindIntegrationAnchors(object.list = pancreas.list)

integrate data
integrated <- IntegrateData(anchordset = anchors)

End(Not run)
```
IntegrateEmbeddings  

Integrate low dimensional embeddings

Description

Perform dataset integration using a pre-computed Anchorset of specified low dimensional representations.

Usage

```r
IntegrateEmbeddings(anchorset, ...)
```

```r
S3 method for class 'IntegrationAnchorSet'
IntegrateEmbeddings(
 anchorset,
 new.reduction.name = "integrated_dr",
 reductions = NULL,
 dims.to.integrate = NULL,
 k.weight = 100,
 weight.reduction = NULL,
 sd.weight = 1,
 sample.tree = NULL,
 preserve.order = FALSE,
 verbose = TRUE,
 ...
)
```

```r
S3 method for class 'TransferAnchorSet'
IntegrateEmbeddings(
 anchorset,
 reference,
 query,
 query.assay = NULL,
 new.reduction.name = "integrated_dr",
 reductions = "pcaproject",
 dims.to.integrate = NULL,
 k.weight = 100,
 weight.reduction = NULL,
 reuse.weights.matrix = TRUE,
 sd.weight = 1,
 preserve.order = FALSE,
 verbose = TRUE,
 ...
)
```

Arguments

anchorset  An AnchorSet object
... Reserved for internal use

new.reduction.name

Name for new integrated dimensional reduction.

reductions

Name of reductions to be integrated. For a TransferAnchorSet, this should be the name of a reduction present in the anchorset object (for example, "pcaproject"). For an IntegrationAnchorSet, this should be a DimReduc object containing all cells present in the anchorset object.

dims.to.integrate

Number of dimensions to return integrated values for

k.weight

Number of neighbors to consider when weighting anchors

weight.reduction

Dimension reduction to use when calculating anchor weights. This can be one of:

• A string, specifying the name of a dimension reduction present in all objects to be integrated
• A vector of strings, specifying the name of a dimension reduction to use for each object to be integrated
• A vector of DimReduc objects, specifying the object to use for each object in the integration
• NULL, in which case the full corrected space is used for computing anchor weights.

sd.weight

Controls the bandwidth of the Gaussian kernel for weighting

sample.tree

Specify the order of integration. Order of integration should be encoded in a matrix, where each row represents one of the pairwise integration steps. Negative numbers specify a dataset, positive numbers specify the integration results from a given row (the format of the merge matrix included in the hclust function output). For example: matrix(c(-2, 1, -3, -1), ncol = 2) gives:

[,1] [,2]
[1,] -2 -3
[2,] 1 -1

Which would cause dataset 2 and 3 to be integrated first, then the resulting object integrated with dataset 1.

If NULL, the sample tree will be computed automatically.

preserve.order

Do not reorder objects based on size for each pairwise integration.

verbose

Print progress bars and output

reference

Reference object used in anchorset construction

query

Query object used in anchorset construction

query.assay

Name of the Assay to use from query

reuse.weights.matrix

Can be used in conjunction with the store.weights parameter in TransferData to reuse a precomputed weights matrix.
Details

The main steps of this procedure are identical to `IntegrateData` with one key distinction. When computing the weights matrix, the distance calculations are performed in the full space of integrated embeddings when integrating more than two datasets, as opposed to a reduced PCA space which is the default behavior in `IntegrateData`.

Value

When called on a TransferAnchorSet (from FindTransferAnchors), this will return the query object with the integrated embeddings stored in a new reduction. When called on an IntegrationAnchorSet (from IntegrateData), this will return a merged object with the integrated reduction stored.

---

### IntegrateLayers

**Integrate Layers**

#### Description

Integrate Layers

#### Usage

```r
IntegrateLayers(
 object,
 method,
 orig.reduction = "pca",
 assay = NULL,
 features = NULL,
 layers = NULL,
 scale.layer = "scale.data",
 ...
)
```

#### Arguments

- **object**: A `Seurat` object
- **method**: Integration method function
- **orig.reduction**: Name of dimensional reduction for correction
- **assay**: Name of assay for integration
- **features**: A vector of features to use for integration
- **layers**: Names of normalized layers in assay
- **scale.layer**: Name(s) of scaled layer(s) in assay
- **...**: Arguments passed on to method

#### Value

Object with integration data added to it
Integration Method Functions

The following integration method functions are available:

See Also

Writing integration method functions

IntegrationAnchorSet-class

The IntegrationAnchorSet Class

Description

Inherits from the Anchorset class. Implemented mainly for method dispatch purposes. See AnchorSet for slot details.

IntegrationData-class

The IntegrationData Class

Description

The IntegrationData object is an intermediate storage container used internally throughout the integration procedure to hold bits of data that are useful downstream.

Slots

neighbors List of neighborhood information for cells (outputs of RANN::nn2)
weights Anchor weight matrix
integration.matrix Integration matrix
anchors Anchor matrix
offsets The offsets used to enable cell look up in downstream functions
objects.ncell Number of cells in each object in the object.list
sample.tree Sample tree used for ordering multi-dataset integration
ISpatialDimPlot

**Visualize clusters spatially and interactively**

**Description**

Visualize clusters spatially and interactively

**Usage**

```r
ISpatialDimPlot(
 object,
 image = NULL,
 image.scale = "lowres",
 group.by = NULL,
 alpha = c(0.3, 1)
)
```

**Arguments**

- **object**: A Seurat object
- **image**: Name of the image to use in the plot
- **image.scale**: Choose the scale factor ("lowres"/"hires") to apply in order to match the plot with the specified `image` - defaults to "lowres"
- **group.by**: Name of meta.data column to group the data by
- **alpha**: Controls opacity of spots. Provide as a vector specifying the min and max for SpatialFeaturePlot. For SpatialDimPlot, provide a single alpha value for each plot.

**Value**

Returns final plot as a ggplot object

---

ISpatialFeaturePlot

**Visualize features spatially and interactively**

**Description**

Visualize features spatially and interactively
**Usage**

```r
ISpatialFeaturePlot(
 object,
 feature,
 image = NULL,
 image.scale = "lowres",
 slot = "data",
 alpha = c(0.1, 1)
)
```

**Arguments**

- `object`: A Seurat object
- `feature`: Feature to visualize
- `image`: Name of the image to use in the plot
- `image.scale`: Choose the scale factor ("lowres"/"hires") to apply in order to match the plot with the specified `image` - defaults to "lowres"
- `slot`: If plotting a feature, which data slot to pull from (counts, data, or scale.data)
- `alpha`: Controls opacity of spots. Provide as a vector specifying the min and max for SpatialFeaturePlot. For SpatialDimPlot, provide a single alpha value for each plot.

**Value**

Returns final plot as a ggplot object

---

**JackStraw**

*Determine statistical significance of PCA scores.*

**Description**

Randomly permutes a subset of data, and calculates projected PCA scores for these 'random' genes. Then compares the PCA scores for the 'random' genes with the observed PCA scores to determine statistical significance. End result is a p-value for each gene's association with each principal component.

**Usage**

```r
JackStraw(
 object,
 reduction = "pca",
 assay = NULL,
 dims = 20,
 num.replicate = 100,
 prop.freq = 0.01,
)```
JackStrawData-class

The JackStrawData Class

Description

For more details, please see the documentation in SeuratObject

See Also

SeuratObject::JackStrawData-class
Description

Plots the results of the JackStraw analysis for PCA significance. For each PC, plots a QQ-plot comparing the distribution of p-values for all genes across each PC, compared with a uniform distribution. Also determines a p-value for the overall significance of each PC (see Details).

Usage

```r
JackStrawPlot(
  object,
  dims = 1:5,
  cols = NULL,
  reduction = "pca",
  xmax = 0.1,
  ymax = 0.3
)
```

Arguments

- **object**: Seurat object
- **dims**: Dims to plot
- **cols**: Vector of colors, each color corresponds to an individual PC. This may also be a single character or numeric value corresponding to a palette as specified by `brewer.pal.info`. By default, ggplot2 assigns colors. We also include a number of palettes from the pals package. See `DiscretePalette` for details.
- **reduction**: reduction to pull jackstraw info from
- **xmax**: X-axis maximum on each QQ plot.
- **ymax**: Y-axis maximum on each QQ plot.

Details

Significant PCs should show a p-value distribution (black curve) that is strongly skewed to the left compared to the null distribution (dashed line) The p-value for each PC is based on a proportion test comparing the number of genes with a p-value below a particular threshold (score.thresh), compared with the proportion of genes expected under a uniform distribution of p-values.

Value

A ggplot object

Author(s)

Omri Wurtzel
JointPCAIntegration

See Also

ScoreJackStraw

Examples

data("pbmc_small")
JackStrawPlot(object = pbmc_small)

JointPCAIntegration

Seurat-Joint PCA Integration

Description

Seurat-Joint PCA Integration

Usage

JointPCAIntegration(
 object = NULL,
 assay = NULL,
 layers = NULL,
 orig = NULL,
 new.reduction = "integrated.dr",
 reference = NULL,
 features = NULL,
 normalization.method = c("LogNormalize", "SCT"),
 dims = 1:30,
 k.anchor = 20,
 scale.layer = "scale.data",
 dims.to.integrate = NULL,
 k.weight = 100,
 weight.reduction = NULL,
 sd.weight = 1,
 sample.tree = NULL,
 preserve.order = FALSE,
 verbose = TRUE,
 ...
)

Arguments

object A Seurat object
assay Name of Assay in the Seurat object
layers Names of layers in assay
orig A dimensional reduction to correct
JointPCAIntegration

- **new.reduction**: Name of new integrated dimensional reduction
- **reference**: A reference Seurat object
- **features**: A vector of features to use for integration
- **normalization.method**: Name of normalization method used: LogNormalize or SCT
- **dims**: Dimensions of dimensional reduction to use for integration
- **k.anchor**: How many neighbors (k) to use when picking anchors
- **scale.layer**: Name of scaled layer in Assay
- **dims.to.integrate**: Number of dimensions to return integrated values for
- **k.weight**: Number of neighbors to consider when weighting anchors
- **weight.reduction**: Dimension reduction to use when calculating anchor weights. This can be one of:
 - A string, specifying the name of a dimension reduction present in all objects to be integrated
 - A vector of strings, specifying the name of a dimension reduction to use for each object to be integrated
 - A vector of DimReduc objects, specifying the object to use for each object in the integration
 - NULL, in which case the full corrected space is used for computing anchor weights.
- **sd.weight**: Controls the bandwidth of the Gaussian kernel for weighting
- **sample.tree**: Specify the order of integration. Order of integration should be encoded in a matrix, where each row represents one of the pairwise integration steps. Negative numbers specify a dataset, positive numbers specify the integration results from a given row (the format of the merge matrix included in the hclust function output). For example: matrix(c(-2, 1, -3, -1), ncol = 2) gives:

 \[
 \begin{bmatrix}
 [,1] & [,2] \\
 [1,] & -2 & -3 \\
 [2,] & 1 & -1 \\
 \end{bmatrix}
 \]

 Which would cause dataset 2 and 3 to be integrated first, then the resulting object integrated with dataset 1.
 If NULL, the sample tree will be computed automatically.
- **preserve.order**: Do not reorder objects based on size for each pairwise integration.
- **verbose**: Print progress
- **...**: Arguments passed on to FindIntegrationAnchors
L2CCA

L2-Normalize CCA

Description
Perform l2 normalization on CCs

Usage

L2CCA(object, ...)

Arguments

- object: Seurat object
- ...: Additional parameters to L2Dim.

L2Dim

L2-normalization

Description
Perform l2 normalization on given dimensional reduction

Usage

L2Dim(object, reduction, new.dr = NULL, new.key = NULL)

Arguments

- object: Seurat object
- reduction: Dimensional reduction to normalize
- new.dr: name of new dimensional reduction to store (default is olddr.l2)
- new.key: name of key for new dimensional reduction

Value

Returns a Seurat object
LabelClusters

Label clusters on a ggplot2-based scatter plot

Description

Label clusters on a ggplot2-based scatter plot

Usage

```r
LabelClusters(
  plot,
  id,
  clusters = NULL,
  labels = NULL,
  split.by = NULL,
  repel = TRUE,
  box = FALSE,
  geom = "GeomPoint",
  position = "median",
  ...
)
```

Arguments

- `plot`: A ggplot2-based scatter plot
- `id`: Name of variable used for coloring scatter plot
- `clusters`: Vector of cluster ids to label
- `labels`: Custom labels for the clusters
- `split.by`: Split labels by some grouping label, useful when using `facet_wrap` or `facet_grid`
- `repel`: Use `geom_text_repel` to create nicely-repelled labels
- `box`: Use `geom_label/geom_label_repel` (includes a box around the text labels)
- `geom`: Name of geom to get X/Y aesthetic names for
- `position`: How to place the label if `repel = FALSE`. If "median", place the label at the median position. If "nearest" place the label at the position of the nearest data point to the median.
- `...`: Extra parameters to `geom_text_repel`, such as size

Value

A ggplot2-based scatter plot with cluster labels

See Also

- `geom_text_repel`
- `geom_text`
Examples

```r
data("pbmc_small")
plot <- DimPlot(object = pbmc_small)
LabelClusters(plot = plot, id = 'ident')
```

LabelPoints

Add text labels to a ggplot2 plot

Description

Add text labels to a ggplot2 plot

Usage

```r
LabelPoints(
  plot, 
  points, 
  labels = NULL, 
  repel = FALSE, 
  xnudge = 0.3, 
  ynudge = 0.05, 
  ...
)
```

Arguments

- `plot` A ggplot2 plot with a GeomPoint layer
- `points` A vector of points to label; if NULL, will use all points in the plot
- `labels` A vector of labels for the points; if NULL, will use rownames of the data provided to the plot at the points selected
- `repel` Use `geom_text_repel` to create a nicely-repelled labels; this is slow when a lot of points are being plotted. If using `repel`, set `xnudge` and `ynudge` to 0
- `xnudge, ynudge` Amount to nudge X and Y coordinates of labels by
- `...` Extra parameters passed to `geom_text`

Value

A ggplot object

See Also

`geom_text`
Examples

```r
data("pbmc_small")
ff <- TopFeatures(object = pbmc_small[['pca']])
cc <- TopCells(object = pbmc_small[['pca']])
plot <- FeatureScatter(object = pbmc_small, feature1 = ff[1], feature2 = ff[2])
LabelPoints(plot = plot, points = cc)
```

LeverageScore

<table>
<thead>
<tr>
<th>LeverageScore</th>
<th>Leverage Score Calculation</th>
</tr>
</thead>
</table>

Description

This function computes the leverage scores for a given object. It uses the concept of sketching and random projections. The function provides an approximation to the leverage scores using a scalable method suitable for large matrices.

Usage

```r
LeverageScore(object, ...)
```

Default S3 method:

```r
LeverageScore(
  object,
  nsketch = 5000L,
  ndims = NULL,
  method = CountSketch,
  eps = 0.5,
  seed = 123L,
  verbose = TRUE,
  ...
)
```

S3 method for class 'StdAssay'

```r
LeverageScore(
  object,
  nsketch = 5000L,
  ndims = NULL,
  method = CountSketch,
  vf.method = NULL,
  layer = "data",
  eps = 0.5,
  seed = 123L,
  verbose = TRUE,
  ...
)
```
LeverageScore

S3 method for class 'Assay'
LeverageScore(
 object,
 nsketch = 5000L,
 ndims = NULL,
 method = CountSketch,
 vf.method = NULL,
 layer = "data",
 eps = 0.5,
 seed = 123L,
 verbose = TRUE,
 ...
)

S3 method for class 'Seurat'
LeverageScore(
 object,
 assay = NULL,
 nsketch = 5000L,
 ndims = NULL,
 var.name = "leverage.score",
 over.write = FALSE,
 method = CountSketch,
 vf.method = NULL,
 layer = "data",
 eps = 0.5,
 seed = 123L,
 verbose = TRUE,
 ...
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>A matrix-like object</td>
</tr>
<tr>
<td>...</td>
<td>Arguments passed to other methods</td>
</tr>
<tr>
<td>nsketch</td>
<td>A positive integer. The number of sketches to be used in the approximation. Default is 5000.</td>
</tr>
<tr>
<td>ndims</td>
<td>A positive integer or NULL. The number of dimensions to use. If NULL, the number of dimensions will default to the number of columns in the object.</td>
</tr>
<tr>
<td>method</td>
<td>The sketching method to use, defaults to CountSketch.</td>
</tr>
<tr>
<td>eps</td>
<td>A numeric. The error tolerance for the approximation in Johnson–Lindenstrauss embeddings, defaults to 0.5.</td>
</tr>
<tr>
<td>seed</td>
<td>A positive integer. The seed for the random number generator, defaults to 123.</td>
</tr>
<tr>
<td>verbose</td>
<td>Print progress and diagnostic messages</td>
</tr>
<tr>
<td>vf.method</td>
<td>VariableFeatures method</td>
</tr>
<tr>
<td>layer</td>
<td>layer to use</td>
</tr>
</tbody>
</table>
assay assay to use
var.name name of slot to store leverage scores
over.write whether to overwrite slot that currently stores leverage scores. Defaults to FALSE, in which case the 'var.name' is modified if it already exists in the object

References

LinkedPlots
Visualize spatial and clustering (dimensional reduction) data in a linked, interactive framework

Description
Visualize spatial and clustering (dimensional reduction) data in a linked, interactive framework

Usage
LinkedDimPlot(
 object,
 dims = 1:2,
 reduction = NULL,
 image = NULL,
 image.scale = "lowres",
 group.by = NULL,
 alpha = c(0.1, 1),
 combine = TRUE
)

LinkedFeaturePlot(
 object,
 feature,
 dims = 1:2,
 reduction = NULL,
 image = NULL,
 image.scale = "lowres",
 slot = "data",
 alpha = c(0.1, 1),
 combine = TRUE
)
Arguments

- **object**: A Seurat object
- **dims**: Dimensions to plot, must be a two-length numeric vector specifying x- and y-dimensions
- **reduction**: Which dimensionality reduction to use. If not specified, first searches for umap, then tsne, then pca
- **image**: Name of the image to use in the plot
- **image.scale**: Choose the scale factor ("lowres"/"hires") to apply in order to match the plot with the specified ‘image’ - defaults to "lowres"
- **group.by**: Name of meta.data column to group the data by
- **alpha**: Controls opacity of spots. Provide as a vector specifying the min and max for SpatialFeaturePlot. For SpatialDimPlot, provide a single alpha value for each plot.
- **combine**: Combine plots into a single gg object; note that if TRUE; themeing will not work when plotting multiple features/groupings
- **feature**: Feature to visualize
- **slot**: If plotting a feature, which data slot to pull from (counts, data, or scale.data)

Value

Returns final plots. If combine, plots are stiched together using CombinePlots; otherwise, returns a list of ggplot objects

Examples

```r
## Not run:
LinkedDimPlot(seurat.object)
LinkedFeaturePlot(seurat.object, feature = 'Hpca')
## End(Not run)
```

Load10X_Spatial

Load a 10x Genomics Visium Spatial Experiment into a Seurat object

Description

Load a 10x Genomics Visium Spatial Experiment into a Seurat object
Load10X_Spatial

Usage

Load10X_Spatial(
 data.dir,
 filename = "filtered_feature_bc_matrix.h5",
 assay = "Spatial",
 slice = "slice1",
 bin.size = NULL,
 filter.matrix = TRUE,
 to.upper = FALSE,
 image = NULL,
 ...
)

Arguments
data.dir Directory containing the H5 file specified by filename and the image data in a subdirectory called spatial
filename Name of H5 file containing the feature barcode matrix
assay Name of the initial assay
slice Name for the stored image of the tissue slice
bin.size Specifies the bin sizes to read in - defaults to c(16, 8)
filter.matrix Only keep spots that have been determined to be over tissue
to.upper Converts all feature names to upper case. Can be useful when analyses require comparisons between human and mouse gene names for example.
ingame VisiumV1/VisiumV2 instance(s) - if a vector is passed in it should be co-indexed with `bin.size`
...
Arguments passed to Read10X_h5

Value

A Seurat object

Examples

Not run:
data_dir <- 'path/to/data/directory'
list.files(data_dir) # Should show filtered_feature_bc_matrix.h5
Load10X_Spatial(data.dir = data_dir)

End(Not run)
LoadAnnoyIndex
load the Annoy index file

Description

Load the Annoy index file

Usage

```
LoadAnnoyIndex(object, file)
```

Arguments

- `object`: Neighbor object
- `file`: Path to file with annoy index

Value

Returns the Neighbor object with the index stored

LoadCurioSeeker
Load Curio Seeker data

Description

Load Curio Seeker data

Usage

```
LoadCurioSeeker(data.dir, assay = "Spatial")
```

Arguments

- `data.dir`: location of data directory that contains the counts matrix, gene names, barcodes/beads, and barcodes/bead location files.
- `assay`: Name of assay to associate spatial data to

Value

A Seurat object
LoadSTARmap

Load STARmap data

Description

Load STARmap data

Usage

LoadSTARmap(
 data.dir,
 counts.file = "cell_barcode_count.csv",
 gene.file = "genes.csv",
 qhull.file = "qhulls.tsv",
 centroid.file = "centroids.tsv",
 assay = "Spatial",
 image = "image"
)

Arguments

 data.dir location of data directory that contains the counts matrix, gene name, qhull, and centroid files.
 counts.file name of file containing the counts matrix (csv)
 gene.file name of file containing the gene names (csv)
 qhull.file name of file containing the hull coordinates (tsv)
 centroid.file name of file containing the centroid positions (tsv)
 assay Name of assay to associate spatial data to
 image Name of "image" object storing spatial coordinates

Value

 A Seurat object

See Also

 STARmap
LoadXenium

Read and Load 10x Genomics Xenium in-situ data

Description

Read and Load 10x Genomics Xenium in-situ data

Usage

LoadXenium(data.dir, fov = "fov", assay = "Xenium")

ReadXenium(
 data.dir,
 outs = c("matrix", "microns"),
 type = "centroids",
 mols.qv.threshold = 20
)

Arguments

data.dir Directory containing all Xenium output files with default filenames
fov FOV name
assay Assay name
outs Types of molecular outputs to read; choose one or more of:
 • "matrix": the counts matrix
 • "microns": molecule coordinates
type Type of cell spatial coordinate matrices to read; choose one or more of:
 • "centroids": cell centroids in pixel coordinate space
 • "segmentations": cell segmentations in pixel coordinate space
mols.qv.threshold Remove transcript molecules with a QV less than this threshold. QV >= 20 is the standard threshold used to construct the cell x gene count matrix.

Value

LoadXenium: A Seurat object
ReadXenium: A list with some combination of the following values:
 • "matrix": a sparse matrix with expression data; cells are columns and features are rows
 • "centroids": a data frame with cell centroid coordinates in three columns: “x”, “y”, and “cell”
 • "pixels": a data frame with molecule pixel coordinates in three columns: “x”, “y”, and “gene”
LocalStruct

Description

Calculates a metric that describes how well the local structure of each group prior to integration is preserved after integration. This procedure works as follows: For each group, compute a PCA, compute the top num.neighbors in pca space, compute the top num.neighbors in corrected pca space, compute the size of the intersection of those two sets of neighbors. Return the average over all groups.

Usage

LocalStruct(
 object,
 grouping.var,
 idents = NULL,
 neighbors = 100,
 reduction = "pca",
 reduced.dims = 1:10,
 orig.dims = 1:10,
 verbose = TRUE
)

Arguments

object Seurat object

Arguments Grouping variable

idents Optionally specify a set of idents to compute metric for

neighbors Number of neighbors to compute in pca/corrected pca space

reduction Dimensional reduction to use for corrected space

reduced.dims Number of reduced dimensions to use

orig.dims Number of PCs to use in original space

verbose Display progress bar

Value

Returns the average preservation metric
LogNormalize Normalize Raw Data

Description

Normalize Raw Data

Usage

LogNormalize(data, scale.factor = 10000, margin = 2L, verbose = TRUE, ...)

S3 method for class 'data.frame'
LogNormalize(data, scale.factor = 10000, margin = 2L, verbose = TRUE, ...)

S3 method for class 'V3Matrix'
LogNormalize(data, scale.factor = 10000, margin = 2L, verbose = TRUE, ...)

Default S3 method:
LogNormalize(data, scale.factor = 10000, margin = 2L, verbose = TRUE, ...)

Arguments

data Matrix with the raw count data
scale.factor Scale the data; default is 1e4
margin Margin to normalize over
verbose Print progress
... Arguments passed to other methods

Value

A matrix with the normalized and log-transformed data

Examples

mat <- matrix(data = rbinom(n = 25, size = 5, prob = 0.2), nrow = 5)
mat
mat_norm <- LogNormalize(data = mat)
mat_norm
LogVMR

Calculate the variance to mean ratio of logged values

Description

Calculate the variance to mean ratio (VMR) in non-logspace (return answer in log-space)

Usage

`LogVMR(x, ...)`

Arguments

- `x` A vector of values
- `...` Other arguments (not used)

Value

Returns the VMR in log-space

Examples

`LogVMR(x = c(1, 2, 3))`

MappingScore

Metric for evaluating mapping success

Description

This metric was designed to help identify query cells that aren’t well represented in the reference dataset. The intuition for the score is that we are going to project the query cells into a reference-defined space and then project them back onto the query. By comparing the neighborhoods before and after projection, we identify cells who’s local neighborhoods are the most affected by this transformation. This could be because there is a population of query cells that aren’t present in the reference or the state of the cells in the query is significantly different from the equivalent cell type in the reference.
Usage

MappingScore(anchors, ...)

Default S3 method:
MappingScore(
 anchors,
 combined.object,
 query.neighbors,
 ref.embeddings,
 query.embeddings,
 kanchors = 50,
 ndim = 50,
 ksmooth = 100,
 ksnn = 20,
 snn.prune = 0,
 subtract.first.nn = TRUE,
 nn.method = "annoy",
 n.trees = 50,
 query.weights = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'AnchorSet'
MappingScore(
 anchors,
 kanchors = 50,
 ndim = 50,
 ksmooth = 100,
 ksnn = 20,
 snn.prune = 0,
 subtract.first.nn = TRUE,
 nn.method = "annoy",
 n.trees = 50,
 query.weights = NULL,
 verbose = TRUE,
 ...
)

Arguments

anchors | AnchorSet object or just anchor matrix from the Anchorset object returned from FindTransferAnchors

... | Reserved for internal use

combined.object | Combined object (ref + query) from the Anchorset object returned

query.neighbors | Neighbors object computed on query cells
MapQuery

Map query cells to a reference

Description

This is a convenience wrapper function around the following three functions that are often run together when mapping query data to a reference: `TransferData`, `IntegrateEmbeddings`, `ProjectUMAP`. Note that by default, the `weight.reduction` parameter for all functions will be set to the dimension reduction method used in the `FindTransferAnchors` function call used to construct the anchor object, and the `dims` parameter will be the same dimensions used to find anchors.

Usage

```r
MapQuery(
  anchorset, 
  query, 
  reference, 
  refdata = NULL, 
  new.reduction.name = NULL, 
  reference.reduction = NULL, 
  reference.dims = NULL,
)```

**Value**

Returns a vector of cell scores
query.dims = NULL,
store.weights = FALSE,
reduction.model = NULL,
transferdata.args = list(),
integrateembeddings.args = list(),
projectumap.args = list(),
verbose = TRUE
)

Arguments
anchorset        An AnchorSet object
query            Query object used in anchorset construction
reference        Reference object used in anchorset construction
refdata          Data to transfer. This can be specified in one of two ways:
                  • The reference data itself as either a vector where the names correspond to
                    the reference cells, or a matrix, where the column names correspond to the
                    reference cells.
                  • The name of the metadata field or assay from the reference object provided.
                    This requires the reference parameter to be specified. If pulling assay data
                    in this manner, it will pull the data from the data slot. To transfer data from
                    other slots, please pull the data explicitly with GetAssayData and provide
                    that matrix here.
new.reduction.name    Name for new integrated dimensional reduction.
reference.reduction  Name of reduction to use from the reference for neighbor finding
reference.dims       Dimensions (columns) to use from reference
query.dims           Dimensions (columns) to use from query
store.weights        Determine if the weight and anchor matrices are stored.
reduction.model      DimReduc object that contains the umap model
transferdata.args    A named list of additional arguments to TransferData
integrateembeddings.args  A named list of additional arguments to IntegrateEmbeddings
projectumap.args     A named list of additional arguments to ProjectUMAP
verbose              Print progress bars and output

Value
Returns a modified query Seurat object containing:

• New Assays corresponding to the features transferred and/or their corresponding prediction
  scores from TransferData
• An integrated reduction from `IntegrateEmbeddings`
• A projected UMAP reduction of the query cells projected into the reference UMAP using `ProjectUMAP`

---

**merge.SCTAssay**  
*Merge SCTAssay objects*

### Description

Merge SCTAssay objects

### Usage

```r
S3 method for class 'SCTAssay'
merge(
 x = NULL,
 y = NULL,
 add.cell.ids = NULL,
 merge.data = TRUE,
 na.rm = TRUE,
 ...
)
```

### Arguments

- **x**  
  A Seurat object
- **y**  
  A single Seurat object or a list of Seurat objects
- **add.cell.ids**  
  A character vector of `length(x = c(x, y))`; appends the corresponding values to the start of each objects’ cell names
- **merge.data**  
  Merge the data slots instead of just merging the counts (which requires renormalization); this is recommended if the same normalization approach was applied to all objects
- **na.rm**  
  If na.rm = TRUE, this will only preserve residuals that are present in all SCTAssays being merged. Otherwise, missing residuals will be populated with NAs.
- **...**  
  Arguments passed to other methods
MetaFeature

Aggregate expression of multiple features into a single feature

Description

Calculates relative contribution of each feature to each cell for given set of features.

Usage

MetaFeature(
  object,  # A Seurat object
  features,   # List of features to aggregate
  meta.name = "metafeature",  # Name of column in metadata to store metafeature
  cells = NULL,  # List of cells to use (default all cells)
  assay = NULL,  # Which assay to use
  slot = "data"  # Which slot to take data from (default data)
)

Arguments

object  A Seurat object
features  List of features to aggregate
meta.name  Name of column in metadata to store metafeature
cells  List of cells to use (default all cells)
assay  Which assay to use
slot  Which slot to take data from (default data)

Value

Returns a Seurat object with metafeature stored in object metadata

Examples

data("pbmc_small")
pbmc_small <- MetaFeature(
  object = pbmc_small,
  features = c("LTB", "EAF2"),
  meta.name = 'var.aggregate'
)
head(pbmc_small[[3]])
**MinMax**  
*Apply a ceiling and floor to all values in a matrix*

**Description**  
Apply a ceiling and floor to all values in a matrix

**Usage**  
```
MinMax(data, min, max)
```

**Arguments**
- **data**  
  Matrix or data frame
- **min**  
  all values below this min value will be replaced with min
- **max**  
  all values above this max value will be replaced with max

**Value**  
Returns matrix after performing these floor and ceil operations

**Examples**
```
mat <- matrix(data = rbinom(n = 25, size = 20, prob = 0.2), nrow = 5)
mat
MinMax(data = mat, min = 4, max = 5)
```

**MixingMetric**  
*Calculates a mixing metric*

**Description**  
Here we compute a measure of how well mixed a composite dataset is. To compute, we first examine the local neighborhood for each cell (looking at max.k neighbors) and determine for each group (could be the dataset after integration) the k nearest neighbor and what rank that neighbor was in the overall neighborhood. We then take the median across all groups as the mixing metric per cell.
Usage

MixingMetric(
  object,
  grouping.var,
  reduction = "pca",
  dims = 1:2,
  k = 5,
  max.k = 300,
  eps = 0,
  verbose = TRUE
)

Arguments

object Seurat object

Arguments

grouping.var Grouping variable for dataset

reduction Which dimensionally reduced space to use
dims Dimensions to use

k Neighbor number to examine per group

max.k Maximum size of local neighborhood to compute

eps Error bound on the neighbor finding algorithm (from RANN)

verbose Displays progress bar

Value

Returns a vector of values of the mixing metric for each cell

MixscapeHeatmap

Differential expression heatmap for mixscape

Description

Draws a heatmap of single cell feature expression with cells ordered by their mixscape ko probabilities.

Usage

MixscapeHeatmap(
  object,
  ident.1 = NULL,
  ident.2 = NULL,
  balanced = TRUE,
  logfc.threshold = 0.25,
  assay = "RNA",
  max.genes = 100,
MixscapeHeatmap

```r

test.use = "wilcox",
max.cells.group = NULL,
order.by.prob = TRUE,
group.by = NULL,
mixscape.class = "mixscape_class",
prtb.type = "KO",
fc.name = "avg_log2FC",
pval.cutoff = 0.05,
...
```

Arguments

- **object**: An object
- **ident.1**: Identity class to define markers for; pass an object of class `phylo` or `clustertree` to find markers for a node in a cluster tree; passing `clustertree` requires `BuildClusterTree` to have been run
- **ident.2**: A second identity class for comparison; if `NULL`, use all other cells for comparison; if an object of class `phylo` or `clustertree` is passed to `ident.1`, must pass a node to find markers for
- **balanced**: Plot an equal number of genes with both groups of cells.
- **logfc.threshold**: Limit testing to genes which show, on average, at least X-fold difference (log-scale) between the two groups of cells. Default is 0.25. Increasing `logfc.threshold` speeds up the function, but can miss weaker signals.
- **assay**: Assay to use in differential expression testing
- **max.genes**: Total number of DE genes to plot.
- **test.use**: Denotes which test to use. Available options are:
  - "wilcox" : Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default); will use a fast implementation by Presto if installed
  - "wilcox_limma" : Identifies differentially expressed genes between two groups of cells using the limma implementation of the Wilcoxon Rank Sum test; set this option to reproduce results from Seurat v4
  - "bimod" : Likelihood-ratio test for single cell gene expression, (McDavid et al., Bioinformatics, 2013)
  - "roc" : Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells.1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC-0.5) * 2) ranked matrix of putative differentially expressed genes.
• "t" : Identify differentially expressed genes between two groups of cells using the Student’s t-test.
• "negbinom" : Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets
• "poisson" : Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMI-based datasets
• "LR" : Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test.
• "MAST" : Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.
• "DESeq2" : Identifies differentially expressed genes between two groups of cells based on a model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014). This test does not support pre-filtering of genes based on average difference (or percent detection rate) between cell groups. However, genes may be pre-filtered based on their minimum detection rate (min.pct) across both cell groups. To use this method, please install DESeq2, using the instructions at https://bioconductor.org/packages/release/bioc/html/DESeq2.html

max.cells.group
Number of cells per identity to plot.

order.by.prob
Order cells on heatmap based on their mixscape knockout probability from highest to lowest score.

group.by
(Deprecated) Option to split densities based on mixscape classification. Please use mixscape.class instead

mixscape.class
metadata column with mixscape classifications.

prtb.type
specify type of CRISPR perturbation expected for labeling mixscape classifications. Default is KO.

fc.name
Name of the fold change, average difference, or custom function column in the output data.frame. Default is avg_log2FC

pval.cutoff
P-value cut-off for selection of significantly DE genes.

...Arguments passed to other methods and to specific DE methods

Value
A ggplot object.
MixscapeLDA

Linear discriminant analysis on pooled CRISPR screen data.

Description
This function performs unsupervised PCA on each mixscape class separately and projects each subspace onto all cells in the data. Finally, it uses the first 10 principle components from each projection as input to lda in MASS package together with mixscape class labels.

Usage

MixscapeLDA(
  object,
  assay = NULL,
  ndims.print = 1:5,
  nfeatures.print = 30,
  reduction.key = "LDA_",
  seed = 42,
  pc.assay = "PRTB",
  labels = "gene",
  nt.label = "NT",
 npcs = 10,
  verbose = TRUE,
  logfc.threshold = 0.25
)

Arguments

object An object of class Seurat.
assay Assay to use for performing Linear Discriminant Analysis (LDA).
ndims.print Number of LDA dimensions to print.
nfeatures.print Number of features to print for each LDA component.
reduction.key Reduction key name.
seed Value for random seed
pc.assay Assay to use for running Principle components analysis.
labels Meta data column with target gene class labels.
nt.label Name of non-targeting cell class.
npcs Number of principle components to use.
verbose Print progress bar.
logfc.threshold Limit testing to genes which show, on average, at least X-fold difference (log-scale) between the two groups of cells. Default is 0.25. Increasing logfc.threshold speeds up the function, but can miss weaker signals.
**Value**

Returns a Seurat object with LDA added in the reduction slot.

---

**ModalityWeights-class  The ModalityWeights Class**

**Description**

The ModalityWeights class is an intermediate data storage class that stores the modality weight and other related information needed for performing downstream analyses - namely data integration (FindModalityWeights) and data transfer (FindMultiModalNeighbors).

**Slots**

- **modality.weight.list** A list of modality weights value from all modalities
- **modality.assay** Names of assays for the list of dimensional reductions
- **params** A list of parameters used in the FindModalityWeights
- **score.matrix** a list of score matrices representing cross and within-modality prediction score, and kernel value
- **command** Store log of parameters that were used

---

**MULTIseqDemux  Demultiplex samples based on classification method from MULTI-seq (McGinnis et al., bioRxiv 2018)**

**Description**

Identify singlets, doublets and negative cells from multiplexing experiments. Annotate singlets by tags.

**Usage**

```
MULTIseqDemux(
 object,
 assay = "HTO",
 quantile = 0.7,
 autoThresh = FALSE,
 maxiter = 5,
 qrange = seq(from = 0.1, to = 0.9, by = 0.05),
 verbose = TRUE
)
```
Neighbor-class

Description

For more details, please see the documentation in SeuratObject

See Also

SeuratObject::Neighbor-class

References

https://www.biorxiv.org/content/10.1101/387241v1

Examples

## Not run:
object <- MULTIseqDemux(object)

## End(Not run)
NNPlot

Highlight Neighbors in DimPlot

Description

It will color the query cells and the neighbors of the query cells in the DimPlot.

Usage

NNPlot(
  object,
  reduction,
  nn.idx,
  query.cells,
  dims = 1:2,
  label = FALSE,
  label.size = 4,
  repel = FALSE,
  sizes.highlight = 2,
  pt.size = 1,
  cols.highlight = c("#377eb8", "#e41a1c"),
  na.value = "#bdbdbd",
  order = c("self", "neighbors", "other"),
  show.all.cells = TRUE,
  ...
)

Arguments

object Seurat object
reduction Which dimensionality reduction to use. If not specified, first searches for umap, then tsne, then pca
nn.idx the neighbor index of all cells
query.cells cells used to find their neighbors
dims Dimensions to plot, must be a two-length numeric vector specifying x- and y-dimensions
label Whether to label the clusters
label.size Sets size of labels
repel Repel labels
sizes.highlight Size of highlighted cells; will repeat to the length groups in cells.highlight. If sizes.highlight = TRUE size of all points will be this value.
pt.size Adjust point size for plotting
NNtoGraph

A vector of colors to highlight the cells as; will repeat to the length groups in

na.value  Color value for NA points when using custom scale

order     Specify the order of plotting for the idents. This can be useful for crowded plots
          if points of interest are being buried. Provide either a full list of valid idents or a
          subset to be plotted last (on top)

show.all.cells  Show all cells or only query and neighbor cells

...          Extra parameters passed to \texttt{DimPlot}

Value

A \texttt{patchworked} \texttt{ggplot} object if \texttt{combine = TRUE}; otherwise, a list of \texttt{ggplot} objects

NNtoGraph\hspace{1cm} Convert Neighbor class to an asymmetrical Graph class

Description

Convert Neighbor class to an asymmetrical Graph class

Usage

\texttt{NNtoGraph(nn.object, col.cells = NULL, weighted = FALSE)}

Arguments

\texttt{nn.object}  A neighbor class object
\texttt{col.cells}  Cells names of the neighbors, cell names in \texttt{nn.object} is used by default
\texttt{weighted}   Determine if use distance in the Graph

Value

Returns a Graph object
NormalizeData

Description

Normalize the count data present in a given assay.

Usage

NormalizeData(object, ...)

## S3 method for class 'V3Matrix'
NormalizeData(
  object,
  normalization.method = "LogNormalize",
  scale.factor = 10000,
  margin = 1,
  block.size = NULL,
  verbose = TRUE,
  ...)

## S3 method for class 'Assay'
NormalizeData(
  object,
  normalization.method = "LogNormalize",
  scale.factor = 10000,
  margin = 1,
  verbose = TRUE,
  ...)

## S3 method for class 'Seurat'
NormalizeData(
  object,
  assay = NULL,
  normalization.method = "LogNormalize",
  scale.factor = 10000,
  margin = 1,
  verbose = TRUE,
  ...)

Arguments

object An object

... Arguments passed to other methods
normalization.method

Method for normalization.

- "LogNormalize": Feature counts for each cell are divided by the total counts for that cell and multiplied by the scale.factor. This is then natural-log transformed using log1p
- "CLR": Applies a centered log ratio transformation
- "RC": Relative counts. Feature counts for each cell are divided by the total counts for that cell and multiplied by the scale.factor. No log-transformation is applied. For counts per million (CPM) set scale.factor = 1e6

scale.factor
Sets the scale factor for cell-level normalization

margin
If performing CLR normalization, normalize across features (1) or cells (2)

block.size
How many cells should be run in each chunk, will try to split evenly across threads

verbose
display progress bar for normalization procedure

assay
Name of assay to use

Value

Returns object after normalization

Examples

```r
Not run:
data("pbmc_small")
pbmc_small
pmbc_small <- NormalizeData(object = pbmc_small)

End(Not run)
```

---

**PCASigGenes**

*Significant genes from a PCA*

Description

Returns a set of genes, based on the JackStraw analysis, that have statistically significant associations with a set of PCs.

Usage

```r
PCASigGenes(
 object,
 pcs.use,
 pval.cut = 0.1,
 use.full = FALSE,
 max.per.pc = NULL
)
```
PercentAbove

Arguments

- `object` Seurat object
- `pcs.use` PCS to use.
- `pval.cut` P-value cutoff
- `use.full` Use the full list of genes (from the projected PCA). Assumes that `ProjectDim` has been run. Currently, must be set to FALSE.
- `max.per.pc` Maximum number of genes to return per PC. Used to avoid genes from one PC dominating the entire analysis.

Value

A vector of genes whose p-values are statistically significant for at least one of the given PCs.

See Also

- `ProjectDim`
- `JackStraw`

Examples

```r
data("pbmc_small")
PCASigGenes(pbmc_small, pcs.use = 1:2)
```

---

PercentAbove

*Calculate the percentage of a vector above some threshold*

Description

Calculate the percentage of a vector above some threshold

Usage

```r
PercentAbove(x, threshold)
```

Arguments

- `x` Vector of values
- `threshold` Threshold to use when calculating percentage

Value

Returns the percentage of `x` values above the given threshold

Examples

```r
set.seed(42)
PercentAbove(sample(1:100, 10), 75)
```
**PercentageFeatureSet**

Calculate the percentage of all counts that belong to a given set of features

**Description**

This function enables you to easily calculate the percentage of all the counts belonging to a subset of the possible features for each cell. This is useful when trying to compute the percentage of transcripts that map to mitochondrial genes for example. The calculation here is simply the column sum of the matrix present in the counts slot for features belonging to the set divided by the column sum for all features times 100.

**Usage**

```r
PercentageFeatureSet(
 object,
 pattern = NULL,
 features = NULL,
 col.name = NULL,
 assay = NULL
)
```

**Arguments**

- `object`: A Seurat object
- `pattern`: A regex pattern to match features against
- `features`: A defined feature set. If features provided, will ignore the pattern matching
- `col.name`: Name in meta.data column to assign. If this is not null, returns a Seurat object with the proportion of the feature set stored in metadata.
- `assay`: Assay to use

**Value**

Returns a vector with the proportion of the feature set or if md.name is set, returns a Seurat object with the proportion of the feature set stored in metadata.

**Examples**

```r
data("pbmc_small")
Calculate the proportion of transcripts mapping to mitochondrial genes
NOTE: The pattern provided works for human gene names. You may need to adjust depending on your
system of interest
pbmc_small[['percent.mt']] <- PercentageFeatureSet(object = pbmc_small, pattern = "^MT-")
```
PlotClusterTree  
*Plot clusters as a tree*

**Description**

Plots previously computed tree (from BuildClusterTree)

**Usage**

```r
PlotClusterTree(object, direction = "downwards", ...)
```

**Arguments**

- `object`  
  Seurat object

- `direction`  
  A character string specifying the direction of the tree (default is downwards)
  Possible options: "rightwards", "leftwards", "upwards", and "downwards".

- `...`  
  Additional arguments to `ape::plot.phylo`

**Value**

Plots dendogram (must be precomputed using BuildClusterTree), returns no value

**Examples**

```r
Not run:
if (requireNamespace("ape", quietly = TRUE)) {
 data("pbmc_small")
 pbmc_small <- BuildClusterTree(object = pbmc_small)
 PlotClusterTree(object = pbmc_small)
}
End(Not run)
```

---

PlotPerturbScore  
*Function to plot perturbation score distributions.*

**Description**

Density plots to visualize perturbation scores calculated from RunMixscape function.
Usage

PlotPerturbScore(
    object,
    target.gene.class = "gene",
    target.gene.ident = NULL,
    mixscape.class = "mixscape_class",
    col = "orange2",
    split.by = NULL,
    before.mixscape = FALSE,
    prtb.type = "KO"
)

Arguments

object
An object of class Seurat.

target.gene.class
meta data column specifying all target gene names in the experiment.

target.gene.ident
Target gene name to visualize perturbation scores for.

mixscape.class
meta data column specifying mixscape classifications.

col
Specify color of target gene class or knockout cell class. For control non-targeting and non-perturbed cells, colors are set to different shades of grey.

split.by
For datasets with more than one cell type. Set equal TRUE to visualize perturbation scores for each cell type separately.

before.mixscape
Option to split densities based on mixscape classification (default) or original target gene classification. Default is set to NULL and plots cells by original class ID.

prtb.type
specify type of CRISPR perturbation expected for labeling mixscape classifications. Default is KO.

Value

A ggplot object.

Description

Plot cells as polygons, rather than single points. Color cells by identity, or a categorical variable in metadata.
Usage

PolyDimPlot(
  object,
  group.by = NULL,
  cells = NULL,
  poly.data = "spatial",
  flip.coords = FALSE
)

Arguments

  object Seurat object
  group.by A grouping variable present in the metadata. Default is to use the groupings
            present in the current cell identities (Idents(object = object))
  cells Vector of cells to plot (default is all cells)
  poly.data Name of the polygon dataframe in the misc slot
  flip.coords Flip x and y coordinates

Value

Returns a ggplot object

---

PolyFeaturePlot  Polygon FeaturePlot

Description

Plot cells as polygons, rather than single points. Color cells by any value accessible by FetchData.

Usage

PolyFeaturePlot(
  object,
  features,
  cells = NULL,
  poly.data = "spatial",
  ncol = ceiling(x = length(x = features)/2),
  min.cutoff = 0,
  max.cutoff = NA,
  common.scale = TRUE,
  flip.coords = FALSE
)
Arguments

object  Seurat object
features  Vector of features to plot. Features can come from:
  • An Assay feature (e.g. a gene name - "MS4A1")
  • A column name from meta.data (e.g. mitochondrial percentage - "percent.mito")
  • A column name from a DimReduc object corresponding to the cell embedding values (e.g. the PC 1 scores - "PC_1")
cells  Vector of cells to plot (default is all cells)
poly.data  Name of the polygon dataframe in the misc slot
ncol  Number of columns to split the plot into
min.cutoff, max.cutoff  Vector of minimum and maximum cutoff values for each feature, may specify quantile in the form of ’q##’ where ‘##’ is the quantile (eg, ’q1’, ’q10’)
common.scale  ...
flip.coords  Flip x and y coordinates

Value

Returns a ggplot object

PredictAssay  Predict value from nearest neighbors

Description

This function will predict expression or cell embeddings from its k nearest neighbors index. For each cell, it will average its k neighbors value to get its new imputed value. It can average expression value in assays and cell embeddings from dimensional reductions.

Usage

PredictAssay(
  object,
  nn.idx,
  assay,
  reduction = NULL,
  dims = NULL,
  return.assay = TRUE,
  slot = "scale.data",
  features = NULL,
  mean.function = rowMeans,
  seed = 4273,
  verbose = TRUE
)
Arguments

- **object**: The object used to calculate knn
- **nn.idx**: k near neighbour indices. A cells x k matrix.
- **assay**: Assay used for prediction
- **reduction**: Cell embedding of the reduction used for prediction
- **dims**: Number of dimensions of cell embedding
- **return.assay**: Return an assay or a predicted matrix
- **slot**: slot used for prediction
- **features**: features used for prediction
- **mean.function**: the function used to calculate row mean
- **seed**: Sets the random seed to check if the nearest neighbor is query cell
- **verbose**: Print progress

Value

return an assay containing predicted expression value in the data slot

PrepareBridgeReference

Prepare the bridge and reference datasets

Description

Preprocess the multi-omic bridge and unimodal reference datasets into an extended reference. This function performs the following three steps: 1. Performs within-modality harmonization between bridge and reference datasets 2. Performs dimensional reduction on the SNN graph of bridge datasets via Laplacian Eigendecomposition 3. Constructs a bridge dictionary representation for unimodal reference cells

Usage

```r
PrepareBridgeReference(
 reference,
 bridge,
 reference.reduction = "pca",
 reference.dims = 1:50,
 normalization.method = c("SCT", "LogNormalize"),
 reference.assay = NULL,
 bridge.ref.assay = "RNA",
 bridge.query.assay = "ATAC",
 supervised.reduction = c("slsi", "spca", NULL),
 bridge.query.reduction = NULL,
 bridge.query.features = NULL,
```
PrepareBridgeReference

```r
laplacian.reduction.name = "lap",
laplacian.reduction.key = "lap_",
laplacian.reduction.dims = 1:50,
verbose = TRUE
)
```

**Arguments**

- `reference` A reference Seurat object
- `bridge` A multi-omic bridge Seurat object
- `reference.reduction` Name of dimensional reduction of the reference object (default is 'pca')
- `reference.dims` Number of dimensions used for the reference.reduction (default is 50)
- `normalization.method` Name of normalization method used: LogNormalize or SCT
- `reference.assay` Assay name for reference (default is `DefaultAssay`)
- `bridge.ref.assay` Assay name for bridge used for reference mapping. RNA by default
- `bridge.query.assay` Assay name for bridge used for query mapping. ATAC by default
- `supervised.reduction` Type of supervised dimensional reduction to be performed for integrating the bridge and query. # Options are:
  - `slsi`: Perform supervised LSI as the dimensional reduction for the bridge-query integration
  - `spca`: Perform supervised PCA as the dimensional reduction for the bridge-query integration
  - `NULL`: no supervised dimensional reduction will be calculated. `bridge.query.reduction` is used for the bridge-query integration
- `bridge.query.reduction` Name of dimensions used for the bridge-query harmonization. 'bridge.query.reduction' and 'supervised.reduction' cannot be NULL together.
- `bridge.query.features` Features used for bridge query dimensional reduction (default is NULL which uses VariableFeatures from the bridge object)
- `laplacian.reduction.name` Name of dimensional reduction name of graph laplacian eigenspace (default is 'lap')
- `laplacian.reduction.key` Dimensional reduction key (default is 'lap_')
- `laplacian.reduction.dims` Number of dimensions used for graph laplacian eigenspace (default is 50)
- `verbose` Print progress and message (default is TRUE)
PrepLDA

Value

Returns a BridgeReferenceSet that can be used as input to FindBridgeTransferAnchors. The parameters used are stored in the BridgeReferenceSet as well.

Description

This function performs unsupervised PCA on each mixscape class separately and projects each subspace onto all cells in the data.

Usage

PrepLDA(
  object,  
  de.assay = "RNA",  
  pc.assay = "PRTB",  
  labels = "gene",  
  nt.label = "NT",  
 npcs = 10,  
  verbose = TRUE,  
  logfc.threshold = 0.25  
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>An object of class Seurat.</td>
</tr>
<tr>
<td>de.assay</td>
<td>Assay to use for selection of DE genes.</td>
</tr>
<tr>
<td>pc.assay</td>
<td>Assay to use for running Principle components analysis.</td>
</tr>
<tr>
<td>labels</td>
<td>Meta data column with target gene class labels.</td>
</tr>
<tr>
<td>nt.label</td>
<td>Name of non-targeting cell class.</td>
</tr>
<tr>
<td>npcs</td>
<td>Number of principle components to use.</td>
</tr>
<tr>
<td>verbose</td>
<td>Print progress bar.</td>
</tr>
<tr>
<td>logfc.threshold</td>
<td>Limit testing to genes which show, on average, at least X-fold difference (log-scale) between the two groups of cells. Default is 0.25. Increasing logfc.threshold speeds up the function, but can miss weaker signals.</td>
</tr>
</tbody>
</table>

Value

Returns a list of the first 10 PCs from each projection.
Prepare object to run differential expression on SCT assay with multiple models

Description

Given a merged object with multiple SCT models, this function uses minimum of the median UMI (calculated using the raw UMI counts) of individual objects to reverse the individual SCT regression model using minimum of median UMI as the sequencing depth covariate. The counts slot of the SCT assay is replaced with recorrected counts and the data slot is replaced with log1p of recorrected counts.

Usage

PrepSCTFindMarkers(object, assay = "SCT", verbose = TRUE)

Arguments

- object: Seurat object with SCT assays
- assay: Assay name where for SCT objects are stored; Default is 'SCT'
- verbose: Print messages and progress

Value

Returns a Seurat object with recorrected counts and data in the SCT assay.

Progress Updates with progressr

This function uses progressr to render status updates and progress bars. To enable progress updates, wrap the function call in with_progress or run handlers(global = TRUE) before running this function. For more details about progressr, please read vignette("progressr-intro")

Parallelization with future

This function uses future to enable parallelization. Parallelization strategies can be set using plan. Common plans include “sequential” for non-parallelized processing or “multisession” for parallel evaluation using multiple R sessions; for other plans, see the “Implemented evaluation strategies” section of ?future::plan. For a more thorough introduction to future, see vignette("future-1-overview")

Examples

data("pbmc_small")
pbmc_small1 <- SCTransform(object = pbmc_small, variable.features.n = 20, vst.flavor="v1")
pbmc_small2 <- SCTransform(object = pbmc_small, variable.features.n = 20, vst.flavor="v1")
pbmc_merged <- merge(x = pbmc_small1, y = pbmc_small2)
pbmc_merged <- PrepSCTFindMarkers(object = pbmc_merged)
markers <- FindMarkers(
PrepSCTIntegration

Prepare an object list normalized with sctransform for integration.

Description

This function takes in a list of objects that have been normalized with the SCTransform method and performs the following steps:

- If anchor.features is a numeric value, calls SelectIntegrationFeatures to determine the features to use in the downstream integration procedure.
- Ensures that the sctransform residuals for the features specified to anchor.features are present in each object in the list. This is necessary because the default behavior of SCTransform is to only store the residuals for the features determined to be variable. Residuals are recomputed for missing features using the stored model parameters via the GetResidual function.
- Subsets the scale.data slot to only contain the residuals for anchor.features for efficiency in downstream processing.

Usage

PrepSCTIntegration(
  object.list,
  assay = NULL,
  anchor.features = 2000,
  sct.clip.range = NULL,
  verbose = TRUE
)

Arguments

object.list A list of Seurat objects to prepare for integration
assay

The name of the Assay to use for integration. This can be a single name if all the assays to be integrated have the same name, or a character vector containing the name of each Assay in each object to be integrated. The specified assays must have been normalized using SCTransform. If NULL (default), the current default assay for each object is used.

anchor.features

Can be either:

- A numeric value. This will call SelectIntegrationFeatures to select the provided number of features to be used in anchor finding
- A vector of features to be used as input to the anchor finding process

sct.clip.range

Numeric of length two specifying the min and max values the Pearson residual will be clipped to

verbose

Display output/messages

Value

A list of Seurat objects with the appropriate scale.data slots containing only the required anchor.features.

Examples

```r
Not run:
to install the SeuratData package see https://github.com/satijalab/seurat-data
library(SeuratData)
data("panc8")

panc8 is a merged Seurat object containing 8 separate pancreas datasets
split the object by dataset and take the first 2 to integrate
pancreas.list <- SplitObject(panc8, split.by = "tech")[1:2]

perform SCTransform normalization
pancreas.list <- lapply(X = pancreas.list, FUN = SCTransform)

select integration features and prep step
features <- SelectIntegrationFeatures(pancreas.list)
pancreas.list <- PrepSCTIntegration(
 pancreas.list,
 anchor.features = features
)

downstream integration steps
anchors <- FindIntegrationAnchors(
 pancreas.list,
 normalization.method = "SCT",
 anchor.features = features
)
pancreas.integrated <- IntegrateData(anchors, normalization.method = "SCT")

End(Not run)```
ProjectData
Project full data to the sketch assay

Description

This function allows projection of high-dimensional single-cell RNA expression data from a full dataset onto the lower-dimensional embedding of the sketch of the dataset.

Usage

```r
ProjectData(
  object,
  assay = "RNA",
  sketched.assay = "sketch",
  sketched.reduction,
  full.reduction,
  dims,
  normalization.method = c("LogNormalize", "SCT"),
  refdata = NULL,
  k.weight = 50,
  umap.model = NULL,
  recompute.neighbors = FALSE,
  recompute.weights = FALSE,
  verbose = TRUE
)
```

Arguments

- **object**: A Seurat object.
- **assay**: Assay name for the full data. Default is 'RNA'.
- **sketched.assay**: Sketched assay name to project onto. Default is 'sketch'.
- **sketched.reduction**: Dimensional reduction results of the sketched assay to project onto.
- **full.reduction**: Dimensional reduction name for the projected full dataset.
- **dims**: Dimensions to include in the projection.
- **normalization.method**: Normalization method to use. Can be 'LogNormalize' or 'SCT'. Default is 'LogNormalize'.
- **refdata**: An optional list for label transfer from sketch to full data. Default is NULL. Similar to refdata in ‘MapQuery’
- **k.weight**: Number of neighbors to consider when weighting labels for transfer. Default is 50.
- **umap.model**: An optional pre-computed UMAP model. Default is NULL.
- **recompute.neighbors**: Whether to recompute the neighbors for label transfer. Default is FALSE.
ProjectDim

recompute.weights
Whether to recompute the weights for label transfer. Default is FALSE.

verbose
Print progress and diagnostic messages.

Value
A Seurat object with the full data projected onto the sketched dimensional reduction results. The projected data are stored in the specified full reduction.

Description
Takes a pre-computed dimensional reduction (typically calculated on a subset of genes) and projects this onto the entire dataset (all genes). Note that the cell loadings will remain unchanged, but now there are gene loadings for all genes.

Usage
ProjectDim(
 object,
 reduction = "pca",
 assay = NULL,
 dims.print = 1:5,
 nfeatures.print = 20,
 overwrite = FALSE,
 do.center = FALSE,
 verbose = TRUE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Seurat object</td>
</tr>
<tr>
<td>reduction</td>
<td>Reduction to use</td>
</tr>
<tr>
<td>assay</td>
<td>Assay to use</td>
</tr>
<tr>
<td>dims.print</td>
<td>Number of dims to print features for</td>
</tr>
<tr>
<td>nfeatures.print</td>
<td>Number of features with highest/lowest loadings to print for each dimension</td>
</tr>
<tr>
<td>overwrite</td>
<td>Replace the existing data in feature.loadings</td>
</tr>
<tr>
<td>do.center</td>
<td>Center the dataset prior to projection (should be set to TRUE)</td>
</tr>
<tr>
<td>verbose</td>
<td>Print top genes associated with the projected dimensions</td>
</tr>
</tbody>
</table>

Value
Returns Seurat object with the projected values
Examples

data("pbmc_small")
pbmc_small
pbmc_small <- ProjectDim(object = pbmc_small, reduction = "pca")
Visualize top projected genes in heatmap
DimHeatmap(object = pbmc_small, reduction = "pca", dims = 1, balanced = TRUE)

ProjectDimReduc

Project query data to reference dimensional reduction

Description

Project query data to reference dimensional reduction

Usage

ProjectDimReduc(
 query,
 reference,
 mode = c("pcaproject", "lsiproject"),
 reference.reduction,
 combine = FALSE,
 query.assay = NULL,
 reference.assay = NULL,
 features = NULL,
 do.scale = TRUE,
 reduction.name = NULL,
 reduction.key = NULL,
 verbose = TRUE
)

Arguments

query Query object
reference Reference object
mode Projection mode name for projection
 • pcaproject: PCA projection
 • lsiproject: LSI projection
reference.reduction Name of dimensional reduction in the reference object
combine Determine if query and reference objects are combined
query.assay Assay used for query object
reference.assay Assay used for reference object
ProjectIntegration

- **features**: Features used for projection
- **do.scale**: Determine if scale expression matrix in the pcaproject mode
- **reduction.name**: Dimensional reduction name, reference.reduction is used by default
- **reduction.key**: Dimensional reduction key, the key in reference.reduction is used by default
- **verbose**: Print progress and message

Value

Returns a query-only or query-reference combined seurat object

ProjectIntegration
Integrate embeddings from the integrated sketched.assay

Description

The main steps of this procedure are outlined below. For a more detailed description of the methodology, please see Hao, et al Biocxiv 2022: doi:10.1101/2022.02.24.481684

Usage

```r
ProjectIntegration(
  object,
  sketched.assay = "sketch",
  assay = "RNA",
  reduction = "integrated_dr",
  features = NULL,
  layers = "data",
  reduction.name = NULL,
  reduction.key = NULL,
  method = c("sketch", "data"),
  ratio = 0.8,
  sketched.layers = NULL,
  seed = 123,
  verbose = TRUE
)
```

Arguments

- **object**: A Seurat object with all cells for one dataset
- **sketched.assay**: Assay name for sketched-cell expression (default is ’sketch’)
- **assay**: Assay name for original expression (default is ’RNA’)
- **reduction**: Dimensional reduction name for batch-corrected embeddings in the sketched object (default is ’integrated_dr’)
- **features**: Features used for atomic sketch integration
- **layers**: Names of layers for correction.
ProjectUMAP

reduction.name Name to save new reduction as; defaults to paste0(reduction, '.orig')
reduction.key Key for new dimensional reduction; defaults to creating one from reduction.name
method Methods to construct sketch-cell representation for all cells (default is 'sketch').
 Can be one of:
 • "sketch": Use random sketched data slot
 • "data": Use data slot
ratio Sketch ratio of data slot when dictionary.method is set to "sketch"; defaults to 0.8
sketched.layers Names of sketched layers, defaults to all layers of "object[[assay]]"
seed A positive integer. The seed for the random number generator, defaults to 123.
verbose Print progress and message

Details
First learn a atom dictionary representation to reconstruct each cell. Then, using this dictionary
representation, reconstruct the embeddings of each cell from the integrated atoms.

Value
Returns a Seurat object with an integrated dimensional reduction

ProjectUMAP Project query into UMAP coordinates of a reference

Description
This function will take a query dataset and project it into the coordinates of a provided reference
UMAP. This is essentially a wrapper around two steps:

• FindNeighbors - Find the nearest reference cell neighbors and their distances for each query
cell.
• RunUMAP - Perform umap projection by providing the neighbor set calculated above and the
 umap model previously computed in the reference.

Usage
ProjectUMAP(query, ...)

Default S3 method:
ProjectUMAP(
 query,
 query.dims = NULL,
 reference,
 reference.dims = NULL,
)
k.param = 30,
nn.method = "annoy",
n.trees = 50,
annoy.metric = "cosine",
l2.norm = FALSE,
cache.index = TRUE,
index = NULL,
neighbor.name = "query_ref.nn",
reduction.model,
...
)

S3 method for class 'DimReduc'
ProjectUMAP(
query,
query.dims = NULL,
reference,
reference.dims = NULL,
k.param = 30,
nn.method = "annoy",
n.trees = 50,
annoy.metric = "cosine",
l2.norm = FALSE,
cache.index = TRUE,
index = NULL,
neighbor.name = "query_ref.nn",
reduction.model,
...
)

S3 method for class 'Seurat'
ProjectUMAP(
query,
query.reduction,
query.dims = NULL,
reference,
reference.reduction,
reference.dims = NULL,
k.param = 30,
nn.method = "annoy",
n.trees = 50,
annoy.metric = "cosine",
l2.norm = FALSE,
cache.index = TRUE,
index = NULL,
neighbor.name = "query_ref.nn",
reduction.model,
reduction.name = "ref.umap",
)
reduction.key = "refUMAP_",
...
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>query</td>
<td>Query dataset</td>
</tr>
<tr>
<td>...</td>
<td>Additional parameters to RunUMAP</td>
</tr>
<tr>
<td>query.dims</td>
<td>Dimensions (columns) to use from query</td>
</tr>
<tr>
<td>reference</td>
<td>Reference dataset</td>
</tr>
<tr>
<td>reference.dims</td>
<td>Dimensions (columns) to use from reference</td>
</tr>
<tr>
<td>k.param</td>
<td>Defines k for the k-nearest neighbor algorithm</td>
</tr>
<tr>
<td>nn.method</td>
<td>Method for nearest neighbor finding. Options include: rann, annoy</td>
</tr>
<tr>
<td>n.trees</td>
<td>More trees gives higher precision when using annoy approximate nearest neigh-</td>
</tr>
<tr>
<td></td>
<td>bor search</td>
</tr>
<tr>
<td>annoy.metric</td>
<td>Distance metric for annoy. Options include: euclidean, cosine, manhattan,</td>
</tr>
<tr>
<td></td>
<td>and hamming</td>
</tr>
<tr>
<td>l2.norm</td>
<td>Take L2Norm of the data</td>
</tr>
<tr>
<td>cache.index</td>
<td>Include cached index in returned Neighbor object (only relevant if return.neighbor = TRUE)</td>
</tr>
<tr>
<td>index</td>
<td>Precomputed index. Useful if querying new data against existing index to avoid recomputing.</td>
</tr>
<tr>
<td>neighbor.name</td>
<td>Name to store neighbor information in the query</td>
</tr>
<tr>
<td>reduction.model</td>
<td>DimReduc object that contains the umap model</td>
</tr>
<tr>
<td>query.reduction</td>
<td>Name of reduction to use from the query for neighbor finding</td>
</tr>
<tr>
<td>reference.reduction</td>
<td>Name of reduction to use from the reference for neighbor finding</td>
</tr>
<tr>
<td>reduction.name</td>
<td>Name of projected UMAP to store in the query</td>
</tr>
<tr>
<td>reduction.key</td>
<td>Value for the projected UMAP key</td>
</tr>
</tbody>
</table>

Description

Normalize the count data present in a given assay.

Returns a representative expression value for each identity class
Usage

PseudobulkExpression(object, ...)

S3 method for class 'Assay'
PseudobulkExpression(
 object,
 assay,
 category.matrix,
 features = NULL,
 layer = "data",
 slot = deprecated(),
 verbose = TRUE,
 ...
)

S3 method for class 'StdAssay'
PseudobulkExpression(
 object,
 assay,
 category.matrix,
 features = NULL,
 layer = "data",
 slot = deprecated(),
 verbose = TRUE,
 ...
)

S3 method for class 'Seurat'
PseudobulkExpression(
 object,
 assays = NULL,
 features = NULL,
 return.seurat = FALSE,
 group.by = "ident",
 add.ident = NULL,
 layer = "data",
 slot = deprecated(),
 method = "average",
 normalization.method = "LogNormalize",
 scale.factor = 10000,
 margin = 1,
 verbose = TRUE,
 ...
)

Arguments

object Seurat object
Arguments to be passed to methods such as `CreateSeuratObject`.

assay
The name of the passed assay - used primarily for warning/error messages.

category.matrix
A matrix defining groupings for pseudobulk expression calculations; each column represents an identity class, and each row a sample.

features
Features to analyze. Default is all features in the assay.

layer
Layer(s) to user; if multiple are given, assumed to follow the order of 'assays' (if specified) or object's assays.

slot
(Deprecated) See `layer`.

verbose
Print messages and show progress bar.

assays
Which assays to use. Default is all assays.

return.seurat
Whether to return the data as a Seurat object. Default is FALSE.

group.by
Categories for grouping (e.g, "ident", "replicate", "celltype"); "ident" by default.

(Deprecated) See group.by

method
The method used for calculating pseudobulk expression; one of: "average" or "aggregate".

normalization.method
Method for normalization, see NormalizeData.

scale.factor
Scale factor for normalization, see NormalizeData.

margin
Margin to perform CLR normalization, see NormalizeData.

Value

Returns object after normalization.

Returns a matrix with genes as rows, identity classes as columns. If return.seurat is TRUE, returns an object of class Seurat.

Radius.SlideSeq

Get Spot Radius

Description

Get Spot Radius

Usage

```r
## S3 method for class 'SlideSeq'
Radius(object, ...)

## S3 method for class 'STARmap'
Radius(object, ...)

## S3 method for class 'VisiumV1'
```
Radius(object, scale = "lowres", ...)

S3 method for class 'VisiumV1'
Radius(object, scale = "lowres", ...)

Arguments

- **object**: An image object
- **...**: Arguments passed to other methods
- **scale**: A factor to scale the radius by; one of: "hires", "lowres", or NULL for the unscaled value.

See Also

SeuratObject::Radius

Read10X Load in data from 10X

Description

Enables easy loading of sparse data matrices provided by 10X genomics.

Usage

```r
Read10X(
  data.dir,
  gene.column = 2,
  cell.column = 1,
  unique.features = TRUE,
  strip.suffix = FALSE
)
```

Arguments

- **data.dir**: Directory containing the matrix.mtx, genes.tsv (or features.tsv), and barcodes.tsv files provided by 10X. A vector or named vector can be given in order to load several data directories. If a named vector is given, the cell barcode names will be prefixed with the name.
- **gene.column**: Specify which column of genes.tsv or features.tsv to use for gene names; default is 2
- **cell.column**: Specify which column of barcodes.tsv to use for cell names; default is 1
- **unique.features**: Make feature names unique (default TRUE)
- **strip.suffix**: Remove trailing "-1" if present in all cell barcodes.
Read10X_Coordinates

Description

Load 10X Genomics Visium Tissue Positions

Usage

Read10X_Coordinates(filename, filter.matrix)

Arguments

filename | Path to tissue_positions_list.csv file
filter.matrix | Filter spot/feature matrix to only include spots that have been determined to be over tissue

Value

A data.frame
Read10X_h5

Read 10X hdf5 file

Description

Read count matrix from 10X CellRanger hdf5 file. This can be used to read both scATAC-seq and scRNA-seq matrices.

Usage

Read10X_h5(filename, use.names = TRUE, unique.features = TRUE)

Arguments

filename Path to h5 file
use.names Label row names with feature names rather than ID numbers.
unique.features Make feature names unique (default TRUE)

Value

Returns a sparse matrix with rows and columns labeled. If multiple genomes are present, returns a list of sparse matrices (one per genome).

Read10X_Image

Load a 10X Genomics Visium Image

Description

Load a 10X Genomics Visium Image

Usage

Read10X_Image(
 image.dir,
 image.name = "tissue_lowres_image.png",
 assay = "Spatial",
 slice = "slice1",
 filter.matrix = TRUE
)
Arguments

- image.dir: Path to directory with 10X Genomics visium image data; should include files tissue_lowres_image.png, scalefactors_json.json and tissue_positions_list.csv
- image.name: PNG file to read in
- assay: Name of associated assay
- slice: Name for the image, used to populate the instance’s key
- filter.matrix: Filter spot/feature matrix to only include spots that have been determined to be over tissue

Value

A VisiumV2 object

See Also

VisiumV2 Load10X_Spatial

Description

This function reads the probe metadata from a 10x Genomics probe barcode matrix file in HDF5 format.

Usage

Read10X_probe_metadata(data.dir, filename = "raw_probe_bc_matrix.h5")

Arguments

- data.dir: The directory where the file is located.
- filename: The name of the file containing the raw probe barcode matrix in HDF5 format. The default filename is ‘raw_probe_bc_matrix.h5’.

Value

Returns a data.frame containing the probe metadata.
Read10X_ScaleFactors Load 10X Genomics Visium Scale Factors

Description
Load 10X Genomics Visium Scale Factors

Usage
Read10X_ScaleFactors(filename)

Arguments
filename Path to a scalefactors_json.json file

Value
A scalefactors object

ReadAkoya Read and Load Akoya CODEX data

Description
Read and Load Akoya CODEX data

Usage
ReadAkoya(
 filename,
 type = c("inform", "processor", "qupath"),
 filter = "DAPI|Blank|Empty",
 inform.quant = c("mean", "total", "min", "max", "std")
)

LoadAkoya(
 filename,
 type = c("inform", "processor", "qupath"),
 fov,
 assay = "Akoya",
 ...
)
Arguments

filename Path to matrix generated by upstream processing.

type Specify which type matrix is being provided.

• “processor”: matrix generated by CODEX Processor
• “inform”: matrix generated by inForm
• “qupath”: matrix generated by QuPath

filter A pattern to filter features by; pass NA to skip feature filtering

inform.quant When type is “inform”, the quantification level to read in

fov Name to store FOV as

assay Name to store expression matrix as

... Ignored

Value

ReadAkoya: A list with some combination of the following values

• “matrix”: a sparse matrix with expression data; cells are columns and features are rows
• “centroids”: a data frame with cell centroid coordinates in three columns: “x”, “y”, and “cell”
• “metadata”: a data frame with cell-level meta data; includes all columns in filename that aren’t in “matrix” or “centroids”

When type is “inform”, additional expression matrices are returned and named using their segmentation type (eg. “nucleus”, “membrane”). The “Entire Cell” segmentation type is returned in the “matrix” entry of the list

LoadAkoya: A Seurat object

Progress Updates with progressr

This function uses progressr to render status updates and progress bars. To enable progress updates, wrap the function call in with_progress or run handlers(global = TRUE) before running this function. For more details about progressr, please read vignette("progressr-intro")

Note

This function requires the data.table package to be installed
ReadMtx

Load in data from remote or local mtx files

Description

Enables easy loading of sparse data matrices

Usage

```r
ReadMtx(
    mtx,
    cells,
    features,
    cell.column = 1,
    feature.column = 2,
    cell.sep = "\t",
    feature.sep = "\t",
    skip.cell = 0,
    skip.feature = 0,
    mtx.transpose = FALSE,
    unique.features = TRUE,
    strip.suffix = FALSE
)
```

Arguments

- **mtx**
 - Name or remote URL of the mtx file
- **cells**
 - Name or remote URL of the cells/barcodes file
- **features**
 - Name or remote URL of the features/genes file
- **cell.column**
 - Specify which column of cells file to use for cell names; default is 1
- **feature.column**
 - Specify which column of features files to use for feature/gene names; default is 2
- **cell.sep**
 - Specify the delimiter in the cell name file
- **feature.sep**
 - Specify the delimiter in the feature name file
- **skip.cell**
 - Number of lines to skip in the cells file before beginning to read cell names
- **skip.feature**
 - Number of lines to skip in the features file before beginning to gene names
- **mtx.transpose**
 - Transpose the matrix after reading in
- **unique.features**
 - Make feature names unique (default TRUE)
- **strip.suffix**
 - Remove trailing "-1" if present in all cell barcodes.

Value

A sparse matrix containing the expression data.
Examples

```r
## Not run:
# For local files:
expression_matrix <- ReadMtx(
  mtx = "count_matrix.mtx.gz", features = "features.tsv.gz",
  cells = "barcodes.tsv.gz"
)
seurat_object <- CreateSeuratObject(counts = expression_matrix)

# For remote files:
expression_matrix <- ReadMtx(mtx = "http://localhost/matrix.mtx",
  cells = "http://localhost/barcodes.tsv",
  features = "http://localhost/genes.tsv")
seurat_object <- CreateSeuratObject(counts = data)

## End(Not run)
```

ReadNanostring

Read and Load Nanostring SMI data

Description

Read and Load Nanostring SMI data

Usage

```r
ReadNanostring(
  data.dir,
  mtx.file = NULL,
  metadata.file = NULL,
  molecules.file = NULL,
  segmentations.file = NULL,
  type = "centroids",
  mol.type = "pixels",
  metadata = NULL,
  mols.filter = NA_character_,
  genes.filter = NA_character_,
  fov.filter = NULL,
  subset.counts.matrix = NULL,
  cell.mols.only = TRUE
)
```

LoadNanostring(data.dir, fov, assay = "Nanostring")
ReadNanostring

Arguments

- `data.dir`: Path to folder containing Nanostring SMI outputs
- `mtx.file`: Path to Nanostring cell x gene matrix CSV
- `metadata.file`: Contains metadata including cell center, area, and stain intensities
- `molecules.file`: Path to molecules file
- `segmentations.file`: Path to segmentations CSV
- `type`: Type of cell spatial coordinate matrices to read; choose one or more of:
 - “centroids”: cell centroids in pixel coordinate space
 - “segmentations”: cell segmentations in pixel coordinate space
- `mol.type`: Type of molecule spatial coordinate matrices to read; choose one or more of:
 - “pixels”: molecule coordinates in pixel space
- `metadata`: Type of available metadata to read; choose zero or more of:
 - “Area”: number of pixels in cell segmentation
 - “fov”: cell’s fov
 - “Mean.MembraneStain”: mean membrane stain intensity
 - “Mean.DAPI”: mean DAPI stain intensity
 - “Mean.G”: mean green channel stain intensity
 - “Mean.Y”: mean yellow channel stain intensity
 - “Mean.R”: mean red channel stain intensity
 - “Max.MembraneStain”: max membrane stain intensity
 - “Max.DAPI”: max DAPI stain intensity
 - “Max.G”: max green channel stain intensity
 - “Max.Y”: max yellow stain intensity
 - “Max.R”: max red stain intensity
- `mols.filter`: Filter molecules that match provided string
- `genes.filter`: Filter genes from cell x gene matrix that match provided string
- `fov.filter`: Only load in select FOVs. Nanostring SMI data contains 30 total FOVs.
- `subset.counts.matrix`: If the counts matrix should be built from molecule coordinates for a specific segmentation; One of:
 - “Nuclear”: nuclear segmentations
 - “Cytoplasm”: cell cytoplasm segmentations
 - “Membrane”: cell membrane segmentations
- `cell.mols.only`: If TRUE, only load molecules within a cell
- `fov`: Name to store FOV as
- `assay`: Name to store expression matrix as
Value

ReadNanostring: A list with some combination of the following values:

- "matrix": a sparse matrix with expression data; cells are columns and features are rows
- "centroids": a data frame with cell centroid coordinates in three columns: "x", "y", and "cell"
- "pixels": a data frame with molecule pixel coordinates in three columns: "x", "y", and "gene"

LoadNanostring: A Seurat object

Progress Updates with progressr

This function uses progressr to render status updates and progress bars. To enable progress updates, wrap the function call in with_progress or run handlers(global = TRUE) before running this function. For more details about progressr, please read vignette("progressr-intro")

Parallelization with future

This function uses future to enable parallelization. Parallelization strategies can be set using plan. Common plans include "sequential" for non-parallelized processing or "multisession" for parallel evaluation using multiple R sessions; for other plans, see the “Implemented evaluation strategies” section of ?future::plan. For a more thorough introduction to future, see vignette("future-1-overview")

Note

This function requires the data.table package to be installed

ReadParseBio

Read output from Parse Biosciences

Description

Read output from Parse Biosciences

Usage

ReadParseBio(data.dir, ...)

Arguments

data.dir Directory containing the data files
... Extra parameters passed to ReadMtx
ReadSlideSeq Load Slide-seq spatial data

Description
Load Slide-seq spatial data

Usage
ReadSlideSeq(coord.file, assay = "Spatial")

Arguments
- coord.file: Path to csv file containing bead coordinate positions
- assay: Name of assay to associate image to

Value
A SlideSeq object

See Also
SlideSeq

ReadSTARsolo Read output from STARsolo

Description
Read output from STARsolo

Usage
ReadSTARsolo(data.dir, ...)

Arguments
- data.dir: Directory containing the data files
- ...: Extra parameters passed to ReadMtx
ReadVitessce

Description
Read in data from Vitessce-formatted JSON files

Usage
ReadVitessce(
 counts = NULL,
 coords = NULL,
 molecules = NULL,
 type = c("segmentations", "centroids"),
 filter = NA_character_
)

LoadHuBMAPCODEX(data.dir, fov, assay = "CODEX")

Arguments
- counts: Path or URL to a Vitessce-formatted JSON file with expression data; should end in ".genes.json" or ".clusters.json"; pass NULL to skip
- coords: Path or URL to a Vitessce-formatted JSON file with cell/spot spatial coordinates; should end in ".cells.json"; pass NULL to skip
- molecules: Path or URL to a Vitessce-formatted JSON file with molecule spatial coordinates; should end in ".molecules.json"; pass NULL to skip
- type: Type of cell/spot spatial coordinates to return, choose one or more from:
 - "segmentations" cell/spot segmentations
 - "centroids" cell/spot centroids
- filter: A character to filter molecules by, pass NA to skip molecule filtering
- data.dir: Path to a directory containing Vitessce cells and clusters JSONs
- fov: Name to store FOV as
- assay: Name to store expression matrix as

Value
ReadVitessce: A list with some combination of the following values:
- "counts": if counts is not NULL, an expression matrix with cells as columns and features as rows
- "centroids": if coords is not NULL and type is contains "centroids", a data frame with cell centroids in three columns: "x", "y", and "cell"
- "segmentations": if coords is not NULL and type contains "centroids", a data frame with cell segmentations in three columns: "x", "y" and "cell"
ReadVizgen

Read and Load MEFISH Input from Vizgen

Description

Read and load in MEFISH data from Vizgen-formatted files

Usage

ReadVizgen(
 data.dir,
 transcripts = NULL,
 spatial = NULL,
 molecules = NULL,
)

• “molecules”: if molecules is not NULL, a data frame with molecule spatial coordinates in three columns: “x”, “y”, and “gene”

LoadHuBMAPCODEX: A Seurat object

Progress Updates with progressr

This function uses progressr to render status updates and progress bars. To enable progress updates, wrap the function call in with_progress or run handlers(global = TRUE) before running this function. For more details about progressr, please read vignette(“progressr-intro”)

Note

This function requires the jsonlite package to be installed

Examples

Not run:
coords <- ReadVitessce(
 counts =
 "https://s3.amazonaws.com/vitessce-data/0.0.31/master_release/wang/wang.genes.json",
 coords =
 "https://s3.amazonaws.com/vitessce-data/0.0.31/master_release/wang/wang.cells.json",
 molecules =
 "https://s3.amazonaws.com/vitessce-data/0.0.31/master_release/wang/wang.molecules.json"
)
names(coords)
head(coords$count)
head(coords$centroids)
head(coords$segmentations)
head(coords$molecules)

End(Not run)
LoadVizgen(data.dir, fov, assay = "Vizgen", z = 3L)

Arguments

- **data.dir** Path to the directory with Vizgen MERFISH files; requires at least one of the following files present:
 - “cell_by_gene.csv”: used for reading count matrix
 - “cell_metadata.csv”: used for reading cell spatial coordinate matrices
 - “detected_transcripts.csv”: used for reading molecule spatial coordinate matrices

- **transcripts** Optional file path for counts matrix; pass NA to suppress reading counts matrix

- **spatial** Optional file path for spatial metadata; pass NA to suppress reading spatial coordinates. If spatial is provided and type is “segmentations”, uses dirname(spatial) instead of data.dir to find HDF5 files

- **molecules** Optional file path for molecule coordinates file; pass NA to suppress reading spatial molecule information

- **type** Type of cell spatial coordinate matrices to read; choose one or more of:
 - “segmentations”: cell segmentation vertices; requires hdf5r to be installed and requires a directory “cell_boundaries” within data.dir. Within “cell_boundaries”, there must be one or more HDF5 file named “feature_data_##.hdf5”
 - “centroids”: cell centroids in micron coordinate space
 - “boxes”: cell box outlines in micron coordinate space

- **mol.type** Type of molecule spatial coordinate matrices to read; choose one or more of:
 - “pixels”: molecule coordinates in pixel space
 - “microns”: molecule coordinates in micron space

- **metadata** Type of available metadata to read; choose zero or more of:
 - “volume”: estimated cell volume
 - “fov”: cell’s fov

- **filter** A character to filter molecules by, pass NA to skip molecule filtering

- **z** Z-index to load; must be between 0 and 6, inclusive

- **fov** Name to store FOV as

- **assay** Name to store expression matrix as
RegroupIdents

Value

ReadVizgen: A list with some combination of the following values:

- “transcripts”: a sparse matrix with expression data; cells are columns and features are rows
- “segmentations”: a data frame with cell polygon outlines in three columns: “x”, “y”, and “cell”
- “centroids”: a data frame with cell centroid coordinates in three columns: “x”, “y”, and “cell”
- “boxes”: a data frame with cell box outlines in three columns: “x”, “y”, and “cell”
- “microns”: a data frame with molecule micron coordinates in three columns: “x”, “y”, and “gene”
- “pixels”: a data frame with molecule pixel coordinates in three columns: “x”, “y”, and “gene”
- “metadata”: a data frame with the cell-level metadata requested by metadata

LoadVizgen: A Seurat object

Progress Updates with progressr

This function uses progressr to render status updates and progress bars. To enable progress updates, wrap the function call in with_progress or run handlers(global = TRUE) before running this function. For more details about progressr, please read vignette("progressr-intro")

Parallelization with future

This function uses future to enable parallelization. Parallelization strategies can be set using plan. Common plans include “sequential” for non-parallelized processing or “multisession” for parallel evaluation using multiple R sessions; for other plans, see the “Implemented evaluation strategies” section of ?future::plan. For a more thorough introduction to future, see vignette("future-1-overview")

Note

This function requires the data.table package to be installed

RegroupIdents

Regroup idents based on meta.data info

Description

For cells in each ident, set a new identity based on the most common value of a specified metadata column.

Usage

RegroupIdents(object, metadata)
Arguments

- **object**: Seurat object
- **metadata**: Name of metadata column

Value

A Seurat object with the active idents regrouped

Examples

```r
data("pbmc_small")
pbmc_small <- RegroupIdents(pbmc_small, metadata = "groups")
```

RelativeCounts
Normalize raw data to fractions

Description

Normalize count data to relative counts per cell by dividing by the total per cell. Optionally use a scale factor, e.g. for counts per million (CPM) use `scale.factor = 1e6`.

Usage

`RelativeCounts(data, scale.factor = 1, verbose = TRUE)`

Arguments

- **data**: Matrix with the raw count data
- **scale.factor**: Scale the result. Default is 1
- **verbose**: Print progress

Value

Returns a matrix with the relative counts

Examples

```r
mat <- matrix(data = rbinom(n = 25, size = 5, prob = 0.2), nrow = 5)
mat
mat_norm <- RelativeCounts(data = mat)
mat_norm
```
Description

Rename Cells in an Object

Usage

```r
## S3 method for class 'SCTAssay'
RenameCells(object, new.names = NULL, ...)

## S3 method for class 'SlideSeq'
RenameCells(object, new.names = NULL, ...)

## S3 method for class 'STARmap'
RenameCells(object, new.names = NULL, ...)

## S3 method for class 'VisiumV1'
RenameCells(object, new.names = NULL, ...)
```

Arguments

- **object**: An object
- **new.names**: vector of new cell names
- **...**: Arguments passed to other methods

See Also

`SeuratObject::RenameCells`

RidgePlot

Single cell ridge plot

Description

Draws a ridge plot of single cell data (gene expression, metrics, PC scores, etc.)
RidgePlot

Usage

RidgePlot(
 object,
 features,
 cols = NULL,
 idents = NULL,
 sort = FALSE,
 assay = NULL,
 group.by = NULL,
 y.max = NULL,
 same.y.lims = FALSE,
 log = FALSE,
 ncol = NULL,
 slot = deprecated(),
 layer = "data",
 stack = FALSE,
 combine = TRUE,
 fill.by = "feature"
)

Arguments

- **object**: Seurat object
- **features**: Features to plot (gene expression, metrics, PC scores, anything that can be retrieved by FetchData)
- **cols**: Colors to use for plotting
- **idents**: Which classes to include in the plot (default is all)
- **sort**: Sort identity classes (on the x-axis) by the average expression of the attribute being plotted, can also pass 'increasing' or 'decreasing' to change sort direction
- **assay**: Name of assay to use, defaults to the active assay
- **group.by**: Group (color) cells in different ways (for example, orig.ident)
- **y.max**: Maximum y axis value
- **same.y.lims**: Set all the y-axis limits to the same values
- **log**: plot the feature axis on log scale
- **ncol**: Number of columns if multiple plots are displayed
- **slot**: Slot to pull expression data from (e.g. "counts" or "data")
- **layer**: Layer to pull expression data from (e.g. "counts" or "data")
- **stack**: Horizontally stack plots for each feature
- **combine**: Combine plots into a single patchworked ggplot object. If FALSE, return a list of ggplot
- **fill.by**: Color violins/ridges based on either 'feature' or 'ident'

Value

A patchworked ggplot object if combine = TRUE; otherwise, a list of ggplot objects
Examples

```r
data("pbmc_small")
RidgePlot(object = pbmc_small, features = 'PC_1')
```

Description

Seurat-RPCA Integration

Usage

```r
RPCAIntegration(
  object = NULL,
  assay = NULL,
  layers = NULL,
  orig = NULL,
  new.reduction = "integrated.dr",
  reference = NULL,
  features = NULL,
  normalization.method = c("LogNormalize", "SCT"),
  dims = 1:30,
  k.filter = NA,
  scale.layer = "scale.data",
  dims.to.integrate = NULL,
  k.weight = 100,
  weight.reduction = NULL,
  sd.weight = 1,
  sample.tree = NULL,
  preserve.order = FALSE,
  verbose = TRUE,
  ...
)
```

Arguments

- **object**: A Seurat object
- **assay**: Name of Assay in the Seurat object
- **layers**: Names of layers in assay
- **orig**: A dimensional reduction to correct
- **new.reduction**: Name of new integrated dimensional reduction
- **reference**: A reference Seurat object
- **features**: A vector of features to use for integration
normalization.method
Name of normalization method used: LogNormalize or SCT

dims
Dimensions of dimensional reduction to use for integration

k.filter
Number of anchors to filter

scale.layer
Name of scaled layer in Assay

dims.to.integrate
Number of dimensions to return integrated values for

k.weight
Number of neighbors to consider when weighting anchors

weight.reduction
Dimension reduction to use when calculating anchor weights. This can be one of:
 • A string, specifying the name of a dimension reduction present in all objects to be integrated
 • A vector of strings, specifying the name of a dimension reduction to use for each object to be integrated
 • A vector of DimReduc objects, specifying the object to use for each object in the integration
 • NULL, in which case the full corrected space is used for computing anchor weights.

sd.weight
Controls the bandwidth of the Gaussian kernel for weighting

sample.tree
Specify the order of integration. Order of integration should be encoded in a matrix, where each row represents one of the pairwise integration steps. Negative numbers specify a dataset, positive numbers specify the integration results from a given row (the format of the merge matrix included in the hclust function output). For example: matrix(c(-2, 1, -3, -1), ncol = 2) gives:

\[
\begin{bmatrix}
 [1,] & [2] \\
 [1,] & -2 & -3 \\
 [2,] & 1 & -1
\end{bmatrix}
\]

Which would cause dataset 2 and 3 to be integrated first, then the resulting object integrated with dataset 1.
If NULL, the sample tree will be computed automatically.

preserve.order
Do not reorder objects based on size for each pairwise integration.

verbose
Print progress

... Arguments passed on to FindIntegrationAnchors

Examples

```r
## Not run:
# Preprocessing
obj <- SeuratData::LoadData("pbmc6868")
obj[["RNA"]]<- split(obj[["RNA"]], f = obj$Method)
obj <- NormalizeData(obj)
obj <- FindVariableFeatures(obj)
obj <- ScaleData(obj)
```
RunCCA

Perform Canonical Correlation Analysis

Description

Runs a canonical correlation analysis using a diagonal implementation of CCA. For details about stored CCA calculation parameters, see PrintCCAParams.

Usage

RunCCA(object1, object2, ...)

Default S3 method:
RunCCA(
 object1,
 object2,
 standardize = TRUE,
 num.cc = 20,
 ...)

obj <- RunPCA(obj)

After preprocessing, we run integration
obj <- IntegrateLayers(object = obj, method = RPCAIntegration,
 orig.reduction = "pca", new.reduction = 'integrated.rpca',
 verbose = FALSE)

Reference-based Integration
Here, we use the first layer as a reference for integration
Thus, we only identify anchors between the reference and the rest of the datasets,
saving computational resources
obj <- IntegrateLayers(object = obj, method = RPCAIntegration,
 orig.reduction = "pca", new.reduction = 'integrated.rpca',
 reference = 1, verbose = FALSE)

Modifying parameters
We can also specify parameters such as 'k.anchor' to increase the strength of
integration
obj <- IntegrateLayers(object = obj, method = RPCAIntegration,
 orig.reduction = "pca", new.reduction = 'integrated.rpca',
 k.anchor = 20, verbose = FALSE)

Integrating SCTransformed data
obj <- SCTransform(object = obj)
obj <- IntegrateLayers(object = obj, method = RPCAIntegration,
 orig.reduction = "pca", new.reduction = 'integrated.rpca',
 assay = "SCT", verbose = FALSE)

End(Not run)
S3 method for class 'Seurat'

```r
RunCCA(
  object1,
  object2,
  assay1 = NULL,
  assay2 = NULL,
  num.cc = 20,
  features = NULL,
  renormalize = FALSE,
  rescale = FALSE,
  compute.gene.loadings = TRUE,
  add.cell.id1 = NULL,
  add.cell.id2 = NULL,
  verbose = TRUE,
  ...
)
```

Arguments

- `object1`: First Seurat object
- `object2`: Second Seurat object.
- `...`: Extra parameters (passed onto MergeSeurat in case with two objects passed, passed onto ScaleData in case with single object and rescale.groups set to TRUE)
- `standardize`: Standardize matrices - scales columns to have unit variance and mean 0
- `num.cc`: Number of canonical vectors to calculate
- `seed.use`: Random seed to set. If NULL, does not set a seed
- `verbose`: Show progress messages
- `assay1, assay2`: Assays to pull from in the first and second objects, respectively
- `features`: Set of genes to use in CCA. Default is the union of both the variable features sets present in both objects.
- `renormalize`: Renormalize raw data after merging the objects. If FALSE, merge the data matrices also.
- `rescale`: Rescale the datasets prior to CCA. If FALSE, uses existing data in the scale data slots.
- `compute.gene.loadings`: Also compute the gene loadings. NOTE - this will scale every gene in the dataset which may impose a high memory cost.
- `add.cell.id1, add.cell.id2`: Add ...
RunGraphLaplacian

Value

Returns a combined Seurat object with the CCA results stored.

See Also

merge.Seurat

Examples

Not run:
data("pbmc_small")

As CCA requires two datasets, we will split our test object into two just for this example
pbmc1 <- subset(pbmc_small, cells = colnames(pbmc_small)[1:40])
pbmc2 <- subset(pbmc_small, cells = colnames(x = pbmc_small)[41:80])
pbmc1["group"] <- "group1"
pbmc2["group"] <- "group2"
pbmc_cca <- RunCCA(object1 = pbmc1, object2 = pbmc2)

Print results
print(x = pbmc_cca["cca"],)

End(Not run)

RunGraphLaplacian Run Graph Laplacian Eigendecomposition

Description

Run a graph laplacian dimensionality reduction. It is used as a low dimensional representation for a cell-cell graph. The input graph should be symmetric

Usage

RunGraphLaplacian(object, ...)

S3 method for class 'Seurat'
RunGraphLaplacian(
 object,
 graph,
 reduction.name = "lap",
 reduction.key = "LAP_",
 n = 50,
 verbose = TRUE,
 ...
)

Default S3 method:
RunGraphLaplacian(object, n = 50, reduction.key = "LAP_", verbose = TRUE, ...)
RunICA

Arguments

object A Seurat object
... Arguments passed to eigs_sym
graph The name of graph
reduction.name dimensional reduction name, lap by default
reduction.key dimensional reduction key, specifies the string before the number for the dimension names. LAP by default
n Total Number of Eigenvectors to compute and store (50 by default)
verbose Print message and process

Value

Returns Seurat object with the Graph laplacian eigenvector calculation stored in the reductions slot

RunICA Run Independent Component Analysis on gene expression

Description

Run fastica algorithm from the ica package for ICA dimensionality reduction. For details about stored ICA calculation parameters, see PrintICAParams.

Usage

RunICA(object, ...)

Default S3 method:
RunICA(
 object,
 assay = NULL,
 nics = 50,
 rev.ica = FALSE,
 ica.function = "icafast",
 verbose = TRUE,
 ndims.print = 1:5,
 nfeatures.print = 30,
 reduction.name = "ica",
 reduction.key = "ica_",
 seed.use = 42,
 ...
)

S3 method for class 'Assay'
RunICA(
 object,
 ...
)
```r
assay = NULL,
features = NULL,
nics = 50,
rev.ica = FALSE,
ica.function = "icafast",
verbose = TRUE,
ndims.print = 1:5,
nfeatures.print = 30,
reduction.name = "ica",
reduction.key = "ica_",
seed.use = 42,

## S3 method for class 'Seurat'
RunICA(
  object,
  assay = NULL,
  features = NULL,
  nics = 50,
  rev.ica = FALSE,
  ica.function = "icafast",
  verbose = TRUE,
  ndims.print = 1:5,
  nfeatures.print = 30,
  reduction.name = "ica",
  reduction.key = "IC_",
  seed.use = 42,
)

Arguments

object Seurat object
... Additional arguments to be passed to fastica
assay Name of Assay ICA is being run on
nics Number of ICs to compute
rev.ica By default, computes the dimensional reduction on the cell x feature matrix. Setting to true will compute it on the transpose (feature x cell matrix).
ica.function ICA function from ica package to run (options: icafast, icaimax, icajade)
verbose Print the top genes associated with high/low loadings for the ICs
ndims.print ICs to print genes for
nfeatures.print Number of genes to print for each IC
reduction.name dimensional reduction name
```
RunLDA

reduction.key dimensional reduction key, specifies the string before the number for the dimension names.

seed.use Set a random seed. Setting NULL will not set a seed.

features Features to compute ICA on

RunLDA

Run Linear Discriminant Analysis

Description

Run Linear Discriminant Analysis

Function to perform Linear Discriminant Analysis.

Usage

```r
RunLDA(object, ...)
```

Default S3 method:

```r
RunLDA(
  object,
  labels,
  assay = NULL,
  verbose = TRUE,
  ndims.print = 1:5,
  nfeatures.print = 30,
  reduction.key = "LDA_",
  seed = 42,
  ...
)
```

S3 method for class 'Assay'

```r
RunLDA(
  object,
  assay = NULL,
  labels,
  features = NULL,
  verbose = TRUE,
  ndims.print = 1:5,
  nfeatures.print = 30,
  reduction.key = "LDA_",
  seed = 42,
  ...
)
```

S3 method for class 'Seurat'

```r
RunLDA(
```
object, assay = NULL, labels, features = NULL, reduction.name = "lda", reduction.key = "LDA_", seed = 42, verbose = TRUE, ndims.print = 1:5, nfeatures.print = 30, ...

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>An object of class Seurat.</td>
</tr>
<tr>
<td>...</td>
<td>Arguments passed to other methods</td>
</tr>
<tr>
<td>labels</td>
<td>Meta data column with target gene class labels.</td>
</tr>
<tr>
<td>assay</td>
<td>Assay to use for performing Linear Discriminant Analysis (LDA).</td>
</tr>
<tr>
<td>verbose</td>
<td>Print the top genes associated with high/low loadings for the PCs</td>
</tr>
<tr>
<td>ndims.print</td>
<td>Number of LDA dimensions to print</td>
</tr>
<tr>
<td>nfeatures.print</td>
<td>Number of features to print for each LDA component.</td>
</tr>
<tr>
<td>reduction.key</td>
<td>Reduction key name.</td>
</tr>
<tr>
<td>seed</td>
<td>Value for random seed</td>
</tr>
<tr>
<td>features</td>
<td>Features to compute LDA on</td>
</tr>
<tr>
<td>reduction.name</td>
<td>Dimensional reduction name, lda by default</td>
</tr>
</tbody>
</table>

RunMarkVario

Run the mark variogram computation on a given position matrix and expression matrix.

Description

Wraps the functionality of markvario from the spatstat package.

Usage

RunMarkVario(spatial.location, data, ...
RunMixscape

Arguments

- **spatial.location**: A 2 column matrix giving the spatial locations of each of the data points also in data.
- **data**: Matrix containing the data used as "marks" (e.g. gene expression).
- ...: Arguments passed to markvario.

Description

Function to identify perturbed and non-perturbed gRNA expressing cells that accounts for multiple treatments/conditions/chemical perturbations.

Usage

```r
RunMixscape(
  object,
  assay = "PRTB",
  slot = "scale.data",
  labels = "gene",
  nt.class.name = "NT",
  new.class.name = "mixscape_class",
  min.de.genes = 5,
  min.cells = 5,
  de.assay = "RNA",
  logfc.threshold = 0.25,
  iter.num = 10,
  verbose = FALSE,
  split.by = NULL,
  fine.mode = FALSE,
  fine.mode.labels = "guide_ID",
  prtb.type = "KO"
)
```

Arguments

- **object**: An object of class Seurat.
- **assay**: Assay to use for mixscape classification.
- **slot**: Assay data slot to use.
- **labels**: metadata column with target gene labels.
- **nt.class.name**: Classification name of non-targeting gRNA cells.
- **new.class.name**: Name of mixscape classification to be stored in metadata.
RunMoransI

min.de.genes Required number of genes that are differentially expressed for method to separate perturbed and non-perturbed cells.

min.cells Minimum number of cells in target gene class. If fewer than this many cells are assigned to a target gene class during classification, all are assigned NP.

deaassel Assay to use when performing differential expression analysis. Usually RNA.

logfc.threshold Limit testing to genes which show, on average, at least X-fold difference (log-scale) between the two groups of cells. Default is 0.25 Increasing logfc.threshold speeds up the function, but can miss weaker signals.

iter.num Number of normalmixEM iterations to run if convergence does not occur.

verbose Display messages

split.by metadata column with experimental condition/cell type classification information. This is meant to be used to account for cases a perturbation is condition/cell type-specific.

fine.mode When this is equal to TRUE, DE genes for each target gene class will be calculated for each gRNA separately and pooled into one DE list for calculating the perturbation score of every cell and their subsequent classification.

fine.mode.labels metadata column with gRNA ID labels.

prtb.type specify type of CRISPR perturbation expected for labeling mixscape classifications. Default is KO.

Value

Returns Seurat object with with the following information in the meta data and tools slots:

mixscape_class Classification result with cells being either classified as perturbed (KO, by default) or non-perturbed (NP) based on their target gene class.

mixscape_class.global Global classification result (perturbed, NP or NT)

p_ko Posterior probabilities used to determine if a cell is KO (default). Name of this item will change to match prtb.type parameter setting. (>0.5) or NP

perturbation score Perturbation scores for every cell calculated in the first iteration of the function.

RunMoransI Compute Moran's I value.

Description

Wraps the functionality of the Moran.I function from the ape package. Weights are computed as 1/distance.

Usage

RunMoransI(data, pos, verbose = TRUE)
Arguments

data Expression matrix
pos Position matrix
verbose Display messages/progress

Description

Run a PCA dimensionality reduction. For details about stored PCA calculation parameters, see \texttt{PrintPCAParams}.

Usage

\begin{verbatim}
RunPCA(object, ...)

Default S3 method:
RunPCA(
 object,
 assay = NULL,
 npcs = 50,
 rev.pca = FALSE,
 weight.by.var = TRUE,
 verbose = TRUE,
 ndims.print = 1:5,
 nfeatures.print = 30,
 reduction.key = "PC_",
 seed.use = 42,
 approx = TRUE,
 ...)

S3 method for class 'Assay'
RunPCA(
 object,
 assay = NULL,
 features = NULL,
 npcs = 50,
 rev.pca = FALSE,
 weight.by.var = TRUE,
 verbose = TRUE,
 ndims.print = 1:5,
 nfeatures.print = 30,
 reduction.key = "PC_",
 seed.use = 42,
)\end{verbatim}
RunPCA

...)

S3 method for class 'Seurat'
RunPCA(
 object,
 assay = NULL,
 features = NULL,
 npcs = 50,
 rev.pca = FALSE,
 weight.by.var = TRUE,
 verbose = TRUE,
 ndims.print = 1:5,
 nfeatures.print = 30,
 reduction.name = "pca",
 reduction.key = "PC_",
 seed.use = 42,
 ...
)

Arguments

object An object

... Arguments passed to other methods and IRLBA

assay Name of Assay PCA is being run on

npcs Total Number of PCs to compute and store (50 by default)

rev.pca By default computes the PCA on the cell x gene matrix. Setting to true will compute it on gene x cell matrix.

weight.by.var Weight the cell embeddings by the variance of each PC (weights the gene loadings if rev.pca is TRUE)

verbose Print the top genes associated with high/low loadings for the PCs

ndims.print PCs to print genes for

nfeatures.print Number of genes to print for each PC

reduction.key dimensional reduction key, specifies the string before the number for the dimension names. PC by default

seed.use Set a random seed. By default, sets the seed to 42. Setting NULL will not set a seed.

approx Use truncated singular value decomposition to approximate PCA

features Features to compute PCA on. If features=NULL, PCA will be run using the variable features for the Assay. Note that the features must be present in the scaled data. Any requested features that are not scaled or have 0 variance will be dropped, and the PCA will be run using the remaining features.

reduction.name dimensional reduction name, pca by default
Returns Seurat object with the PCA calculation stored in the reductions slot

Description

Run a supervised LSI (SLSI) dimensionality reduction supervised by a cell-cell kernel. SLSI is used to capture a linear transformation of peaks that maximizes its dependency to the given cell-cell kernel.

Usage

RunSLSI(object, ...)

Default S3 method:
RunSLSI(
 object,
 assay = NULL,
 n = 50,
 reduction.key = "SLSI_",
 graph = NULL,
 verbose = TRUE,
 seed.use = 42,
 ...
)

S3 method for class 'Assay'
RunSLSI(
 object,
 assay = NULL,
 features = NULL,
 n = 50,
 reduction.key = "SLSI_",
 graph = NULL,
 verbose = TRUE,
 seed.use = 42,
 ...
)

S3 method for class 'Seurat'
RunSLSI(
 object,
 assay = NULL,
 features = NULL,
RunSPCA

Arguments

- `object`: An object
- `assay`: Name of Assay SLSI is being run on
- `n`: Total Number of SLSI components to compute and store
- `reduction.key`: dimensional reduction key, specifies the string before the number for the dimension names
- `graph`: Graph used supervised by SLSI
- `verbose`: Display messages
- `seed.use`: Set a random seed. Setting NULL will not set a seed.
- `features`: Features to compute SLSI on. If NULL, SLSI will be run using the variable features for the Assay.
- `reduction.name`: dimensional reduction name

Value

Returns Seurat object with the SLSI calculation stored in the reductions slot

RunSPCA

Run Supervised Principal Component Analysis

Description

Run a supervised PCA (SPCA) dimensionality reduction supervised by a cell-cell kernel. SPCA is used to capture a linear transformation which maximizes its dependency to the given cell-cell kernel. We use SNN graph as the kernel to supervise the linear matrix factorization.

Usage

```r
RunSPCA(object, 

## Default S3 method:
RunSPCA(
  object,
  assay = NULL,
)```
RunSPCA

```r
npcs = 50,
reduction.key = "SPC_",
graph = NULL,
verbose = FALSE,
seed.use = 42,
```

```r
S3 method for class 'Assay'
RunSPCA(
 object,
 assay = NULL,
 features = NULL,
 npcs = 50,
 reduction.key = "SPC_",
 graph = NULL,
 verbose = TRUE,
 seed.use = 42,
 ...
)
```

```r
S3 method for class 'Assay5'
RunSPCA(
 object,
 assay = NULL,
 features = NULL,
 npcs = 50,
 reduction.key = "SPC_",
 graph = NULL,
 verbose = TRUE,
 seed.use = 42,
 layer = "scale.data",
 ...
)
```

```r
S3 method for class 'Seurat'
RunSPCA(
 object,
 assay = NULL,
 features = NULL,
 npcs = 50,
 reduction.name = "spca",
 reduction.key = "SPC_",
 graph = NULL,
 verbose = TRUE,
 seed.use = 42,
 ...
)
```
RunTSNE

Run t-distributed Stochastic Neighbor Embedding

Arguments

- **object**: An object
- **assay**: Name of Assay SPCA is being run on
- **npcs**: Total Number of SPCs to compute and store (50 by default)
- **reduction.key**: dimensional reduction key, specifies the string before the number for the dimension names. SPC by default
- **graph**: Graph used supervised by SPCA
- **verbose**: Print the top genes associated with high/low loadings for the SPCs
- **seed.use**: Set a random seed. By default, sets the seed to 42. Setting NULL will not set a seed.
- **features**: Features to compute SPCA on. If features=NULL, SPCA will be run using the variable features for the Assay.
- **layer**: Layer to run SPCA on
- **reduction.name**: dimensional reduction name, spca by default

Value

Returns Seurat object with the SPCA calculation stored in the reductions slot

References


Description

Run t-SNE dimensionality reduction on selected features. Has the option of running in a reduced dimensional space (i.e. spectral tSNE, recommended), or running based on a set of genes. For details about stored TSNE calculation parameters, see PrintTSNEParams.

Usage

```
RunTSNE(object, ...)
```

```r
S3 method for class 'matrix'
RunTSNE(
 object,
 assay = NULL,
```
seed.use = 1,
    tsne.method = "Rtsne",
    dim.embed = 2,
    reduction.key = "tSNE_",
    ...
  )

## S3 method for class 'DimReduc'
RunTSNE(
  object,
  cells = NULL,
  dims = 1:5,
  seed.use = 1,
  tsne.method = "Rtsne",
  dim.embed = 2,
  reduction.key = "tSNE_",
  ...
)

## S3 method for class 'dist'
RunTSNE(
  object,
  assay = NULL,
  seed.use = 1,
  tsne.method = "Rtsne",
  dim.embed = 2,
  reduction.key = "tSNE_",
  ...
)

## S3 method for class 'Seurat'
RunTSNE(
  object,
  reduction = "pca",
  cells = NULL,
  dims = 1:5,
  features = NULL,
  seed.use = 1,
  tsne.method = "Rtsne",
  dim.embed = 2,
  distance.matrix = NULL,
  reduction.name = "tsne",
  reduction.key = "tSNE_",
  ...
)

Arguments

  object          Seurat object
RunUMAP

... Arguments passed to other methods and to t-SNE call (most commonly used is perplexity)
assay Name of assay that that t-SNE is being run on
seed.use Random seed for the t-SNE. If NULL, does not set the seed
tsne.method Select the method to use to compute the tSNE. Available methods are:
  • “Rtsne”: Use the Rtsne package Barnes-Hut implementation of tSNE (default)
  • “FIt-SNE”: Use the FFT-accelerated Interpolation-based t-SNE. Based on Kluger Lab code found here: https://github.com/KlugerLab/FIt-SNE
dim.embed The dimensional space of the resulting tSNE embedding (default is 2). For example, set to 3 for a 3d tSNE
reduction.key dimensional reduction key, specifies the string before the number for the dimension names. “tSNE_” by default
cells Which cells to analyze (default, all cells)
dims Which dimensions to use as input features
reduction Which dimensional reduction (e.g. PCA, ICA) to use for the tSNE. Default is PCA
features If set, run the tSNE on this subset of features (instead of running on a set of reduced dimensions). Not set (NULL) by default; dims must be NULL to run on features
distance.matrix If set, runs tSNE on the given distance matrix instead of data matrix (experimental)
reduction.name dimensional reduction name, specifies the position in the object$dr list. tsne by default

RunUMAP

Run UMAP

Description

Runs the Uniform Manifold Approximation and Projection (UMAP) dimensional reduction technique. To run using umap.method="umap-learn", you must first install the umap-learn python package (e.g. via pip install umap-learn). Details on this package can be found here: https://github.com/lmcinnes/umap. For a more in depth discussion of the mathematics underlying UMAP, see the ArXiv paper here: https://arxiv.org/abs/1802.03426.

Usage

RunUMAP(object, ...)

## Default S3 method:
RunUMAP(
object,
reduction.key = "UMAP_",
assay = NULL,
reduction.model = NULL,
return.model = FALSE,
umap.method = "uwot",
n.neighbors = 30L,
n.components = 2L,
metric = "cosine",
n.epochs = NULL,
learning.rate = 1,
min.dist = 0.3,
spread = 1,
set.op.mix.ratio = 1,
local.connectivity = 1L,
repulsion.strength = 1,
negative.sample.rate = 5,
a = NULL,
b = NULL,
uwot.sgd = FALSE,
seed.use = 42,
metric.kwds = NULL,
angular.rp.forest = FALSE,
densmap = FALSE,
dens.lambda = 2,
dens.frac = 0.3,
dens.var.shift = 0.1,
verbose = TRUE,
...

## S3 method for class 'Graph'
RunUMAP(
  object,
  assay = NULL,
umap.method = "umap-learn",
n.components = 2L,
metric = "correlation",
n.epochs = 0L,
learning.rate = 1,
min.dist = 0.3,
spread = 1,
repulsion.strength = 1,
negative.sample.rate = 5L,
a = NULL,
b = NULL,
uwot.sgd = FALSE,
seed.use = 42L,
metric.kwds = NULL,
densmap = FALSE,
densmap.kwds = NULL,
verbose = TRUE,
reduction.key = "UMAP_",
...
)

## S3 method for class 'Neighbor'
RunUMAP(object, reduction.model, ...)

## S3 method for class 'Seurat'
RunUMAP(
  object,
dims = NULL,
reduction = "pca",
features = NULL,
graph = NULL,
assay = DefaultAssay(object = object),
nn.name = NULL,
slot = "data",
umap.method = "uwot",
reduction.model = NULL,
return.model = FALSE,
n.neighbors = 30L,
n.components = 2L,
metric = "cosine",
n.epochs = NULL,
learning.rate = 1,
min.dist = 0.3,
spread = 1,
set.op.mix.ratio = 1,
local.connectivity = 1L,
repulsion.strength = 1,
negative.sample.rate = 5L,
a = NULL,
b = NULL,
uwot.sgd = FALSE,
seed.use = 42L,
metric.kwds = NULL,
angular rp_forest = FALSE,
densmap = FALSE,
dens.lambda = 2,
dens.frac = 0.3,
dens.var.shift = 0.1,
verbose = TRUE,
reduction.name = "umap",
reduction.key = NULL,
Arguments

- **object**: An object
- **...**
- **reduction.key**: Dimensional reduction key, specifies the string before the number for the dimension names. UMAP by default
- **assay**: Assay to pull data for when using features, or assay used to construct Graph if running UMAP on a Graph
- **reduction.model**: DimReduc object that contains the umap model
- **return.model**: Whether UMAP will return the uwot model
- **umap.method**: UMAP implementation to run. Can be
  - uwot: Runs umap via the uwot R package
  - uwot-learn: Runs umap via the uwot R package and return the learned umap model
  - umap-learn: Run the Seurat wrapper of the python umap-learn package
- **n.neighbors**: This determines the number of neighboring points used in local approximations of manifold structure. Larger values will result in more global structure being preserved at the loss of detailed local structure. In general this parameter should often be in the range 5 to 50.
- **n.components**: The dimension of the space to embed into.
- **metric**: This determines the choice of metric used to measure distance in the input space. A wide variety of metrics are already coded, and a user defined function can be passed as long as it has been JITd by numba.
- **n.epochs**: The number of training epochs to be used in optimizing the low dimensional embedding. Larger values result in more accurate embeddings. If NULL is specified, a value will be selected based on the size of the input dataset (200 for large datasets, 500 for small).
- **learning.rate**: The initial learning rate for the embedding optimization.
- **min.dist**: This controls how tightly the embedding is allowed to compress points together. Larger values ensure embedded points are more evenly distributed, while smaller values allow the algorithm to optimise more accurately with regard to local structure. Sensible values are in the range 0.001 to 0.5.
- **spread**: The effective scale of embedded points. In combination with min.dist this determines how clustered/clumped the embedded points are.
- **set.op.mix.ratio**: Interpolate between (fuzzy) union and intersection as the set operation used to combine local fuzzy simplicial sets to obtain a global fuzzy simplicial sets. Both fuzzy set operations use the product t-norm. The value of this parameter should be between 0.0 and 1.0; a value of 1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy intersection.
local.connectivity

The local connectivity required - i.e. the number of nearest neighbors that should be assumed to be connected at a local level. The higher this value the more connected the manifold becomes locally. In practice this should be not more than the local intrinsic dimension of the manifold.

repulsion.strength

Weighting applied to negative samples in low dimensional embedding optimization. Values higher than one will result in greater weight being given to negative samples.

negative.sample.rate

The number of negative samples to select per positive sample in the optimization process. Increasing this value will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy.

a

More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor.

b

More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor.

uwot.sgd

Set uwot::umap(fast_sgd = TRUE); see umap for more details

seed.use

Set a random seed. By default, sets the seed to 42. Setting NULL will not set a seed

metric.kwds

A dictionary of arguments to pass on to the metric, such as the p value for Minkowski distance. If NULL then no arguments are passed on.

angular_rp_forest

Whether to use an angular random projection forest to initialise the approximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance such as cosine, correlation etc. In the case of those metrics angular forests will be chosen automatically.

densmap

Whether to use the density-augmented objective of densMAP. Turning on this option generates an embedding where the local densities are encouraged to be correlated with those in the original space. Parameters below with the prefix ‘dens’ further control the behavior of this extension. Default is FALSE. Only compatible with 'umap-learn’ method and version of umap-learn >= 0.5.0

dens.lambda

Specific parameter which controls the regularization weight of the density correlation term in densMAP. Higher values prioritize density preservation over the UMAP objective, and vice versa for values closer to zero. Setting this parameter to zero is equivalent to running the original UMAP algorithm. Default value is 2.

dens.frac

Specific parameter which controls the fraction of epochs (between 0 and 1) where the density-augmented objective is used in densMAP. The first (1 - dens_frac) fraction of epochs optimize the original UMAP objective before introducing the density correlation term. Default is 0.3.

dens.var.shift

Specific parameter which specifies a small constant added to the variance of local radii in the embedding when calculating the density correlation objective to prevent numerical instability from dividing by a small number. Default is 0.1.
Sample UMI

**Description**

Downsample each cell to a specified number of UMIs. Includes an option to upsample cells below specified UMI as well.

**Usage**

SampleUMI(data, max.umi = 1000, upsample = FALSE, verbose = FALSE)
Arguments

- **data**: Matrix with the raw count data
- **max.umi**: Number of UMIs to sample to
- **upsample**: Upsamples all cells with fewer than max.umi
- **verbose**: Display the progress bar

Value

Matrix with downsampled data

Examples

```r
data("pbmc_small")
counts = as.matrix(x = GetAssayData(object = pbmc_small, assay = "RNA", slot = "counts"))
downsamplde = SampleUMI(data = counts)
head(x = downsampled)
```

Description

Save the Annoy index

Usage

```
SaveAnnoyIndex(object, file)
```

Arguments

- **object**: A Neighbor object with the annoy index stored
- **file**: Path to file to write index to
ScaleData

Scale and center the data.

Description

Scales and centers features in the dataset. If variables are provided in vars.to.regress, they are individually regressed against each feature, and the resulting residuals are then scaled and centered.

Usage

ScaleData(object, ...)

## Default S3 method:
ScaleData(
  object,
  features = NULL,
  vars.to.regress = NULL,
  latent.data = NULL,
  split.by = NULL,
  model.use = "linear",
  use.umi = FALSE,
  do.scale = TRUE,
  do.center = TRUE,
  scale.max = 10,
  block.size = 1000,
  min.cells.to.block = 3000,
  verbose = TRUE,
  ...
)

## S3 method for class 'IterableMatrix'
ScaleData(
  object,
  features = NULL,
  do.scale = TRUE,
  do.center = TRUE,
  scale.max = 10,
  ...
)

## S3 method for class 'Assay'
ScaleData(
  object,
  features = NULL,
  vars.to.regress = NULL,
  latent.data = NULL,
  split.by = NULL,
  ...
model.use = "linear",
use.umi = FALSE,
do.scale = TRUE,
do.center = TRUE,
scale.max = 10,
block.size = 1000,
min.cells.to.block = 3000,
verbose = TRUE,
...
)

## S3 method for class 'Seurat'
ScaleData(
  object,
  features = NULL,
  assay = NULL,
  vars.to.regress = NULL,
  split.by = NULL,
  model.use = "linear",
  use.umi = FALSE,
  do.scale = TRUE,
  do.center = TRUE,
  scale.max = 10,
  block.size = 1000,
  min.cells.to.block = 3000,
  verbose = TRUE,
  ...
)

Arguments

object An object
...
Arguments passed to other methods
features Vector of features names to scale/center. Default is variable features.
vars.to.regress Variables to regress out (previously latent.vars in RegressOut). For example, nUMI, or percent.mito.
latent.data Extra data to regress out, should be cells x latent data
split.by Name of variable in object metadata or a vector or factor defining grouping of cells. See argument f in split for more details
model.use Use a linear model or generalized linear model (poisson, negative binomial) for the regression. Options are 'linear' (default), 'poisson', and 'negbinom'
use.umi Regress on UMI count data. Default is FALSE for linear modeling, but automatically set to TRUE if model.use is 'negbinom' or 'poisson'
do.scale Whether to scale the data.
do.center Whether to center the data.
scale.max  Max value to return for scaled data. The default is 10. Setting this can help reduce the effects of features that are only expressed in a very small number of cells. If regressing out latent variables and using a non-linear model, the default is 50.

block.size  Default size for number of features to scale at in a single computation. Increasing block.size may speed up calculations but at an additional memory cost.

min.cells.to.block  If object contains fewer than this number of cells, don’t block for scaling calculations.

verbose  Displays a progress bar for scaling procedure

assay  Name of Assay to scale

Details

ScaleData now incorporates the functionality of the function formerly known as RegressOut (which regressed out given the effects of provided variables and then scaled the residuals). To make use of the regression functionality, simply pass the variables you want to remove to the vars.to.regress parameter.

Setting center to TRUE will center the expression for each feature by subtracting the average expression for that feature. Setting scale to TRUE will scale the expression level for each feature by dividing the centered feature expression levels by their standard deviations if center is TRUE and by their root mean square otherwise.

---

ScaleFactors  Get image scale factors

Description

Get image scale factors

Usage

ScaleFactors(object, ...)

scalefactors(spot, fiducial, hires, lowres)

## S3 method for class 'VisiumV1'
ScaleFactors(object, ...)

## S3 method for class 'VisiumV2'
ScaleFactors(object, ...)
ScoreJackStraw

Arguments

- **object**: An object to get scale factors from
- **...**: Arguments passed to other methods
- **spot**: Spot full resolution scale factor
- **fiducial**: Fiducial full resolution scale factor
- **hires**: High resolution scale factor
- **lowres**: Low resolution scale factor

Value

An object of class `scalefactors`

Note

`scalefactors` objects can be created with `scalefactors()`

---

**ScoreJackStraw**

*Compute Jackstraw scores significance.*

Description

Significant PCs should show a p-value distribution that is strongly skewed to the left compared to the null distribution. The p-value for each PC is based on a proportion test comparing the number of features with a p-value below a particular threshold (`score.thresh`), compared with the proportion of features expected under a uniform distribution of p-values.

Usage

```r
ScoreJackStraw(object, ...)
S3 method for class 'JackStrawData'
ScoreJackStraw(object, dims = 1:5, score.thresh = 1e-05, ...)
S3 method for class 'DimReduc'
ScoreJackStraw(object, dims = 1:5, score.thresh = 1e-05, ...)
S3 method for class 'Seurat'
ScoreJackStraw(
 object,
 reduction = "pca",
 dims = 1:5,
 score.thresh = 1e-05,
 do.plot = FALSE,
 ...
)
```
Arguments

object                  An object
...                      Arguments passed to other methods
dims                    Which dimensions to examine
score.thresh            Threshold to use for the proportion test of PC significance (see Details)
reduction               Reduction associated with JackStraw to score
do.plot                 Show plot. To return ggplot object, use JackStrawPlot after running Score-JackStraw.

Value

Returns a Seurat object

Author(s)

Omri Wurtzel

See Also

JackStrawPlot
JackStrawPlot

Description

The SCTModel object is a model and parameters storage from SCTransform. It can be used to calculate Pearson residuals for new genes.

The SCTAssay object contains all the information found in an Assay object, with extra information from the results of SCTransform

Usage

```r
S3 method for class 'SCTAssay'
levels(x)
```

```r
S3 replacement method for class 'SCTAssay'
levels(x) <- value
```

Arguments

x                  An SCTAssay object
value              New levels, must be in the same order as the levels present
**Value**

- levels: SCT model names
- levels<-: x with updated SCT model names

**Slots**

- feature.attributes: A data.frame with feature attributes in SCTransform
- cell.attributes: A data.frame with cell attributes in SCTransform
- clips: A list of two numeric of length two specifying the min and max values the Pearson residual will be clipped to. One for vst and one for SCTransform
- umi.assay: Name of the assay of the seurat object containing UMI matrix and the default is RNA
- model: A formula used in SCTransform
- arguments: other information used in SCTransform
- median_umi: Median UMI (or scale factor) used to calculate corrected counts
- SCTModel.list: A list containing SCT models

**Get and set SCT model names**

SCT results are named by initial run of SCTransform in order to keep SCT parameters straight between runs. When working with merged SCTAssay objects, these model names are important. levels allows querying the models present. levels<- allows the changing of the names of the models present, useful when merging SCTAssay objects. Note: unlike normal levels<-, levels<-.SCTAssay allows complete changing of model names, not reordering.

**Creating an SCTAssay from an Assay**

Conversion from an Assay object to an SCTAssay object by is done by adding the additional slots to the object. If from has results generated by SCTransform from Seurat v3.0.0 to v3.1.1, the conversion will automagically fill the new slots with the data

**See Also**

- Assay
- Assay

**Examples**

```r
Not run:
SCTAssay objects are generated from SCTransform
pbmc_small <- SCTransform(pbmc_small)

End(Not run)

Not run:
SCTAssay objects are generated from SCTransform
pbmc_small <- SCTransform(pbmc_small)
pbmc_small[["SCT"]]
```
## End(Not run)

## Not run:
# Query and change SCT model names
levels(pbmc_small[['SCT']])
levels(pbmc_small[['SCT']]) <- '3'
levels(pbmc_small[['SCT']])

## End(Not run)

---

**SCTransform**

*Perform sctransform-based normalization*

### Description

This function calls sctransform::vst. The sctransform package is available at https://github.com/satijalab/sctransform. Use this function as an alternative to the NormalizeData, FindVariableFeatures, ScaleData workflow. Results are saved in a new assay (named SCT by default) with counts being (corrected) counts, data being log1p(counts), scale.data being pearson residuals; sctransform::vst intermediate results are saved in misc slot of new assay.

### Usage

```r
SCTransform(object, ...)
```

## Default S3 method:

```r
SCTransform(
 object,
 cell.attr,
 reference.SCT.model = NULL,
 do.correct.umi = TRUE,
 ncells = 5000,
 residual.features = NULL,
 variable.features.n = 3000,
 variable.features.rv.th = 1.3,
 vars.to.regress = NULL,
 latent.data = NULL,
 do.scale = FALSE,
 do.center = TRUE,
 clip.range = c(-sqrt(x = ncol(x = umi)/30), sqrt(x = ncol(x = umi)/30)),
 vst.flavor = "v2",
 conserve.memory = FALSE,
 return.only.var.genes = TRUE,
 seed.use = 1448145,
 verbose = TRUE,
 ...
)```
S3 method for class 'Assay'

```r
SCTransform(
    object,
    cell.attr,
    reference.SCT.model = NULL,
    do.correct.umi = TRUE,
    ncells = 5000,
    residual.features = NULL,
    variable.features.n = 3000,
    variable.features.rv.th = 1.3,
    vars.to.regress = NULL,
    latent.data = NULL,
    do.scale = FALSE,
    do.center = TRUE,
    clip.range = c(-sqrt(x = ncol(x = object)/30), sqrt(x = ncol(x = object)/30)),
    vst.flavor = "v2",
    conserve.memory = FALSE,
    return.only.var.genes = TRUE,
    seed.use = 1448145,
    verbose = TRUE,
    ...
)
```

S3 method for class 'Seurat'

```r
SCTransform(
    object,
    assay = "RNA",
    new.assay.name = "SCT",
    reference.SCT.model = NULL,
    do.correct.umi = TRUE,
    ncells = 5000,
    residual.features = NULL,
    variable.features.n = 3000,
    variable.features.rv.th = 1.3,
    vars.to.regress = NULL,
    do.scale = FALSE,
    do.center = TRUE,
    clip.range = c(-sqrt(x = ncol(x = object[[assay]])/30), sqrt(x = ncol(x = object[[assay]])/30)),
    vst.flavor = "v2",
    conserve.memory = FALSE,
    return.only.var.genes = TRUE,
    seed.use = 1448145,
    verbose = TRUE,
    ...
)
```
S3 method for class 'IterableMatrix'
SCTransform(
 object,
 cell.attr,
 reference.SCT.model = NULL,
 do.correct.umi = TRUE,
 ncells = 5000,
 residual.features = NULL,
 variable.features.n = 3000,
 variable.features.rv.th = 1.3,
 vars.to.regress = NULL,
 latent.data = NULL,
 do.scale = FALSE,
 do.center = TRUE,
 clip.range = c(-sqrt(x = ncol(x = object)/30), sqrt(x = ncol(x = object)/30)),
 vst.flavor = "v2",
 conserve.memory = FALSE,
 return.only.var.genes = TRUE,
 seed.use = 1448145,
 verbose = TRUE,
 ...
)

Arguments

- **object**
 - UMI counts matrix
- **...**
 - Additional parameters passed to `sctransform::vst`
- **cell.attr**
 - A metadata with cell attributes
- **reference.SCT.model**
 - If not NULL, compute residuals for the object using the provided SCT model; supports only log_umi as the latent variable. If residual.features are not specified, compute for the top variable.features.n specified in the model which are also present in the object. If residual.features are specified, the variable features of the resulting SCT assay are set to the top variable.features.n if the provided model.
- **do.correct.umi**
 - Place corrected UMI matrix in assay counts slot; default is TRUE
- **ncells**
 - Number of subsampling cells used to build NB regression; default is 5000
- **residual.features**
 - Genes to calculate residual features for; default is NULL (all genes). If specified, will be set to VariableFeatures of the returned object.
- **variable.features.n**
 - Use this many features as variable features after ranking by residual variance; default is 3000. Only applied if residual.features is not set.
- **variable.features.rv.th**
 - Instead of setting a fixed number of variable features, use this residual variance cutoff; this is only used when variable.features.n is set to NULL; default is 1.3. Only applied if residual.features is not set.
vars.to.regress

Variables to regress out in a second non-regularized linear

latent.data

Extra data to regress out, should be cells x latent data regression. For example, percent.mito. Default is NULL

do.scale

Whether to scale residuals to have unit variance; default is FALSE

do.center

Whether to center residuals to have mean zero; default is TRUE

clip.range

Range to clip the residuals to; default is \(-\sqrt{\frac{n}{30}}, \sqrt{\frac{n}{30}}\), where \(n\) is the number of cells

vst.flavor

When set to 'v2' sets method = glmGamPoi_offset, n_cells=2000, and exclude_poisson = TRUE which causes the model to learn theta and intercept only besides excluding poisson genes from learning and regularization

conserve.memory

If set to TRUE the residual matrix for all genes is never created in full; useful for large data sets, but will take longer to run; this will also set return.only.var.genes to TRUE; default is FALSE

return.only.var.genes

If set to TRUE the scale.data matrices in output assay are subset to contain only the variable genes; default is TRUE

seed.use

Set a random seed. By default, sets the seed to 1448145. Setting NULL will not set a seed.

verbose

Whether to print messages and progress bars

assay

Name of assay to pull the count data from; default is 'RNA'

new.assay.name

Name for the new assay containing the normalized data; default is 'SCT'

Value

Returns a Seurat object with a new assay (named SCT by default) with counts being (corrected) counts, data being log1p(counts), scale.data being pearson residuals; sctransform::vst intermediate results are saved in misc slot of the new assay.

See Also

correct_counts get_residuals

SCTResults

Get SCT results from an Assay

Description

Pull the SCTResults information from an SCTAssay object.
Usage

SCTResults(object, ...)

SCTResults(object, ...) <- value

S3 method for class 'SCTModel'
SCTResults(object, slot, ...)

S3 replacement method for class 'SCTModel'
SCTResults(object, slot, ...) <- value

S3 method for class 'SCTAssay'
SCTResults(object, slot, model = NULL, ...)

S3 replacement method for class 'SCTAssay'
SCTResults(object, slot, model = NULL, ...) <- value

S3 method for class 'Seurat'
SCTResults(object, assay = "SCT", slot, model = NULL, ...)

Arguments

object

An object

...

Arguments passed to other methods (not used)

value

new data to set

slot

Which slot to pull the SCT results from

model

Name of SCModel to pull result from. Available names can be retrieved with levels.

assay

Assay in the Seurat object to pull from

Value

Returns the value present in the requested slot for the requested group. If group is not specified, returns a list of slot results for each group unless there is only one group present (in which case it just returns the slot directly).

Description

Choose the features to use when integrating multiple datasets. This function ranks features by the number of datasets they are deemed variable in, breaking ties by the median variable feature rank across datasets. It returns the top scoring features by this ranking.
Usage

```r
SelectIntegrationFeatures(
  object.list,
  nfeatures = 2000,
  assay = NULL,
  verbose = TRUE,
  fvf.nfeatures = 2000,
  ...
)
```

Arguments

- `object.list`: List of seurat objects
- `nfeatures`: Number of features to return
- `assay`: Name or vector of assay names (one for each object) from which to pull the variable features.
- `verbose`: Print messages
- `fvf.nfeatures`: nfeatures for `FindVariableFeatures`. Used if `VariableFeatures` have not been set for any object in `object.list`.
- `...`: Additional parameters to `FindVariableFeatures`

Details

If for any assay in the list, `FindVariableFeatures` hasn’t been run, this method will try to run it using the `fvf.nfeatures` parameter and any additional ones specified through the `...`.

Value

A vector of selected features

Examples

```r
## Not run:
# to install the SeuratData package see https://github.com/satijalab/seurat-data
library(SeuratData)
data("panc8")

# panc8 is a merged Seurat object containing 8 separate pancreas datasets
# split the object by dataset and take the first 2
pancreas.list <- SplitObject(panc8, split.by = "tech")[1:2]

# perform SCTransform normalization
pancreas.list <- lapply(X = pancreas.list, FUN = SCTransform)

# select integration features
features <- SelectIntegrationFeatures(pancreas.list)

## End(Not run)
```
SelectSCTIntegrationFeatures

Select integration features

Description

Select integration features

Usage

SelectIntegrationFeatures5(
 object,
 nfeatures = 2000,
 assay = NULL,
 method = NULL,
 layers = NULL,
 verbose = TRUE,
 ...
)

Arguments

object Seurat object
nfeatures Number of features to return for integration
assay Name of assay to use for integration feature selection
method Which method to pull. For HVFInfo and VariableFeatures, choose one from one of the following:
 • “vst”
 • “sctransform” or “sct”
 • “mean.var.plot”, “dispersion”, “mvp”, or “disp”
layers Name of layers to use for integration feature selection
verbose Print messages
... Arguments passed on to method
SetIntegrationData

Usage

```r
SelectSCTIntegrationFeatures(
  object,
  nfeatures = 3000,
  assay = NULL,
  verbose = TRUE,
  ...
)
```

Arguments

- **object**: Seurat object
- **nfeatures**: Number of features to return for integration
- **assay**: Name of assay to use for integration feature selection
- **verbose**: Print messages
- **...**: Arguments passed on to method

Description

Set integration data

Usage

```r
SetIntegrationData(object, integration.name, slot, new.data)
```

Arguments

- **object**: Seurat object
- **integration.name**: Name of integration object
- **slot**: Which slot in integration object to set
- **new.data**: New data to insert

Value

Returns a Seurat object
SetQuantile

Find the Quantile of Data

Description

Converts a quantile in character form to a number regarding some data. String form for a quantile is represented as a number prefixed with “q”; for example, 10th quantile is “q10” while 2nd quantile is “q2”. Will only take a quantile of non-zero data values.

Usage

```r
SetQuantile(cutoff, data)
```

Arguments

- `cutoff`: The cutoff to turn into a quantile
- `data`: The data to turn find the quantile of

Value

The numerical representation of the quantile

Examples

```r
set.seed(42)
SetQuantile('q10', sample(1:100, 10))
```

Seurat-class

The Seurat Class

Description

The Seurat object is a representation of single-cell expression data for R; for more details, please see the documentation in `SeuratObject`

See Also

`SeuratObject::Seurat-class`
SeuratCommand-class

The SeuratCommand Class

Description

For more details, please see the documentation in SeuratObject.

See Also

SeuratObject::SeuratCommand-class

SeuratTheme

Seurat Themes

Description

Various themes to be applied to ggplot2-based plots

SeuratTheme The curated Seurat theme, consists of ...
DarkTheme A dark theme, axes and text turn to white, the background becomes black
NoAxes Removes axis lines, text, and ticks
NoLegend Removes the legend
FontSize Sets axis and title font sizes
NoGrid Removes grid lines
SeuratAxes Set Seurat-style axes
SpatialTheme A theme designed for spatial visualizations (eg PolyFeaturePlot, PolyDimPlot)
RestoreLegend Restore a legend after removal
RotatedAxis Rotate X axis text 45 degrees
BoldTitle Enlarges and emphasizes the title

Usage

SeuratTheme()

CenterTitle(...) DarkTheme(...) FontSize(
 x.text = NULL,
 y.text = NULL,
 x.title = NULL,
 y.title = NULL,
```

main = NULL, ...  
)

NoAxes(..., keep.text = FALSE, keep.ticks = FALSE)
NoLegend(...)
NoGrid(...)
SeuratAxes(...)
SpatialTheme(...)
RestoreLegend(..., position = "right")
RotatedAxis(...)
BoldTitle(...)  
WhiteBackground(...)

Arguments

... Extra parameters to be passed to theme
x.text, y.text X and Y axis text sizes
x.title, y.title X and Y axis title sizes
main Plot title size
keep.text Keep axis text
keep.ticks Keep axis ticks
position A position to restore the legend to

Value

A ggplot2 theme object

See Also

theme

Examples

# Generate a plot with a dark theme
library(ggplot2)
df <- data.frame(x = rnorm(n = 100, mean = 20, sd = 2), y = rbinom(n = 100, size = 100, prob = 0.2))
p <- ggplot(data = df, mapping = aes(x = x, y = y)) + geom_point(mapping = aes(color = 'red'))
p + DarkTheme(legend.position = 'none')
```
Generate a plot with no axes
library(ggplot2)
df <- data.frame(x = rnorm(n = 100, mean = 20, sd = 2), y = rbinom(n = 100, size = 100, prob = 0.2))
p <- ggplot(data = df, mapping = aes(x = x, y = y)) + geom_point(mapping = aes(color = 'red'))
p + NoAxes()

Generate a plot with no legend
library(ggplot2)
df <- data.frame(x = rnorm(n = 100, mean = 20, sd = 2), y = rbinom(n = 100, size = 100, prob = 0.2))
p <- ggplot(data = df, mapping = aes(x = x, y = y)) + geom_point(mapping = aes(color = 'red'))
p + NoLegend()

Generate a plot with no grid lines
library(ggplot2)
df <- data.frame(x = rnorm(n = 100, mean = 20, sd = 2), y = rbinom(n = 100, size = 100, prob = 0.2))
p <- ggplot(data = df, mapping = aes(x = x, y = y)) + geom_point(mapping = aes(color = 'red'))
p + NoGrid()

SketchData

Sketch Data

Description

This function uses sketching methods to downsample high-dimensional single-cell RNA expression data, which can help with scalability for large datasets.

Usage

```
SketchData(
    object,
    assay = NULL,
    ncells = 5000L,
    sketched.assay = "sketch",
    method = c("LeverageScore", "Uniform"),
    var.name = "leverage.score",
    over.write = FALSE,
    seed = 123L,
    cast = "dgCMatrix",
    verbose = TRUE,
    ...
)
```

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>A Seurat object.</td>
</tr>
<tr>
<td>assay</td>
<td>Assay name. Default is NULL, in which case the default assay of the object is used.</td>
</tr>
</tbody>
</table>
ncells: A positive integer indicating the number of cells to sample for the sketching. Default is 5000.

sketched.assay: Sketched assay name. A sketch assay is created or overwrite with the sketch data. Default is 'sketch'.

method: Sketching method to use. Can be 'LeverageScore' or 'Uniform'. Default is 'LeverageScore'.

var.name: A metadata column name to store the leverage scores. Default is 'leverage.score'.

over.write: whether to overwrite existing column in the metadata. Default is FALSE.

seed: A positive integer for the seed of the random number generator. Default is 123.

cast: The type to cast the resulting assay to. Default is 'dgCMatrix'.

verbose: Print progress and diagnostic messages

... Arguments passed to other methods

Value

A Seurat object with the sketched data added as a new assay.

SlideSeq-class

The SlideSeq class

Description

The SlideSeq class represents spatial information from the Slide-seq platform

Slots

coordinates ...

Slots

assay Name of assay to associate image data with; will give this image priority for visualization when the assay is set as the active/default assay in a Seurat object

key A one-length character vector with the object’s key; keys must be one or more alphanumeric characters followed by an underscore “_” (regex pattern “^[a-zA-Z][a-zA-Z0-9]*$”)

SpatialImage-class

The SpatialImage Class

Description

For more details, please see the documentation in SeuratObject

See Also

SeuratObject::SpatialImage-class
SpatialPlot

Visualize spatial clustering and expression data.

Description

SpatialPlot plots a feature or discrete grouping (e.g. cluster assignments) as spots over the image that was collected. We also provide SpatialFeaturePlot and SpatialDimPlot as wrapper functions around SpatialPlot for a consistent naming framework.

Usage

SpatialPlot(
 object,
 group.by = NULL,
 features = NULL,
 images = NULL,
 cols = NULL,
 image.alpha = 1,
 image.scale = "lowres",
 crop = TRUE,
 slot = "data",
 keep.scale = "feature",
 min.cutoff = NA,
 max.cutoff = NA,
 cells.highlight = NULL,
 cols.highlight = c("#DE2D26", "grey50"),
 facet.highlight = FALSE,
 label = FALSE,
 label.size = 5,
 label.color = "white",
 label.box = TRUE,
 repel = FALSE,
 ncol = NULL,
 combine = TRUE,
 pt.size.factor = 1.6,
 alpha = c(1, 1),
 shape = 21,
 stroke = NA,
 interactive = FALSE,
 do.identify = FALSE,
 identify.ident = NULL,
 do.hover = FALSE,
 information = NULL
)

SpatialDimPlot(
 object,
SpatialPlot

```r
SpatialPlot(
    object = NULL,
    group.by = NULL,
    images = NULL,
    cols = NULL,
    crop = TRUE,
    cells.highlight = NULL,
    cols.highlight = c("#DE2D26", "grey50"),
    facet.highlight = FALSE,
    label = FALSE,
    label.size = 7,
    label.color = "white",
    repel = FALSE,
    ncol = NULL,
    combine = TRUE,
    pt.size.factor = 1.6,
    alpha = c(1, 1),
    image.alpha = 1,
    image.scale = "lowres",
    shape = 21,
    stroke = NA,
    label.box = TRUE,
    interactive = FALSE,
    information = NULL
)
```

SpatialFeaturePlot(
```r
SpatialFeaturePlot(
    object = NULL,
    features = NULL,
    images = NULL,
    crop = TRUE,
    slot = "data",
    keep.scale = "feature",
    min.cutoff = NA,
    max.cutoff = NA,
    ncol = NULL,
    combine = TRUE,
    pt.size.factor = 1.6,
    alpha = c(1, 1),
    image.alpha = 1,
    image.scale = "lowres",
    shape = 21,
    stroke = NA,
    interactive = FALSE,
    information = NULL
)
```

Arguments

- **object** A Seurat object
group.by Name of meta.data column to group the data by
features Name of the feature to visualize. Provide either group.by OR features, not both.
images Name of the images to use in the plot(s)
cols Vector of colors, each color corresponds to an identity class. This may also be a single character or numeric value corresponding to a palette as specified by `brewer.pal.info`. By default, ggplot2 assigns colors
image.alpha Adjust the opacity of the background images. Set to 0 to remove.
image.scale Choose the scale factor ("lowres"/" hires") to apply in order to match the plot with the specified ‘image’ - defaults to " lowres"
crop Crop the plot in to focus on points plotted. Set to FALSE to show entire background image.
slot If plotting a feature, which data slot to pull from (counts, data, or scale.data)
keep.scale How to handle the color scale across multiple plots. Options are:
 * “feature” (default; by row/feature scaling): The plots for each individual feature are scaled to the maximum expression of the feature across the conditions provided to `split.by`
 * “all” (universal scaling): The plots for all features and conditions are scaled to the maximum expression value for the feature with the highest overall expression
 * NULL (no scaling): Each individual plot is scaled to the maximum expression value of the feature in the condition provided to `split.by`; be aware setting NULL will result in color scales that are not comparable between plots
min.cutoff, max.cutoff Vector of minimum and maximum cutoff values for each feature, may specify quantile in the form of ’q##’ where ‘##’ is the quantile (eg, ’q1’, ’q10’)
cells.highlight A list of character or numeric vectors of cells to highlight. If only one group of cells desired, can simply pass a vector instead of a list. If set, colors selected cells to the color(s) in cols.highlight
cols.highlight A vector of colors to highlight the cells as; ordered the same as the groups in cells.highlight; last color corresponds to unselected cells.
facet.highlight When highlighting certain groups of cells, split each group into its own plot
label Whether to label the clusters
label.size Sets the size of the labels
label.color Sets the color of the label text
label.box Whether to put a box around the label text (geom_text vs geom_label)
repel Repels the labels to prevent overlap
ncol Number of columns if plotting multiple plots
combine Combine plots into a single gg object; note that if TRUE; themeing will not work when plotting multiple features/groupings
pt.size.factor Scale the size of the spots.
alpha Controls opacity of spots. Provide as a vector specifying the min and max for SpatialFeaturePlot. For SpatialDimPlot, provide a single alpha value for each plot.
shape Control the shape of the spots - same as the ggplot2 parameter. The default is 21, which plots circles - use 22 to plot squares.
stroke Control the width of the border around the spots
interactive Launch an interactive SpatialDimPlot or SpatialFeaturePlot session, see ISpatialDimPlot or ISpatialFeaturePlot for more details
do.identify, do.hover DEPRECATED in favor of interactive
identify.ident DEPRECATED
information An optional dataframe or matrix of extra information to be displayed on hover

Value
If do.identify, either a vector of cells selected or the object with selected cells set to the value of identify.ident (if set). Else, if do.hover, a plotly object with interactive graphics. Else, a ggplot object

Examples
Not run:
For functionality analagous to FeaturePlot
SpatialPlot(seurat.object, features = "MS4A1")
SpatialFeaturePlot(seurat.object, features = "MS4A1")

For functionality analagous to DimPlot
SpatialPlot(seurat.object, group.by = "clusters")
SpatialDimPlot(seurat.object, group.by = "clusters")

End(Not run)

SplitObject Splits object into a list of subsetted objects.

Description
Splits object based on a single attribute into a list of subsetted objects, one for each level of the attribute. For example, useful for taking an object that contains cells from many patients, and subdividing it into patient-specific objects.

Usage
SplitObject(object, split.by = "ident")
STARmap-class

The STARmap class

Description

The STARmap class

Slots

assay Name of assay to associate image data with; will give this image priority for visualization when the assay is set as the active/default assay in a Seurat object

key A one-length character vector with the object’s key; keys must be one or more alphanumeric characters followed by an underscore "_" (regex pattern "^[a-zA-Z][a-zA-Z0-9]*_\$")

subset.AnchorSet Subset an AnchorSet object

Description

Subset an AnchorSet object
Usage

```r
## S3 method for class 'AnchorSet'
subset(
x, 
score.threshold = NULL,
disallowed.dataset.pairs = NULL,
dataset.matrix = NULL,
group.by = NULL,
disallowed.ident.pairs = NULL,
ident.matrix = NULL,
...
)
```

Arguments

- `x` object to be subsetted.
- `score.threshold` Only anchor pairs with scores greater than this value are retained.
- `disallowed.dataset.pairs` Remove any anchors formed between the provided pairs. E.g. `list(c(1, 5), c(1, 2))` filters out any anchors between datasets 1 and 5 and datasets 1 and 2.
- `dataset.matrix` Provide a binary matrix specifying whether a dataset pair is allowable (1) or not (0). Should be a dataset x dataset matrix.
- `group.by` Grouping variable to determine allowable ident pairs
- `disallowed.ident.pairs` Remove any anchors formed between provided ident pairs. E.g. `list(c("CD4", "CD8"), c("B-cell", "T-cell"))`
- `ident.matrix` Provide a binary matrix specifying whether an ident pair is allowable (1) or not (0). Should be an ident x ident symmetric matrix
- `...` further arguments to be passed to or from other methods.

Value

Returns an `AnchorSet` object with specified anchors filtered out

Description

This convenience function subsets a Seurat object based on calculated inflection points.
TopCells

Usage

SubsetByBarcodeInflections(object)

Arguments

object (Seurat object)

Details

See [CalculateBarcodeInflections()] to calculate inflection points and [BarcodeInflectionsPlot()] to visualize and test inflection point calculations.

Value

Returns a subsetted Seurat object.

Author(s)

Robert A. Amezquita, <robert.amezquita@fredhutch.org>

See Also

CalculateBarcodeInflections BarcodeInflectionsPlot

Examples

data("pbmc_small")
pbmc_small <- CalculateBarcodeInflections(
 object = pbmc_small,
 group.column = 'groups',
 threshold.low = 20,
 threshold.high = 30
)
SubsetByBarcodeInflections(object = pbmc_small)

TopCells

Find cells with highest scores for a given dimensional reduction technique

Description

Return a list of genes with the strongest contribution to a set of components

Usage

TopCells(object, dim = 1, ncells = 20, balanced = FALSE, ...)

TopFeatures

Arguments

object DimRed object
dim Dimension to use
ncells Number of cells to return
balanced Return an equal number of cells with both + and - scores.
... Extra parameters passed to Embeddings

Value

Returns a vector of cells

Examples

data("pbmc_small")
pbm_small
head(TopCells(object = pbmc_small[["pca"]]))
Can specify which dimension and how many cells to return
TopCells(object = pbmc_small[["pca"]], dim = 2, ncells = 5)

TopFeatures Find features with highest scores for a given dimensional reduction technique

Description

Return a list of features with the strongest contribution to a set of components

Usage

TopFeatures(
 object,
 dim = 1,
 nfeatures = 20,
 projected = FALSE,
 balanced = FALSE,
 ...
)

Arguments

object DimRed object
dim Dimension to use
nfeatures Number of features to return
projected Use the projected feature loadings
balanced Return an equal number of features with both + and - scores.
... Extra parameters passed to Loadings
TopNeighbors

Value

Returns a vector of features

Examples

```r
data("pbmc_small")
pbmc_small
TopFeatures(object = pbmc_small["pca"], dim = 1)
# After projection:
TopFeatures(object = pbmc_small["pca"], dim = 1, projected = TRUE)
```

Description

Get nearest neighbors for given cell

Return a vector of cell names of the nearest n cells.

Usage

```r
TopNeighbors(object, cell, n = 5)
```

Arguments

- object: Neighbor object
- cell: Cell of interest
- n: Number of neighbors to return

Value

Returns a vector of cell names

TransferAnchorSet-class

The TransferAnchorSet Class

Description

Inherits from the Anchorset class. Implemented mainly for method dispatch purposes. See AnchorSet for slot details.
Transfer categorical or continuous data across single-cell datasets. For transferring categorical information, pass a vector from the reference dataset (e.g. `refdata = reference$celltype`). For transferring continuous information, pass a matrix from the reference dataset (e.g. `refdata = GetAssayData(reference[['RNA']])).

Usage

```r
TransferData(
  anchorset,
  refdata,
  reference = NULL,
  query = NULL,
  query.assay = NULL,
  weight.reduction = "pcaproject",
  l2.norm = FALSE,
  dims = NULL,
  k.weight = 50,
  sd.weight = 1,
  eps = 0,
  n.trees = 50,
  verbose = TRUE,
  slot = "data",
  prediction.assay = FALSE,
  only.weights = FALSE,
  store.weights = TRUE
)
```

Arguments

- `anchorset` An `AnchorSet` object generated by `FindTransferAnchors`
- `refdata` Data to transfer. This can be specified in one of two ways:
 - The reference data itself as either a vector where the names correspond to the reference cells, or a matrix, where the column names correspond to the reference cells.
 - The name of the metadata field or assay from the reference object provided. This requires the reference parameter to be specified. If pulling assay data in this manner, it will pull the data from the data slot. To transfer data from other slots, please pull the data explicitly with `GetAssayData` and provide that matrix here.
- `reference` Reference object from which to pull data to transfer
- `query` Query object into which the data will be transferred.
query.assay Name of the Assay to use from query

weight.reduction Dimensional reduction to use for the weighting anchors. Options are:
- *pca_project*: Use the projected PCA used for anchor building
- *lsiproject*: Use the projected LSI used for anchor building
- *pca*: Use an internal PCA on the query only
- *cca*: Use the CCA used for anchor building
- *custom DimReduc*: User provided DimReduc object computed on the query

l2.norm Perform L2 normalization on the cell embeddings after dimensional reduction

dims Set of dimensions to use in the anchor weighting procedure. If NULL, the same dimensions that were used to find anchors will be used for weighting.

k.weight Number of neighbors to consider when weighting anchors

sd.weight Controls the bandwidth of the Gaussian kernel for weighting

eps Error bound on the neighbor finding algorithm (from RANN)

n.trees More trees gives higher precision when using annoy approximate nearest neighbor search

verbose Print progress bars and output

slot Slot to store the imputed data. Must be either "data" (default) or "counts"

prediction.assay Return an Assay object with the prediction scores for each class stored in the data slot.

only.weights Only return weights matrix

store.weights Optionally store the weights matrix used for predictions in the returned query object.

Details

The main steps of this procedure are outlined below. For a more detailed description of the methodology, please see Stuart, Butler, et al Cell 2019. doi:10.1016/j.cell.2019.05.031; doi:10.1101/460147

For both transferring discrete labels and also feature imputation, we first compute the weights matrix.

- Construct a weights matrix that defines the association between each query cell and each anchor. These weights are computed as 1 - the distance between the query cell and the anchor divided by the distance of the query cell to the k.weightth anchor multiplied by the anchor score computed in FindIntegrationAnchors. We then apply a Gaussian kernel width a bandwidth defined by sd.weight and normalize across all k.weight anchors.

The main difference between label transfer (classification) and feature imputation is what gets multiplied by the weights matrix. For label transfer, we perform the following steps:

- Create a binary classification matrix, the rows corresponding to each possible class and the columns corresponding to the anchors. If the reference cell in the anchor pair is a member of a certain class, that matrix entry is filled with a 1, otherwise 0.
TransferData

- Multiply this classification matrix by the transpose of weights matrix to compute a prediction score for each class for each cell in the query dataset.

For feature imputation, we perform the following step:

- Multiply the expression matrix for the reference anchor cells by the weights matrix. This returns a predicted expression matrix for the specified features for each cell in the query dataset.

Value

If query is not provided, for the categorical data in refdata, returns a data.frame with label predictions. If refdata is a matrix, returns an Assay object where the imputed data has been stored in the provided slot.

If query is provided, a modified query object is returned. For the categorical data in refdata, prediction scores are stored as Assays (prediction.score.NAME) and two additional metadata fields: predicted.NAME and predicted.NAME.score which contain the class prediction and the score for that predicted class. For continuous data, an Assay called NAME is returned. NAME here corresponds to the name of the element in the refdata list.

References

Examples

```r
# Not run:
# to install the SeuratData package see https://github.com/satijalab/seurat-data
dat("pbmc3k")

data for demonstration, split the object into reference and query
pbmc.reference <- pbmc3k[, 1:1350]
pbmc.query <- pbmc3k[, 1351:2700]

# perform standard preprocessing on each object
pbmc.reference <- NormalizeData(pbmc.reference)
pbmc.reference <- FindVariableFeatures(pbmc.reference)
pbmc.reference <- ScaleData(pbmc.reference)
pbmc.query <- NormalizeData(pbmc.query)
pbmc.query <- FindVariableFeatures(pbmc.query)
pbmc.query <- ScaleData(pbmc.query)

# find anchors
anchors <- FindTransferAnchors(reference = pbmc.reference, query = pbmc.query)

# transfer labels
predictions <- TransferData(anchorset = anchors, refdata = pbmc.reference$seurat_annotations)
pbmc.query <- AddMetaData(object = pbmc.query, metadata = predictions)
```

End(Not run)
TransferSketchLabels Transfer data from sketch data to full data

Description

This function transfers cell type labels from a sketched dataset to a full dataset based on the similarities in the lower dimensional space.

Usage

TransferSketchLabels(
 object,
 sketched.assay = "sketch",
 reduction,
 dims,
 refdata = NULL,
 k = 50,
 reduction.model = NULL,
 neighbors = NULL,
 recompute.neighbors = FALSE,
 recompute.weights = FALSE,
 verbose = TRUE
)

Arguments

object A Seurat object.
sketch.assay Sketched assay name. Default is 'sketch'.
reduction Dimensional reduction name to use for label transfer.
dims An integer vector indicating which dimensions to use for label transfer.
refdata A list of character strings indicating the metadata columns containing labels to transfer. Default is NULL. Similar to refdata in 'MapQuery'.
k Number of neighbors to use for label transfer. Default is 50.
reduction.model Dimensional reduction model to use for label transfer. Default is NULL.
neighbors An object storing the neighbors found during the sketching process. Default is NULL.
recompute.neighbors Whether to recompute the neighbors for label transfer. Default is FALSE.
recompute.weights Whether to recompute the weights for label transfer. Default is FALSE.
verbose Print progress and diagnostic messages
UpdateSCTAssays

Value
A Seurat object with transferred labels stored in the metadata. If a UMAP model is provided, the full data are also projected onto the UMAP space, with the results stored in a new reduction, full.'reduction.model'

UnSketchEmbeddings *Transfer embeddings from sketched cells to the full data*

Description
Transfer embeddings from sketched cells to the full data

Usage
```r
UnSketchEmbeddings(
  atom.data,
  atom.cells = NULL,
  orig.data,
  embeddings,
  sketch.matrix = NULL
)
```

Arguments
- `atom.data`: Atom data
- `atom.cells`: Atom cells
- `orig.data`: Original data
- `embeddings`: Embeddings of atom cells
- `sketch.matrix`: Sketch matrix

UpdateSCTAssays *Update pre-V4 Assays generated with SCTransform in the Seurat to the new SCTAssay class*

Description
Update pre-V4 Assays generated with SCTransform in the Seurat to the new SCTAssay class

Usage
```r
UpdateSCTAssays(object)
```

Arguments
- `object`: A Seurat object
Description

Find current gene symbols based on old or alias symbols using the gene names database from the HUGO Gene Nomenclature Committee (HGNC)

Usage

```r
GeneSymbolThesarus(
  symbols,
  timeout = 10,
  several.ok = FALSE,
  search.types = c("alias_symbol", "prev_symbol"),
  verbose = TRUE,
  ...)
```

```r
UpdateSymbolList(
  symbols,
  timeout = 10,
  several.ok = FALSE,
  verbose = TRUE,
  ...)
```

Arguments

- **symbols** A vector of gene symbols
- **timeout** Time to wait before canceling query in seconds
- **several.ok** Allow several current gene symbols for each provided symbol
- **search.types** Type of query to perform:
 - "alias_symbol" Find alternate symbols for the genes described by symbols
 - "prev_symbol" Find new new symbols for the genes described by symbols
 This parameter accepts multiple options and short-hand options (eg. “prev” for “prev_symbol”)
- **verbose** Show a progress bar depicting search progress
- **...** Extra parameters passed to GET
Details

For each symbol passed, we query the HGNC gene names database for current symbols that have the provided symbol as either an alias (alias_symbol) or old (prev_symbol) symbol. All other queries are not supported.

Value

GeneSymbolThesaurus::, if several.ok, a named list where each entry is the current symbol found for each symbol provided and the names are the provided symbols. Otherwise, a named vector with the same information.

UpdateSymbolList:: symbols with updated symbols from HGNC’s gene names database

Note

This function requires internet access

Source

See Also

GET

Examples

```r
# Not run:
GeneSymbolThesaurus(symbols = c("FAM64A"))

# End(Not run)

# Not run:
UpdateSymbolList(symbols = cc.genes$s.genes)

# End(Not run)
```

Description

View variable features
Usage

```r
VariableFeaturePlot(
  object,
  cols = c("black", "red"),
  pt.size = 1,
  log = NULL,
  selection.method = NULL,
  assay = NULL,
  raster = NULL,
  raster.dpi = c(512, 512)
)
```

Arguments

- `object` Seurat object
- `cols` Colors to specify non-variable/variable status
- `pt.size` Size of the points on the plot
- `log` Plot the x-axis in log scale
- `selection.method`
 [Deprecated]
- `assay` Assay to pull variable features from
- `raster` Convert points to raster format, default is NULL which will automatically use raster if the number of points plotted is greater than 100,000
- `raster.dpi` Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is c(512, 512).

Value

A ggplot object

See Also

- `FindVariableFeatures`

Examples

```r
data("pbmc_small")
VariableFeaturePlot(object = pbmc_small)
```
VisiumV1-class
The VisiumV1 class

Description

The VisiumV1 class represents spatial information from the 10X Genomics Visium platform.

Slots

- **image** A three-dimensional array with PNG image data, see `readPNG` for more details.
- **scale.factors** An object of class `scalefactors`; see `scalefactors` for more information.
- **coordinates** A data frame with tissue coordinate information.
- **spot.radius** Single numeric value giving the radius of the spots.

VisiumV2-class
The VisiumV2 class

Description

The VisiumV2 class represents spatial information from the 10X Genomics Visium HD platform - it can also accommodate data from the standard Visium platform.

Slots

- **image** A three-dimensional array with PNG image data, see `readPNG` for more details.
- **scale.factors** An object of class `scalefactors`; see `scalefactors` for more information.

VizDimLoadings
Visualize Dimensional Reduction genes

Description

Visualize top genes associated with reduction components.

Usage

```r
VizDimLoadings(
  object,  
  dims = 1:5,  
  nfeatures = 30,  
  col = "blue",  
  reduction = "pca",  
  projected = FALSE,  
  balanced = FALSE,  
  ncol = NULL,  
  combine = TRUE
)
```
Arguments

- **object**: Seurat object
- **dims**: Number of dimensions to display
- **nfeatures**: Number of genes to display
- **col**: Color of points to use
- **reduction**: Reduction technique to visualize results for
- **projected**: Use reduction values for full dataset (i.e. projected dimensional reduction values)
- **balanced**: Return an equal number of genes with + and - scores. If FALSE (default), returns the top genes ranked by the scores absolute values
- **ncol**: Number of columns to display
- **combine**: Combine plots into a single patchwork ggplot object. If FALSE, return a list of ggplot objects

Value

A patchwork ggplot object if combine = TRUE; otherwise, a list of ggplot objects

Examples

```r
data("pbmc_small")
VizDimLoadings(object = pbmc_small)
```

Description

Draws a violin plot of single cell data (gene expression, metrics, PC scores, etc.)

Usage

```r
VlnPlot(
  object,
  features,
  cols = NULL,
  pt.size = NULL,
  alpha = 1,
  idents = NULL,
  sort = FALSE,
  assay = NULL,
  group.by = NULL,
  split.by = NULL,
  adjust = 1,
)```
Arguments

object  Seurat object
features Features to plot (gene expression, metrics, PC scores, anything that can be re-

treived by FetchData)
cols  Colors to use for plotting
pt.size  Point size for points
alpha  Alpha value for points
idents  Which classes to include in the plot (default is all)
sort  Sort identity classes (on the x-axis) by the average expression of the attribute
being potted, can also pass 'increasing' or 'decreasing' to change sort direction
assay  Name of assay to use, defaults to the active assay
group.by  Group (color) cells in different ways (for example, orig.ident)
split.by  A factor in object metadata to split the plot by, pass 'ident' to split by cell iden-
tity'
adjust  Adjust parameter for geom_violin
y.max  Maximum y axis value
same.y.lims  Set all the y-axis limits to the same values
log  plot the feature axis on log scale
ncol  Number of columns if multiple plots are displayed
slot  Slot to pull expression data from (e.g. "counts" or "data")
layer  Layer to pull expression data from (e.g. "counts" or "data")
split.plot  plot each group of the split violin plots by multiple or single violin shapes.
stack  Horizontally stack plots for each feature
combine  Combine plots into a single patchworked ggplot object. If FALSE, return a list
of ggplot
fill.by  Color violins/ridges based on either 'feature' or 'ident'
flip  flip plot orientation (identities on x-axis)
add.noise  determine if adding a small noise for plotting
raster  Convert points to raster format. Requires 'ggrastr' to be installed.
Value

A patchworked ggplot object if `combine = TRUE`; otherwise, a list of ggplot objects

See Also

FetchData

Examples

data("pbmc_small")
VlnPlot(object = pbmc_small, features = 'PC_1')
VlnPlot(object = pbmc_small, features = 'LYZ', split.by = 'groups')
Index

* clustering
  BuildNicheAssay, 28
  FindClusters, 76
  FindMultiModalNeighbors, 88
  FindNeighbors, 90
  FindSubCluster, 95

* convenience
  DimHeatmap, 51
  DimPlot, 52
  ReadParseBio, 196
  ReadSTARsolo, 197
  SpatialPlot, 249

* datasets
  cc.genes, 32
  cc.genes.updated.2019, 32

* data
  cc.genes, 32
  cc.genes.updated.2019, 32

* differential_expression
  FindAllMarkers, 70
  FindConservedMarkers, 78
  FindMarkers, 82
  FoldChange, 102
  PrepSCTFindMarkers, 175

* dimensional_reduction
  JackStraw, 131
  L2CCA, 136
  L2Dim, 136
  PCASigGenes, 165
  ProjectDim, 179
  ProjectUMAP, 182
  RunCCA, 207
  RunGraphLaplacian, 209
  RunICA, 210
  RunPCA, 216
  RunSLSI, 218
  RunSPCA, 219
  RunTSNE, 221
  RunUMAP, 223
  ScoreJackStraw, 233

* future
  PrepSCTFindMarkers, 175
  ReadNanostring, 194
  ReadVizgen, 199

* integration
  AnnotateAnchors, 15
  BridgeCellsRepresentation, 25
  CCAIntegration, 33
  FastRPCAIntegration, 62
  FindBridgeIntegrationAnchors, 74
  FindBridgeTransferAnchors, 75
  FindIntegrationAnchors, 79
  FindTransferAnchors, 96
  GetTransferPredictions, 108
  HarmonyIntegration, 111
  IntegrateData, 123
  IntegrateEmbeddings, 126
  IntegrateLayers, 128
  JointPCAIntegration, 134
  LocalStruct, 147
  MappingScore, 149
  MapQuery, 151
  MixingMetric, 155
  NNtoGraph, 163
  PredictAssay, 171
  PrepareBridgeReference, 172
  PrepSCTIntegration, 176
  ProjectDimReduc, 180
  ProjectIntegration, 181
  SelectIntegrationFeatures, 240
  SelectIntegrationFeaturesS, 242
  SelectSCTIntegrationFeatures, 242
  TransferData, 258
  UnSketchEmbeddings, 262

* mixscape
  CalcPerturbSig, 28
  DEenrichRPlot, 48
  MixscapeHeatmap, 156
<table>
<thead>
<tr>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>MixscapeLDA, 159</td>
</tr>
<tr>
<td>PlotPerturbScore, 168</td>
</tr>
<tr>
<td>PrepLDA, 174</td>
</tr>
<tr>
<td>RunLDA, 212</td>
</tr>
<tr>
<td>RunMixscape, 214</td>
</tr>
</tbody>
</table>

* objects

- AnchorSet-class, 14
- as.CellDataSet, 16
- as.Seurat.CellDataSet, 17
- as.SingleCellExperiment, 18
- as.sparse.H5Group, 18
- BridgeReferenceSet-class, 26
- Cells.SCTModel, 37
- CreateSCTAssayObject, 46
- DietSeurat, 50
- FilterSlideSeq, 69
- GetAssay, 104
- GetImage.SlideSeq, 105
- GetIntegrationData, 106
- GetTissueCoordinates.SlideSeq, 107
- HVFInfo.SCTAssay, 117
- IntegrationAnchorSet-class, 129
- IntegrationData-class, 129
- merge.SCTAssay, 153
- ModalityWeights-class, 160
- Radius.SlideSeq, 186
- RenameCells.SCTAssay, 203
- ScaleFactors, 232
- SCTAssay-class, 234
- SCTResults, 239
- SetIntegrationData, 243
- SplitObject, 252
- STARmap-class, 253
- subset.AnchorSet, 253
- TopCells, 255
- TopFeatures, 256
- TopNeighbors, 257
- TransferAnchorSet-class, 257
- UpdateSCTAssays, 262
- VisiumV1-class, 266
- VisiumV2-class, 266

* preprocessing

- CalculateBarcodeInflections, 30
- FetchResiduals, 68
- FindSpatiallyVariableFeatures, 93
- FindVariableFeatures, 99
- GetResidual, 106
- HTODemux, 114
- Load10X_Spatial, 142
- LoadCurioSeeker, 144
- LoadSTARmap, 145
- LoadXenium, 146
- LogNormalize, 148
- MULTIseqDemux, 160
- NormalizeData, 164
- Read10X, 187
- Read10X_Coordinates, 188
- Read10X_h5, 189
- Read10X_Image, 189
- Read10X_probe_metadata, 190
- Read10X_ScaleFactors, 191
- ReadAkoya, 191
- ReadMtx, 193
- ReadNanostring, 194
- ReadSlideSeq, 197
- ReadVitessce, 198
- ReadVizgen, 199
- RelativeCounts, 202
- RunMarkVario, 213
- RunMoransI, 215
- SampleUMI, 228
- ScaleData, 230
- SCTransform, 236
- SubsetByBarcodeInflections, 254

* sketching

- LeverageScore, 139
- ProjectData, 178
- SketchData, 247
- TransferSketchLabels, 261

* spatial

- Cells.SCTModel, 37
- FilterSlideSeq, 69
- FindSpatiallyVariableFeatures, 93
- GetImage.SlideSeq, 105
- GetTissueCoordinates.SlideSeq, 107
- ImageDimPlot, 118
- ImageFeaturePlot, 120
- ISpatialDimPlot, 130
- ISpatialFeaturePlot, 130
- LinkedPlots, 141
- PolyFeaturePlot, 170
- Radius.SlideSeq, 186
- ScaleFactors, 232
- SlideSeq-class, 248
- SpatialPlot, 249
- STARmap-class, 253
VisiumV1-class, 266  
VisiumV2-class, 266  
* tree  
  BuildClusterTree, 26  
* utilities  
  AddAzimuthResults, 10  
  AddModuleScore, 11  
  AggregateExpression, 12  
  as.sparse.H5Group, 18  
  AverageExpression, 21  
  CaseMatch, 31  
  CellCycleScoring, 35  
  CollapseSpeciesExpressionMatrix, 41  
  CreateCategoryMatrix, 46  
  CustomDistance, 47  
  ExpMean, 60  
  ExpSD, 60  
  ExpVar, 61  
  FastRowScale, 62  
  GroupCorrelation, 110  
  LoadAnnoyIndex, 144  
  LogVMR, 149  
  MetaFeature, 154  
  MinMax, 155  
  PercentAbove, 166  
  PercentageFeatureSet, 167  
  PseudobulkExpression, 184  
  RegroupIdents, 201  
  RPCAIntegration, 205  
  SaveAnnoyIndex, 229  
  SetQuantile, 244  
  UpdateSymbolList, 263  
* visualization  
  AugmentPlot, 19  
  AutoPointSize, 20  
  BarcodeInflectionsPlot, 22  
  BGTextColor, 23  
  BlackAndWhite, 24  
  CellScatter, 37  
  CellSelector, 39  
  CollapseEmbeddingOutliers, 40  
  ColorDimSplit, 42  
  CombinePlots, 44  
  contrast-theory, 45  
  DimHeatmap, 51  
  DimPlot, 52  
  DiscretePalette, 55  
  DoHeatmap, 56  
  DotPlot, 58  
  ElbowPlot, 59  
  FeaturePlot, 63  
  FeatureScatter, 66  
  GroupCorrelationPlot, 111  
  HoverLocator, 113  
  HTOHeatmap, 116  
  IFeaturePlot, 118  
  ImageDimPlot, 118  
  ImageFeaturePlot, 120  
  ISpatialDimPlot, 130  
  ISpatialFeaturePlot, 130  
  JackStrawPlot, 133  
  LabelClusters, 137  
  LabelPoints, 138  
  LinkedPlots, 141  
  NNPlot, 162  
  PlotClusterTree, 168  
  PolyDimPlot, 169  
  PolyFeaturePlot, 170  
  RidgePlot, 203  
  SeuratTheme, 245  
  SpatialPlot, 249  
  VariableFeaturePlot, 264  
  VizDimLoadings, 266  
  VlnPlot, 267  
?future::plan, 175, 196, 201  
  AddAzimuthResults, 10  
  AddModuleScore, 11, 36  
  AggregateExpression, 12  
  AnchorSet, 15, 81, 123, 129, 254, 257, 258  
  AnchorSet (AnchorSet-class), 14  
  AnchorSet-class, 14  
  AnnotateAnchors, 15  
  annotation_raster, 19  
  ape::plot.phylo, 168  
  as.CellDataSet, 16  
  as.data.frame.Matrix  
    (as.sparse.H5Group), 18  
  as.Seurat.CellDataSet, 17  
  as.Seurat.SingleCellExperiment  
    (as.Seurat.CellDataSet), 17  
  as.SingleCellExperiment, 18  
  as.sparse.H5Group, 18  
  Assay, 125, 177, 234, 235  
  Assay-class, 19  
  Assay5, 112
AugmentPlot, 19
AutoPointSize, 20
AverageExpression, 21
BarcodeInflectionsPlot, 22, 31, 255
BGTextColor, 23
BlackAndWhite, 24
BlueAndRed (BlackAndWhite), 24
BoldTitle (SeuratTheme), 245
brewer.pal.info, 42, 53, 119, 133, 251
BridgeCellsRepresentation, 25
BridgeReferenceSet, 74, 75
BridgeReferenceSet
(BridgeReferenceSet-class), 26
BridgeReferenceSet-class, 26
BuildClusterTree, 26, 72, 86, 104, 157
BuildNicheAssay, 28
CalcPerturbSig, 28
CalculateBarcodeInflections, 23, 30, 255
CaseMatch, 31
cc.genes, 32, 33
cc.genes.updated.2019, 32
CCAIntegration, 33
CellCycleScoring, 35
CellPlot (CellScatter), 37
Cells.SCTModel, 37
Cells.SlideSeq
(Cells.SCTModel), 37
Cells.STARmap
(Cells.SCTModel), 37
Cells.VisiumV1
(Cells.SCTModel), 37
CellScatter, 37
CellSelector, 39, 55, 66
CenterTitle (SeuratTheme), 245
CollapseEmbeddingOutliers, 40
CollapseSpeciesExpressionMatrix, 41
ColorDimSplit, 42
CombinePlots, 44, 142
contrast-theory, 45
correct_counts, 239
CreateCategoryMatrix, 46
CreateSCTAssayObject, 46
CreateSeuratObject, 13, 21, 186
CustomDistance, 47
CustomPalette
(BlackAndWhite), 24
DarkTheme (SeuratTheme), 245
data.frame, 19
DEenrichRPlot, 48
DefaultAssay, 173
DietSeurat, 50
dimensional reduction, 34, 112, 134, 205
DimHeatmap, 51
DimPlot, 39, 42, 43, 52, 66, 114
DimReduc, 34, 124, 127, 135, 206, 259
DimReduc-class, 55
DiscretePalette, 42, 53, 55, 119, 133
DoHeatmap, 56
DotPlot, 58
ElbowPlot, 59
Embeddings, 256
ExpMean, 60
ExpSD, 60
ExpVar, 61
facet_grid, 137
facet_wrap, 137
FastRowScale, 62
FastRPCAIntegration, 62
FeatureHeatmap (FeaturePlot), 63
FeatureLocator (CellSelector), 39
FeaturePlot, 39, 55, 63, 66, 114
FeatureScatter, 66
FetchData, 55, 59, 170, 269
FetchResiduals, 68
FilterSlideSeq, 69
FindAllMarkers, 70
FindAllMarkersNode (FindAllMarkers), 70
FindBridgeIntegrationAnchors, 74
FindBridgeTransferAnchors, 75, 174
FindClusters, 76
FindConservedMarkers, 78
FindIntegrationAnchors, 62, 63, 79, 123, 124, 259
FindMarkers, 82, 104
FindMarkersNode (FindMarkers), 82
FindMultiModalNeighbors, 88, 160
FindNeighbors, 90
FindSpatiallyVariableFeatures, 93
FindSubCluster, 95
FindTransferAnchors, 16, 96, 151, 258
FindVariableFeatures, 99, 241, 265
FindVariableGenes
(FindVariableFeatures), 99
FoldChange, 102
FontSize (SeuratTheme), 245
GenePlot (FeatureScatter), 66
INDEX

GeneSymbolThesaurus (UpdateSymbolList), 263
geom_raster, 52
gem_text, 137, 138
gem_text_repel, 137
GET, 263, 264
get_residuals, 69, 107, 239
GetAssay, 104
GetAssayData, 152, 258
GetImage.SlideSeq, 105
GetImage.STARmap (GetImage.SlideSeq), 105
GetImage.VisiumV1 (GetImage.SlideSeq), 105
GetIntegrationData, 106
GetResidual, 106, 176
GetTissueCoordinates.SlideSeq, 107
GetTissueCoordinates.STARmap (GetTissueCoordinates.SlideSeq), 107
GetTissueCoordinates.VisiumV1 (GetImage.SlideSeq), 107
GetTissueCoordinates.VisiumV2 (GetTissueCoordinates.SlideSeq), 107
GetTransferPredictions, 108
ggplot_build, 114
Graph, 92
Graph-class, 109
Graphs, 92
GroupCorrelation, 110
GroupCorrelationPlot, 111

harmony::HarmonyMatrix, 113
HarmonyIntegration, 111
hclust, 35, 124, 127, 135, 206
HoverLocator, 55, 66, 113
HTODemux, 114, 116
HTOHeatmap, 115, 116
HVFInfo, 117
HVFInfo.SCTAssay, 117

ICAPlot (DimPlot), 52
IFeaturePlot, 118
image, 52
ImageDimPlot, 118
ImageFeaturePlot, 120
IntegrateData, 14, 79, 81, 123, 128
IntegrateEmbeddings, 62, 74–76, 98, 126, 151–153
IntegrateLayers, 128
IntegrationAnchorSet
(IntegrationAnchorSet-class), 129
IntegrationAnchorSet-class, 129
IntegrationData
(IntegrationData-class), 129
IntegrationData-class, 129
Intensity (contrast-theory), 45
ISpatialDimPlot, 130, 252
ISpatialFeaturePlot, 130, 252
JackStraw, 131, 166
JackStrawData-class, 132
JackStrawPlot, 133, 234
JointPCAIIntegration, 134
L2CCA, 136
L2Dim, 136
LabelClusters, 137
Labeler (LabelPoints), 138
LabelPoints, 138
layout, 114
levels.SCTAssay (SCTAssay-class), 234
levels<- .SCTAssay (SCTAssay-class), 234
LeverageScore, 139
LinkedDimPlot (LinkedPlots), 141
LinkedFeaturePlot (LinkedPlots), 141
LinkedPlot (LinkedPlots), 141
LinkedPlots, 141
Load10X_Spatial, 142, 190
LoadAkoya (ReadAkoya), 191
LoadAnnoyIndex, 144
LoadCurioSeeker, 144
LoadHuBMAPCODEX (ReadVitessce), 198
Loading, 256
LoadNanostring (ReadNanostring), 194
LoadSTARmap, 145
LoadVizgen (ReadVizgen), 199
LoadXenium, 146
LocalStruct, 147
LogNormaliz, 148
LogVMR, 149
Luminance (contrast-theory), 45
make.names, 19
MappingScore, 149
INDEX

MapQuery, 75, 76, 98, 151
MeanVarPlot (VariableFeaturePlot), 264
merge.SCTAssay, 153
merge.Seurat, 209
MetaFeature, 154
MinMax, 155
MixingMetric, 155
MixscapeHeatmap, 156
MixscapeLDA, 159
ModalityWeights, 89
ModalityWeights
  (ModalityWeights-class), 160
ModalityWeights-class, 160
MULTIseqDemux, 160
Neighbor, 92, 257
Neighbor-class, 161
Neighbors, 92
NNPlot, 162
NNtoGraph, 163
NoAxes (SeuratTheme), 245
NoGrid (SeuratTheme), 245
NoLegend (SeuratTheme), 245
NormalizeData, 13, 164, 186

patchwork, 43, 52, 54, 57, 66, 68, 122, 163, 204, 268, 269
PCAPlot (DimPlot), 52
PCASigGenes, 165
PCHeatmap (DimHeatmap), 51
PercentAbove, 166
PercentageFeatureSet, 167
plan, 175, 196, 201
PlotClusterTree, 168
PlotPerturbScore, 168
PolyDimPlot, 169, 245
PolyFeaturePlot, 170, 245
PredictAssay, 171
PrepareBridgeReference, 74, 75, 172
PrepLDA, 174
PrepSCTFIndMarkers, 175
PrepSCTIntegration, 176
ProjectData, 178
ProjectDim, 166, 179
ProjectDimReduc, 180
ProjectIntegration, 181
ProjectUMAP, 151–153, 182
PseudobulkExpression, 184
PurpleAndYellow (BlackAndWhite), 24
Radius.SlideSeq, 186
Radius.STARmap (Radius.SlideSeq), 186
Radius.VisiumV1 (Radius.SlideSeq), 186
Radius.VisiumV2 (Radius.SlideSeq), 186
RANN, 97, 124, 259
RcppAnnoy, 97
Read10X, 187
Read10X_Coordinates, 188
Read10X_h5, 143, 189
Read10X_image, 189
Read10X_probe_metadata, 190
Read10X_ScaleFactors, 191
ReadAkoya, 191
ReadMtx, 193, 196, 197
ReadNanostring, 194
ReadParseBio, 196
readPNG, 266
ReadSlideSeq, 197
ReadSTARsolo, 197
ReadVitessce, 198
ReadVizgen, 199
ReadXenium (LoadXenium), 146
RegroupIdent, 201
RelativeCounts, 202
RenameCells.SCTAssay, 203
RenameCells.SlideSeq
  (RenameCells.SCTAssay), 203
RenameCells.STARmap
  (RenameCells.SCTAssay), 203
RenameCells.VisiumV1
  (RenameCells.SCTAssay), 203
RestoreLegend (SeuratTheme), 245
RidgePlot, 203
RotatedAxis (SeuratTheme), 245
RPCAIntegration, 205
RunCCA, 207
RunGraphLaplacian, 209
RunICA, 210
RunLDA, 212
RunMarkVario, 94, 213
RunMixscape, 214
RunMoransI, 94, 215
RunPCA, 62, 216
RunSLSI, 218
RunSPCA, 219
RunSVD, 97
RunTFIDF, 97
RunTSNE, 221
<table>
<thead>
<tr>
<th>Function / Class</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>RunUMAP</td>
<td>9, 184, 223</td>
</tr>
<tr>
<td>SampleUMI</td>
<td>228</td>
</tr>
<tr>
<td>SaveAnnoyIndex</td>
<td>229</td>
</tr>
<tr>
<td>ScaleData</td>
<td>73, 22, 230</td>
</tr>
<tr>
<td>ScaleFactors</td>
<td>232, 266</td>
</tr>
<tr>
<td>scalefactors</td>
<td>232</td>
</tr>
<tr>
<td>ScaleFactors.VisiumV1</td>
<td>232</td>
</tr>
<tr>
<td>ScaleFactors.VisiumV2</td>
<td>232</td>
</tr>
<tr>
<td>ScoreJackStraw</td>
<td>134, 233</td>
</tr>
<tr>
<td>SCTAssay</td>
<td>117, 239</td>
</tr>
<tr>
<td>SCTAssay-class</td>
<td>234</td>
</tr>
<tr>
<td>SCTModel</td>
<td>234</td>
</tr>
<tr>
<td>SCTTransform</td>
<td>176, 177, 234, 235, 236</td>
</tr>
<tr>
<td>SCTResults</td>
<td>239</td>
</tr>
<tr>
<td>SCTResults&lt;-</td>
<td>(SCTResults), 239</td>
</tr>
<tr>
<td>SelectIntegrationFeatures</td>
<td>63, 80, 81, 176, 177, 240</td>
</tr>
<tr>
<td>SelectIntegrationFeatures5</td>
<td>242</td>
</tr>
<tr>
<td>SetIntegrationData</td>
<td>243</td>
</tr>
<tr>
<td>SetQuantile</td>
<td>244</td>
</tr>
<tr>
<td>Seurat, 10, 13, 22, 50, 63, 79, 80, 92, 96, 119, 125, 128, 136, 144–146, 153, 176, 177, 186, 192, 196, 199, 201, 243</td>
<td></td>
</tr>
<tr>
<td>Seurat (Seurat-package), 8</td>
<td></td>
</tr>
<tr>
<td>Seurat-class</td>
<td>244</td>
</tr>
<tr>
<td>Seurat-package</td>
<td>8</td>
</tr>
<tr>
<td>SeuratAxes (SeuratTheme), 245</td>
<td></td>
</tr>
<tr>
<td>SeuratCommand-class</td>
<td>245</td>
</tr>
<tr>
<td>SeuratObject, 19, 55, 109, 132, 161, 244, 245, 248</td>
<td></td>
</tr>
<tr>
<td>SeuratObject::as.Seurat, 17</td>
<td></td>
</tr>
<tr>
<td>SeuratObject::as.sparse, 19</td>
<td></td>
</tr>
<tr>
<td>SeuratObject::Cells, 37</td>
<td></td>
</tr>
<tr>
<td>SeuratObject::GetImage, 106</td>
<td></td>
</tr>
<tr>
<td>SeuratObject::GetTissueCoordinates, 108</td>
<td></td>
</tr>
<tr>
<td>SeuratObject::Radius, 187</td>
<td></td>
</tr>
<tr>
<td>SeuratObject::RenameCells, 203</td>
<td></td>
</tr>
<tr>
<td>SeuratTheme, 245</td>
<td></td>
</tr>
<tr>
<td>SketchData</td>
<td>247</td>
</tr>
<tr>
<td>SlideSeq</td>
<td>197</td>
</tr>
<tr>
<td>SlideSeq (SlideSeq-class), 248</td>
<td></td>
</tr>
<tr>
<td>SlideSeq-class</td>
<td>248</td>
</tr>
<tr>
<td>sparse matrix, 146, 192, 196, 201</td>
<td></td>
</tr>
<tr>
<td>SpatialDimPlot, 69, 70</td>
<td></td>
</tr>
<tr>
<td>SpatialDimPlot (SpatialPlot), 249</td>
<td></td>
</tr>
<tr>
<td>SpatialFeaturePlot (SpatialPlot), 249</td>
<td></td>
</tr>
<tr>
<td>SpatialImage-class, 248</td>
<td></td>
</tr>
<tr>
<td>SpatialPlot, 249</td>
<td></td>
</tr>
<tr>
<td>SpatialTheme (SeuratTheme), 245</td>
<td></td>
</tr>
<tr>
<td>split, 231</td>
<td></td>
</tr>
<tr>
<td>SplitDotPlotGG (DotPlot), 58</td>
<td></td>
</tr>
<tr>
<td>SplitObject, 252</td>
<td></td>
</tr>
<tr>
<td>STARMAP</td>
<td>145</td>
</tr>
<tr>
<td>STARMAP (STARMAP-class), 253</td>
<td></td>
</tr>
<tr>
<td>STARMAP-class, 253</td>
<td></td>
</tr>
<tr>
<td>subset.AnchorSet, 253</td>
<td></td>
</tr>
<tr>
<td>SubsetByBarcodeInflections, 23, 31, 254</td>
<td></td>
</tr>
<tr>
<td>theme, 246</td>
<td></td>
</tr>
<tr>
<td>Tool, 27</td>
<td></td>
</tr>
<tr>
<td>TopCells, 255</td>
<td></td>
</tr>
<tr>
<td>TopFeatures, 256</td>
<td></td>
</tr>
<tr>
<td>TopNeighbors, 257</td>
<td></td>
</tr>
<tr>
<td>TransferAnchorSet (TransferAnchorSet-class), 257</td>
<td></td>
</tr>
<tr>
<td>TransferAnchorSet-class, 257</td>
<td></td>
</tr>
<tr>
<td>TransferData, 14, 76, 96, 98, 108, 151, 152, 258</td>
<td></td>
</tr>
<tr>
<td>TransferSketchLabels, 261</td>
<td></td>
</tr>
<tr>
<td>TSNEPlot (DimPlot), 52</td>
<td></td>
</tr>
<tr>
<td>umap, 227</td>
<td></td>
</tr>
<tr>
<td>UMAPPLOT (DimPlot), 52</td>
<td></td>
</tr>
<tr>
<td>UnSketchEmbeddings, 262</td>
<td></td>
</tr>
<tr>
<td>UpdateSCTAssays, 262</td>
<td></td>
</tr>
<tr>
<td>UpdateSymbolList, 11, 12, 263</td>
<td></td>
</tr>
<tr>
<td>VariableFeaturePlot, 264</td>
<td></td>
</tr>
<tr>
<td>VariableGenePlot (VariableFeaturePlot), 264</td>
<td></td>
</tr>
<tr>
<td>VisiumV1 (VisiumV1-class), 266</td>
<td></td>
</tr>
<tr>
<td>VisiumV1-class, 266</td>
<td></td>
</tr>
<tr>
<td>VisiumV2, 190</td>
<td></td>
</tr>
<tr>
<td>VisiumV2 (VisiumV2-class), 266</td>
<td></td>
</tr>
<tr>
<td>VisiumV2-class, 266</td>
<td></td>
</tr>
<tr>
<td>VizDimLoadings, 266</td>
<td></td>
</tr>
<tr>
<td>VlnPlot, 267</td>
<td></td>
</tr>
<tr>
<td>WhiteBackground (SeuratTheme), 245</td>
<td></td>
</tr>
<tr>
<td>with_progress, 175, 192, 196, 199, 201</td>
<td></td>
</tr>
<tr>
<td>Writing integration method functions, 129</td>
<td></td>
</tr>
</tbody>
</table>