Package ‘SDLfilter’

July 20, 2021

Type Package

Title Filtering and Assessing the Sample Size of Tracking Data

Version 2.1.1

Date 2021-07-04

Author Takahiro Shimada

Maintainer Takahiro Shimada <taka.shimada@gmail.com>

Description Functions to filter GPS/Argos locations, as well as assessing the sample size for the analysis of animal distributions. The filters remove temporal and spatial duplicates, fixes located at a given height from estimated high tide line, and locations with high error as described in Shimada et al. (2012) [doi:10.3354/meps09747] and Shimada et al. (2016) [doi:10.1007/s00227-015-2771-0]. Sample size for the analysis of animal distributions can be assessed by the conventional area-based approach or the alternative probability-based approach as described in Shimada et al. (2021) [doi:10.1111/2041-210X.13506].

Depends R (>= 3.5.0), ggplot2

Imports plotKML, sp, raster, trip, data.table, gridExtra, ggsn, stats, maps, pracma, plyr, ggmap, lubridate, dplyr

License GPL-2 | file LICENSE

URL https://github.com/TakahiroShimada/SDLfilter

BugReports https://github.com/TakahiroShimada/SDLfilter/issues

LazyData true

Encoding UTF-8

RoxygenNote 7.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2021-07-20 08:50:06 UTC
R topics documented:

- **asymptote** ... 2
- **Australia** ... 4
- **bathymodel** ... 4
- **boot_area** ... 5
- **boot_overlap** ... 6
- **ddfilter** ... 8
- **ddfilter_loop** 11
- **ddfilter_speed** 12
- **depthfilter** .. 13
- **distfilter** ... 16
- **dupfilter** ... 18
- **dupfilter_exact** 19
- **dupfilter_qi** ... 20
- **dupfilter_space** 21
- **dupfilter_time** 23
- **flatback** .. 24
- **kml_track** ... 25
- **map_track** ... 26
- **percent_vol** .. 29
- **SandyStrait** ... 29
- **tidalplane** ... 30
- **tidedata** .. 30
- **track_param** .. 31
- **turtle** ... 32
- **turtle2** ... 33
- **ud_matrix** ... 34
- **ud_raster** ... 34
- **vmax** ... 35
- **vmaxlp** ... 36

Index 38

asymptote

Horizontal asymptotes of rational functions

Description

Function to find horizontal asymptotes of a rational function.

Usage

```r
asymptote(
  data = NULL,
  x = NULL,
  y = NULL,
  degree = "optim",
```
asymptote

upper.degree = 10,
d1 = NA,
d2 = NA,
threshold = 0.95,
proportional = TRUE,
max.asymptote = 1
)

Arguments

data An output object from boot_overlap or boot_area.
x, y Numeric vectors of independent (x) and dependent (y) variables. These parameters will be ignored if data is supplied.

degree The default 'optim' option selects the maximal degree of numerator and denominator of a rational function that minimises the mean squared error. Alternatively, an integer can be used to specify the maximal degree. The 'optim' option is recommended unless there is a strong reason that a maximal degree should be specified.

upper.degree The upper limit of the maximal degree to be assessed when the 'optim' option is selected. Default is 2, meaning the "optimal" degree is searched from 1 and 2. The default usually gives good results. If the fit does not look good, a larger value may result in a better fit.

d1, d2 (Deprecated) Maximal degrees of numerator (d1) and denominator (d2) of a rational function. d1 and d2 must be equal. Use degree instead.

threshold Threshold value for considering an asymptote. Once the y value reaches the threshold, it is considered that an asymptote is reached.

proportional If TRUE (default), a threshold is calculated as estimated asymptote * threshold. If FALSE, the value specified in threshold is used in the analysis.

max.asymptote The maximum limit of an expected asymptote. Default is 1 (i.e. maximum probability).

Details

This function fits a rational function to the input data. When an output object from boot_overlap or boot_area is supplied, a rational function is fit to the means of the bootstrap results (e.g. mean overlap probability) as a function of x (e.g. sample size). It then estimates horizontal asymptotes and identifies the sample size when an asymptote is considered. Please caution when estimated horizontal asymptote is very different from the expected asymptote. For example, the estimated horizontal asymptote should be around 1 if overlaps between UDs are calculated using the "PHR" method. see boot_overlap.

Value

A list containing a data frame (rational function fit associated with x values), an estimated horizontal asymptote, the minimum sample size if an asymptote is reached, and the estimated optimal degree of numerator and denominator of the rational function.
Author(s)
Takahiro Shimada

References

See Also
- boot_overlap, boot_area

Australia
A map of Australia

Description
This map layer outlines the coast of Australia.

Usage
Australia

Format
A data.frame

bathymodel
Bathymetry model for Sandy Strait, Australia

Description
A high resolution bathymetry model (100 m) for the Sandy Strait region developed by Beaman, R.J. (2010).

Usage
bathymodel

Format
A RasterLayer
boot_area

Source

https://www.deepreef.org/

References

boot_area

Cumulative analysis of collective areas by bootstrapping

Description

Function to calculate collective areas (merged x% Utilisation Distributions or UD) of n individuals by bootstrapping.

Usage

```r
boot_area(
  data,
  cell.size = NA,
  R = 1000,
  percent = 50,
  quantiles = c(0.25, 0.5, 0.75)
)
```

Arguments

- **data**
 A matrix or list of RasterLayer objects. Each row of the matrix or each RasterLayer object contains a utilisation distribution (or other statistics that sums to 1 - e.g. proportion of time spent). **The grid size and geographical extent must be consistent across each row of the matrix or each RasterLayer object.** The function assumes that each column of the matrix is associated with a unique geographical location or that each RasterLayer has exactly the same geographical extent and resolution.

- **cell.size**
 A numeric value specifying the grid cell size of the input data in metres.

- **R**
 An integer specifying the number of iterations. A larger R is required when the sample size is large. R = sample size x 200 is often sufficient (e.g. R = 2000 for a sample size 10).

- **percent**
 An integer specifying the percent volume of each UD to be considered in the analysis.

- **quantiles**
 A vector or a number to specify the quantiles to be calculated in the summary of the results.
Details

This function calculates collective areas (e.g. 50% UDs) of 1 to n individuals by bootstrapping.

Value

A list containing two data frames - raw results and summary (mean, sd, sem and quantiles at each sample size).

Author(s)

Takahiro Shimada

References

Examples

```r
## Not run:
#1 Utilisation distributions of flatback turtles (n = 29).
data(ud_matrix)

#2 Calculate collective areas from 6000 random permutation
area <- boot_area(ud_matrix, R = 6000, percent = 50)

#3 Find the minimum sample size required to estimate the general distribution.
a <- asymptote(area)

#4 Plot the mean collective area and rational function fit relative to the sample sizes.
ggplot(data = area$summary)+
    geom_point(aes(x = N, y = mu/1e+6), alpha = 0.5) +
    geom_path(data = a$results, aes(x = x, y = ys/1e+6)) +
    labs(x = "N", y = expression(Area~(km^2)))
```
\textbf{Usage}

\begin{verbatim}
boot_overlap(
 data,
 R = 1000,
 method = "PHR",
 percent = 100,
 quantiles = c(0.25, 0.5, 0.75)
)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \textbf{data} A matrix or list of RasterLayer objects. Each row of the matrix or each RasterLayer object contains a utilisation distribution (or other statistics that sums to 1 - e.g. proportion of time spent). \textbf{The grid size and geographical extent must be consistent across each row of the matrix or each RasterLayer object.} The function assumes that each column of the matrix is associated with a unique geographical location or that each RasterLayer has exactly the same geographical extent and resolution.
 \item \textbf{R} An integer specifying the number of iterations. A larger \textit{R} is required when the sample size is large. \textit{R} = sample size x 200 is often sufficient (e.g. \textit{R} = 2000 for a sample size 10).
 \item \textbf{method} The overlap quantification method. "HR" is for the proportion of an individual’s home range overlapped by the known habitats of other individuals. "PHR" is for the probability of an individual to be within the known habitats of other individuals. "VI", "BA" and "UDOI" quantify overlap between UDs using the full probabilistic properties as described in Fieberg and Kochanny (2005). For the latter three options, the function calculates overlaps between each additional UD and a collective UD. To generate a collective UD, each UD is overlaid and averaged at each grid cell so the probability density of the collective UD sums up to 1.
 \item \textbf{percent} An integer specifying the percent volume of each UD to be considered in the analysis.
 \item \textbf{quantiles} A vector or a number to specify the quantiles to be calculated in the summary of the results.
\end{itemize}

\textbf{Details}

This function calculates and bootstraps overlap between UDs based on the areas ("HR"), areas of collective UDs and the probability distribution of each individual ("PHR"), or the probability distribution of an individual and an averaged probability distribution of collective individuals ("VI", "BA", "UDOI").

\textbf{Value}

A list containing two data frames - raw results and summary (mean, sd, sem and quantiles at each sample size).
Author(s)
Takahiro Shimada

References

Examples
```r
## Not run:

#1 Utilisation distributions of flatback turtles (n = 29).
data(ud_matrix)

#2 Calculate overlap probability from 6000 random permutation.
overlap <- boot_overlap(ud_matrix, R = 6000, method = "PHR")

#3 Find the minimum sample size required to estimate the general distribution.
a <- asymptote(overlap)

#4 Plot the mean probability and rational function fit relative to the sample sizes.
ggplot(data = overlap$summary)+
  geom_point(aes(x = N, y = mu), alpha = 0.5) +
  geom_path(data = a$results, aes(x = x, y = ys)) +
  geom_vline(xintercept = a$min.n, linetype = 2) +
  labs(x = "N", y = "Overlap probability")

## End(Not run)
```

ddfilter

Filter locations using a data driven filter

Description
Function to remove locations by a data driven filter as described in Shimada et al. (2012).

Usage
`ddfilter(sdata, vmax = 8.9, vmaxlp = 1.8, qi = 4, ia = 90, method = 1)`
Arguments

sdata A data frame containing columns with the following headers: "id", "DateTime", "lat", "lon", "qi". See the data turtle for an example. The function filters the input data by a unique "id" (e.g. transmitter number, identifier for each animal). "DateTime" is the GMT date & time of each location in class POSIXct or character with the following format "2012-06-03 01:33:46". "lat" and "lon" are the latitude and longitude of each location in decimal degrees. "qi" is the quality index associated with each location fix. The input values can be either the number of GPS satellites or Argos Location Classes. Argos Location Classes will be converted to numerical values, where "A", "B", "Z" will be replaced with "-1", "-2", "-3" respectively. The greater number indicates a higher accuracy.

vmax A numeric value specifying a threshold of speed from a previous and/or to a subsequent fix. Default is 8.9km/h. If this value is unknown, it can be estimated from sdata using the function vmax.

vmaxlp A numeric value specifying a threshold of speed, which is used to evaluate the locations of loop trips. Default is 1.8 km/h. If this value is unknown, it can be estimated from sdata using the function vmaxlp.

qi An integer specifying a threshold of quality index, which is used to evaluate the locations of loop trips. Default is 4.

ia An integer specifying a threshold of inner angle, which is used to evaluate the locations of loop trips. Default is 90 degrees.

method An integer specifying how locations should be filtered with vmax. A location is removed if the speed from a previous and(1)/or(2) to a subsequent location exceeds vmax. Default is 1 (both way).

Details

Locations are removed if the speed from a previous and/or to a subsequent location exceeds vmax, or if all of the following criteria apply: the associated quality index is less than or equal to qi, the inner angle is less than or equal to ia and the speed either from a previous or to a subsequent location exceeds vmaxlp. If vmax and vmaxlp are unknown, they can be estimated using the functions vmax and vmaxlp respectively.

Value

The input data is returned without locations identified by this filter. The following columns are added: "pTime", "sTime", "pDist", "sDist", "pSpeed", "sSpeed", "inAng". "pTime" and "sTime" are hours from a previous and to a subsequent fix respectively. "pDist" and "sDist" are straight distances in kilometres from a previous and to a subsequent fix respectively. "pSpeed" and "sSpeed" are linear speed from a previous and to a subsequent fix respectively. "inAng" is the degree between the bearings of lines joining successive location points.

Author(s)

Takahiro Shimada
References

See Also
ddfilter_speed, ddfilter_loop, vmax, vmaxlp

Examples

```r
#### Load data sets
## Fastloc GPS data obtained from a green turtle
data(turtle)

## A Map for the example site
data(Australia)
data(SandyStrait)

#### Filter temporal and/or spatial duplicates
turtle.dup <- dupfilter(turtle, step.time=5/60, step.dist=0.001)

#### ddfilter
## Using the built-in function to estimate the threshold speeds
V <- vmax(turtle.dup)
VLP <- vmaxlp(turtle.dup)
turtle.dd <- ddfilter(turtle.dup, vmax=V, vmaxlp=VLP)

## Or using user specified threshold speeds
turtle.dd <- ddfilter(turtle.dup, vmax=9.9, qi=4, ia=90, vmaxlp=2.0)

#### Plot data removed or retained by ddfilter
## Entire area
p1 <- map_track(turtle.dup, bgmap=Australia, point.size = 2, line.size = 0.5, axes.lab.size = 0,
                sb.distance=200, multiplot = FALSE, point.bg = "red",
                title.size=15, title="Entire area")[[1]] +
geom_point(aes(x=lon, y=lat), data=turtle.dd, size=2, fill="yellow", shape=21)+
geom_point(aes(x=x, y=y), data=data.frame(x=c(154, 154), y=c(-22, -22.5)),
             size=3, fill=c("yellow", "red"), shape=21) +
annotate("text", x=c(154.3, 154.3), y=c(-22, -22.5), label=c("Retained", "Removed"),
          colour="black", size=4, hjust = 0)

## Zoomed in
p2 <- map_track(turtle.dup, bgmap=SandyStrait, xlim=c(152.7, 153.2), ylim=c(-25.75, -25.24),
                axes.lab.size = 0, sb.distance=10, point.size = 2, point.bg = "red", line.size = 0.5,
                multiplot = FALSE, title.size=15, title="Zoomed in")[[1]] +
geom_path(aes(x=lon, y=lat), data=turtle.dd, size=0.5, colour="black", linetype=1) +
geom_point(aes(x=lon, y=lat), data=turtle.dd, size=2, colour="black", shape=21, fill="yellow")
```

ddfilter_loop

gridExtra::marrangeGrob(list(p1, p2), nrow=1, ncol=2)

ddfilter_loop
Filter locations by quality index, inner angle, and speed

Description
A partial component of ddfilter, although works as a stand-alone function. This function removes locations by speed, inner angle, and quality index as described in Shimada et al. (2012).

Usage

ddfilter_loop(sdata, qi = 4, ia = 90, vmaxlp = 1.8)

Arguments
sdata A data frame containing columns with the following headers: "id", "DateTime", "lat", "lon", "qi". See the data turtle for an example. The function filters the input data by a unique "id" (e.g. transmitter number, identifier for each animal). "DateTime" is the GMT date & time of each location in class POSIXct or character with the following format "2012-06-03 01:33:46". "lat" and "lon" are the latitude and longitude of each location in decimal degrees. "qi" is the quality index associated with each location fix. The input values can be either the number of GPS satellites or Argos Location Classes. Argos Location Classes will be converted to numerical values, where "A", "B", "Z" will be replaced with "-1", "-2", "-3" respectively. The greater number indicates a higher accuracy.
qi An integer specifying a threshold of quality index, which is used to evaluate the locations of loop trips. Default is 4.
ia An integer specifying a threshold of inner angle, which is used to evaluate the locations of loop trips. Default is 90 degrees.
vmaxlp A numeric value specifying a threshold of speed, which is used to evaluate the locations of loop trips. Default is 1.8 km/h. If this value is unknown, it can be estimated from sdata using the function vmaxlp.

Details
This function removes locations if all of the following criteria apply: the number of source satellites are less than or equal to qi, the inner angle is less than and equal to ia and the speed either from a previous or to a subsequent location exceeds vmaxlp. If vmaxlp is unknown, it can be estimated using the function vmaxlp.

Value
The input data is returned without locations identified by this filter. The following columns are added: "pTime", "sTime", "pDist", "sDist", "pSpeed", "sSpeed", "inAng". "pTime" and "sTime" are hours from a previous and to a subsequent fix respectively. "pDist" and "sDist" are straight distances in kilometres from a previous and to a subsequent fix respectively. "pSpeed" and "sSpeed" are linear speed from a previous and to a subsequent fix respectively. "inAng" is the degree between the bearings of lines joining successive location points.
ddfilter_speed

Author(s)
Takahiro Shimada

References

See Also
ddfilter, ddfilter_speed, vmaxlp

ddfilter_speed (Filter locations by speed)

Description
A partial component of ddfilter, although works as a stand-alone function. This function removes locations by a given threshold speed as described in Shimada et al. (2012).

Usage
ddfilter_speed(sdata, vmax = 8.9, method = 1)

Arguments
sdata A data frame containing columns with the following headers: "id", "DateTime", "lat", "lon", "qi". See the data turtle for an example. The function filters the input data by a unique "id" (e.g. transmitter number, identifier for each animal). "DateTime" is the GMT date & time of each location in class POSIXct or character with the following format "2012-06-03 01:33:46". "lat" and "lon" are the latitude and longitude of each location in decimal degrees. "qi" is the quality index associated with each location fix. The input values can be either the number of GPS satellites or Argos Location Classes. Argos Location Classes will be converted to numerical values, where "A", "B", "Z" will be replaced with ",-1", "-2", "-3" respectively. The greater number indicates a higher accuracy.
vmax A numeric value specifying a threshold of speed from a previous and/or to a subsequent fix. Default is 8.9km/h. If this value is unknown, it can be estimated from sdata using the function vmax.
method An integer specifying how locations should be filtered with vmax. A location is removed if the speed from a previous and(1)/or(2) to a subsequent location exceeds vmax. Default is 1 (both way).

Details
This function removes locations if the speed from a previous and/or to a subsequent location exceeds a given threshold speed. If vmax is unknown, it can be estimated using the function vmax.
Value

The input data is returned without locations identified by this filter. The following columns are added: "pTime", "sTime", "pDist", "sDist", "pSpeed", "sSpeed". "pTime" and "sTime" are hours from a previous and to a subsequent fix respectively. "pDist" and "sDist" are straight distances in kilometres from a previous and to a subsequent fix respectively. "pSpeed" and "sSpeed" are linear speed from a previous and to a subsequent fix respectively.

Author(s)

Takahiro Shimada

References

See Also

`ddfilter`, `ddfilter_loop`, `vmax`, `track_param`

depthfilter

Filter locations by water depth

Description

Function to filter locations according to bathymetry and tide.

Usage

```r
depthfilter(
  sdata, 
  bathymetry, 
  extract = "bilinear", 
  qi = 4, 
  tide, 
  tidal.plane, 
  type = "HT", 
  height = 0, 
  filter = TRUE
)
```
Arguments

sdata A data frame containing columns with the following headers: "id", "DateTime", "lat", "lon", "qi". See the data turtle for an example. The function filters the input data by a unique "id" (e.g. transmitter number, identifier for each animal). "DateTime" is the GMT date & time of each location in class POSIXct or character with the following format "2012-06-03 01:33:46". "lat" and "lon" are the latitude and longitude of each location in decimal degrees. "qi" is the quality index associated with each location fix. The input values can be either the number of GPS satellites or Argos Location Classes. Argos Location Classes will be converted to numerical values, where "A", "B", "Z" will be replaced with "+1", "+2", "+3" respectively. The greater number indicates a higher accuracy.

bathymetry A RasterLayer object containing bathymetric data in metres. Negative and positive values indicate below and above the water respectively. Geographic coordinate system is WGS84.

extract Method to extract cell values from the raster layer as inherited from the extract function of the raster package. Default is bilinear.

qi An integer specifying a threshold of quality index. depthfilter does not filter a location that is associated with a quality index higher than this threshold. Default is 4.

tide A data frame containing columns with the following headers: "tideDT", "reading", "standard.port". "tideDT" is date & time in class POSIXct at each observation. "reading" is the observed tidal height in metres. "standard.port" is the identifier of each tidal station.

tidal.plane A data frame containing columns with the following headers: "standard.port", "secondary.port", "lat", "lon", "timeDiff", "datumDiff". "standard.port" is the identifier for a tidal observation station. "secondary.port" is the identifier for a station at which tide is only predicted using tidal records observed at the related standard port. "lat" and "lon" are the latitude and longitude of each secondary port in decimal degrees. "timeDiff" is the time difference between standard port and its associated secondary port. "datumDiff" is the baseline difference in metres if bathymetry and tidal observations/predictions uses different datum (e.g. LAT and MSL).

type The type of water depth considered in the filtering process. "exp" is for the water depth experienced by the animal at the time. This option may be applicable to species that remain in water at all times (e.g. dugongs, dolphins, etc). "HT" is for the water depth at the nearest high tide (default). This option is useful for animals that use inter-tidal zones at high tide and may remain there even after the tide drops (e.g. some sea turtles).

height A numerical value to adjust the water depth an animal is likely to use. Default is 0 m. This parameter is useful if the minimum water depth used by the animal is known. For example, a dugong is unlikely to use water shallower than its body height (e.g. ~0.5 m) so it may be sensible to consider the fix is an error if the estimated water depth is shallower than its body height. A negative value indicates below the water surface. For the dugong example, to remove locations for which the water depth was <0.5 m, it should be specified as; height = -0.5. By supplying the body height to this argument, all the locations recorded shallower than its body will be removed.
depthfilter

filter Default is TRUE. If FALSE, the function does not filter locations but it still returns estimates of the water depth experienced by the animal at each location.

Details
The function examines each location according to the water depth experienced by the animal or the water depth at the nearest high tide. The function looks for the closest match between each fix and tidal observations or predictions in temporal and spatial scales. When filter is disabled, the function does not filter locations but returns the estimated water depth of each location with the tide effect considered (bathymetry + tide).

Value
When filter option is enabled, this function filters the input data and returns with two additional columns; "depth.exp", "depth.HT". "depth.exp" is the estimated water depth at each location at the time of location fixing. "depth.HT" is the estimated water depth at the nearest high tide at each location.

Note
The input data must not contain temporal or spatial duplicates.

Author(s)
Takahiro Shimada

References

See Also
dupfilter, ddfilter

Examples

Load data sets
Fastloc GPS data obtained from a green turtle data(turtle)

Bathymetry model developed by Beaman (2010) data(bathymodel)

A tidal plane for the example site data(tidalplane)
distfilter

Filter locations by distance

Description

This function removes locations that are located beyond a specified distance.

Usage

distfilter(sdata, max.dist = 100, method = 1)

Arguments

sdata A data frame containing columns with the following headers: "id", "DateTime", "lat", "lon". See the data turtle for an example. The function filters the input data by a unique "id" (e.g. transmitter number, identifier for each animal). "DateTime" is the GMT date & time of each location in class POSIXct or character with the following format "2012-06-03 01:33:46". "lat" and "lon" are the latitude and longitude of each location in decimal degrees.
distfilter

max.dist A numeric value specifying a threshold of distance between successive locations. Default is 100 km.

method An integer specifying how locations should be filtered with max.dist. A location is removed if the distance from a previous and/or to a subsequent location exceeds max.dist. Default is 1 (both way).

Details

This function removes locations if the distance from a previous and/or to a subsequent location exceeds max.dist.

Value

The input data is returned without locations identified by this filter. The following columns are added: "pDist", "sDist". "pDist" and "sDist" are straight distances in kilometres from a previous and to a subsequent fix respectively.

Author(s)

Takahiro Shimada

Examples

```r
#### Load data sets
## Fastloc GPS data obtained from a green turtle
data(turtle)

## A Map for the example site
data(Australia)
data(SandyStrait)

#### Filter temporal and/or spatial duplicates
turtle.dup <- dupfilter(turtle, step.time=5/60, step.dist=0.001)

turtle.dist <- distfilter(turtle.dup)

#### Plot data removed or retained by ddfilter
## Entire area
p1 <- map_track(turtle.dup, bgmap=Australia, point.size = 2, line.size = 0.5, axes.lab.size = 0, sb.distance=200, multiplot = FALSE, point.bg = "red", title.size=15, title="Entire area")[[1]] + geom_point(aes(x=lon, y=lat), data=turtle.dist, size=2, fill="yellow", shape=21)+ geom_point(aes(x=x, y=y), data=data.frame(x=c(154, 154), y=c(-22, -22.5)), size=3, fill=c("yellow", "red"), shape=21) + annotate("text", x=c(154.3, 154.3), y=c(-22, -22.5), label=c("Retained", "Removed"), colour="black", size=4, hjust = 0)
```
dupfilter

Filter temporal and/or spatial duplicates

Description

Function to filter temporal and spatial duplicates in tracking data and retain only a single fix per time and location.

Usage

dupfilter(sdata, step.time = 0, step.dist = 0, conditional = FALSE)

Arguments

- **sdata**: A data frame containing columns with the following headers: "id", "DateTime", "lat", "lon", "qi". See the data **turtle** for an example. The function filters the input data by a unique "id" (e.g. transmitter number, identifier for each animal). "DateTime" is the GMT date & time of each location in class POSIXct or character with the following format "2012-06-03 01:33:46". "lat" and "lon" are the latitude and longitude of each location in decimal degrees. "qi" is the quality index associated with each location fix. The input values can be either the number of GPS satellites or Argos Location Classes. Argos Location Classes will be converted to numerical values, where "A", "B", "Z" will be replaced with ".-1", ".-2", "-3" respectively. The greater number indicates a higher accuracy.

- **step.time**: Consecutive locations less than or equal to `step.time` apart are considered temporal duplicates. Default is 0 hours.

- **step.dist**: Consecutive locations less than or equal to `step.dist` apart are considered spatial duplicates. Default is 0 kilometres.

- **conditional**: If TRUE, spatial duplicates are filtered only if they are less than or equal to `step.time` apart. Default is FALSE.

Details

This function filters temporal and spatial duplicates in tracking data. It first filters temporally and spatially exact locations. It then looks for temporal duplicates and retains a fix with the highest quality index. When temporal or spatial duplicates are associated with the same quality index, the function retains a location that is nearest from a previous and to a subsequent location.
Value

The input data frame is returned containing only a single fix (latitude/longitude pair) per time and location. The following columns are added: "pTime", "sTime", "pDist", "sDist". "pTime" and "sTime" are hours from a previous and to a subsequent fix respectively. "pDist" and "sDist" are straight distances in kilometres from a previous and to a subsequent fix respectively.

Author(s)

Takahiro Shimada

References

See Also

dupfilter_exact, dupfilter_qi, dupfilter_time, dupfilter_space, track_param

Examples

```r
### Load data sets
## Fastloc GPS data obtained from a green turtle
data(turtle)

turtle.dup <- dupfilter(turtle)
```

```r
dupfilter_exact Filter temporally and spatially exact duplicates
```

Description

Function to filter temporally and spatially exact locations in tracking data.

Usage

dupfilter_exact(sdata)
Arguments

sdata A data frame containing columns with the following headers: "id", "DateTime", "lat", "lon", "qi". See the data turtle for an example. The function filters the input data by a unique "id" (e.g. transmitter number, identifier for each animal). "DateTime" is the GMT date & time of each location in class POSIXct or character with the following format "2012-06-03 01:33:46". "lat" and "lon" are the latitude and longitude of each location in decimal degrees. "qi" is the quality index associated with each location fix. The input values can be either the number of GPS satellites or Argos Location Classes. Argos Location Classes will be converted to numerical values, where "A", "B", "Z" will be replaced with "-1", "-2", "-3" respectively. The greater number indicates a higher accuracy.

Details

This is a partial component of dupfilter, although works as a stand-alone function. It looks for temporally and spatially exact locations and retains only a single fix (latitude/longitude pair) per time and location.

Value

The input data frame is returned with temporally and spatially exact duplicates removed.

Author(s)

Takahiro Shimada

References

See Also

dupfilter, dupfilter_qi, dupfilter_time, dupfilter_space, track_param

dupfilter_qi Filter temporal duplicates by quality index

Description

Function to filter temporal duplicates in tracking data by quality index.

Usage

dupfilter_qi(sdata = sdata, step.time = 0)
dupfilter_space

Arguments

- **sdata**: A data frame containing columns with the following headers: "id", "DateTime", "qi". See the data `turtle` for an example. The function filters the input data by a unique "id" (e.g. transmitter number, identifier for each animal). "DateTime" is the GMT date & time of each location in class `POSIXct` or `character` with the following format "2012-06-03 01:33:46". "qi" is the quality index associated with each location fix. The input values can be either the number of GPS satellites or Argos Location Classes. Argos Location Classes will be converted to numerical values, where "A", "B", "Z" will be replaced with ",-1", ",-2", ",-3" respectively. The greater number indicates a higher accuracy.

- **step.time**: Consecutive locations less than or equal to `step.time` apart are considered temporal duplicates. Default is 0 hours.

Details

This function is a partial component of `dupfilter`, although works as a stand-alone function. It looks for temporal duplicates and retains a fix with the highest quality index.

Value

The input data frame is returned with temporal duplicates removed by the quality index. The following columns are added: "pTime", "sTime". "pTime" and "sTime" are hours from a previous and to a subsequent fix respectively.

Author(s)

Takahiro Shimada

References

See Also

`dupfilter`, `dupfilter_exact`, `dupfilter_time`, `dupfilter_space`, `track_param`

dupfilter_space

Filter spatial duplicates

Description

Function to filter spatial duplicates in tracking data.

Usage

dupfilter_space(sdata, step.time = 0, step.dist = 0, conditional = FALSE)
Arguments

sdata A data frame containing columns with the following headers: "id", "DateTime", "lat", "lon", "qi". See the data turtle for an example. The function filters the input data by a unique "id" (e.g. transmitter number, identifier for each animal). "DateTime" is the GMT date & time of each location in class POSIXct or character with the following format "2012-06-03 01:33:46". "lat" and "lon" are the latitude and longitude of each location in decimal degrees. "qi" is the quality index associated with each location fix. The input values can be either the number of GPS satellites or Argos Location Classes. Argos Location Classes will be converted to numerical values, where "A", "B", "Z" will be replaced with ",-1", ",-2", ",-3" respectively. The greater number indicates a higher accuracy.

step.time Consecutive locations less than or equal to step.time apart are considered temporal duplicates. Default is 0 hours.

step.dist Consecutive locations less than or equal to step.dist apart are considered spatial duplicates. Default is 0 kilometres.

conditional If TRUE, spatial duplicates are filtered only if they are less than or equal to step.time apart. Default is FALSE.

Details

This function is a partial component of dupfilter, although works as a stand-alone function. First it identifies spatial duplicates by searching for consecutive fixes that were located within step.dist. For each group of spatial duplicates, the function then retains a single fix that is nearest from a previous and to a subsequent location.

Value

The input data frame is returned with spatial duplicates removed. The following columns are added: "pTime", "sTime", "pDist", "sDist". "pTime" and "sTime" are hours from a previous and to a subsequent fix respectively. "pDist" and "sDist" are straight distances in kilometres from a previous and to a subsequent fix respectively.

Note

A minimum of two locations per id is required.

Author(s)

Takahiro Shimada

References

dupfilter_time

See Also

`dupfilter`, `dupfilter_exact`, `dupfilter_time`, `dupfilter_qi`, `track_param`

Description

Function to filter temporal duplicates that are associated with the same quality index.

Usage

```r
dupfilter_time(sdata, step.time = 0)
```

Arguments

- **sdata**: A data frame containing columns with the following headers: "id", "DateTime", "lat", "lon", "qi". See the data `turtle` for an example. The function filters the input data by a unique "id" (e.g. transmitter number, identifier for each animal). "DateTime" is the GMT date & time of each location in class `POSIXct` or `character` with the following format "2012-06-03 01:33:46". "lat" and "lon" are the latitude and longitude of each location in decimal degrees. "qi" is the quality index associated with each location fix. The input values can be either the number of GPS satellites or Argos Location Classes. Argos Location Classes will be converted to numerical values, where "A", "B", "Z" will be replaced with "-1", "-2", "-3" respectively. The greater number indicates a higher accuracy.

- **step.time**: Consecutive locations less than or equal to `step.time` apart are considered temporal duplicates. Default is 0 hours.

Details

This is a partial component of `dupfilter`, although works as a stand-alone function. First it identifies temporal duplicates by searching for consecutive locations that were obtained within `step.time`. For each group of temporal duplicates, the function then retains a single fix that is nearest from a previous and to a subsequent location.

Value

The input data frame is returned with temporal duplicates removed. The following columns are added: "pTime", "sTime", "pDist", "sDist". "pTime" and "sTime" are hours from a previous and to a subsequent fix respectively. "pDist" and "sDist" are straight distances in kilometres from a previous and to a subsequent fix respectively.

Author(s)

Takahiro Shimada
References

See Also

dupfilter, dupfilter_exact, dupfilter_qi, dupfilter_space, track_param

flatback

Flatback turtle tracking data

Description

Satellite tracking data of 15 flatback turtles (*Natator depressus*) that nested in Curtis Island, Australia. This sample data is a subset of the tracking data used in Shimada et al. (2021).

Usage

flatback

Format

A data frame with 1020 rows and 4 variables:

- **id** identifier for each animal.
- **DateTime** GMT date & time of each location in class POSIXct.
- **x** longitude in UTM.
- **y** latitude in UTM.

Source

kml_track

Generate KML from locations

Description

Function to generate a kml file from tracking data. This is a wrapper of plotKML and kml, specifically designed to generate a kml file from tracking data.

Usage

kml_track(sdata, sdata.CRS = "WGS", output = "open", type = "point", ...)

Arguments

sdata A data frame containing location data of one individual, with the following column headers: "id", "DateTime", "lat", "lon". "id" is an identifier of the individual. "DateTime" is the GMT date & time of each location in class POSIXct or character with the following format "2012-06-03 01:33:46". "lat" and "lon" are the latitude and longitude of each location in decimal degrees.

sdata.CRS Coordinate reference system (CRS) for the input location data. If the input data is not in WGS, the specific CRS needs to be supplied as a PROJ.4 notation or EPSG code. (e.g. "+proj=utm +zone=37 +datum=WGS84 +units=m +no_defs" or "EPSG:32637")

output A string specifying whether to 'open' or 'save' the output. The output will be saved in the current working directory.

type Type of the output. 'point' or 'line'.

Value

A kml file

Author(s)

Takahiro Shimada

See Also

map_track

Examples

Fastloc GPS data obtained from a green turtle

data(turtle)

Not run:

See the data on Google earth
points with time stamps
kml_track(turtle, output = 'open', type = 'point',
points_names = turtle$DateTime, colour_scale = 'yellow')

lines
kml_track(turtle, output = 'open', type = 'line', colour = 'red')

Save the location points to the current working directory
shape <- "http://maps.google.com/mapfiles/kml/pal2/icon26.png"
kml_track(turtle, output = 'save', type = 'point', shape = shape, colour = 'yellow')

End(Not run)

map_track
Plot location data on a map

Description

Function to plot tracking data on a map or a satellite image.

Usage

```r
map_track(
  sdata,
  xlim = NULL,
  ylim = NULL,
  margin = 10,
  bgmap = NULL,
  google.key = NULL,
  map.bg = "grey",
  map.col = "black",
  zoom = NULL,
  point.bg = "yellow",
  point.col = "black",
  point.symbol = 21,
  point.size = 1,
  line.col = "lightgrey",
  line.type = 1,
  line.size = 0.5,
  sb.distance = NULL,
  sb.lwd = 1,
  sb.line.col = "black",
  sb.text.size = 4,
  sb.text.col = "black",
  sb.space = 3,
  title = "id",
  title.size = 11,
)```
Arguments

sdata A data frame containing columns with the following headers: "id", "DateTime", "lat", "lon". The function creates a map for each unique "id" (e.g. transmitter number, identifier for each animal). "DateTime" is the GMT date & time of each location in class POSIXct or character with the following format "2012-06-03 01:33:46". "lat" and "lon" are the latitude and longitude of each location in decimal degrees.

xlim, ylim Limits for x and y axes. If not specified, the values are determined as the maximum range of the input data plus an additional margin (see margin).

margin Set the amount of spaces added around the periphery of the plot. The value is scaled to the plot. The smaller value increases the margin.

bgmap A data frame of a background map data, containing the following headers: "long", "lat", "group". If not specified, the world map is used. Google Maps ("terrain", "satellite", "roadmap", "hybrid") can also be queried.

google.key If Google Maps are queried, a valid API key (a string) needs to be specified here. See register_google for details.

map.bg Background colour of the map. This argument is ignored when any Google Maps is selected.

map.col Outline colour of the map. This argument is ignored when any Google Maps is selected.

zoom Map zoom for Google Maps. Default (NULL) to estimate the zoom from each data set. For other options, see get_map for details.

point.bg The colour to fill in a symbol.

point.col The colour for the outline of a symbol.

point.symbol An integer or a string to specify the symbol type. See shape for details.

point.size An integer to specify the size of the symbol.

line.col The colour of the line that connects consecutive points.

line.type The type of the line that connects consecutive points. See linetype for details.

line.size An integer to specify the thickness (width) of the line that connects consecutive points.

sb.distance An integer to specify the length of the scale bar. If not specified, approximately a quarter of the plotting range will be used.

sb.lwd An integer to specify the thickness (width) of the scale bar.

sb.line.col The colour of the scale bar.

sb.text.size An integer to specify the text size for the scale bar.
The colour of the text for the scale bar.

Set the amount of space between the scale bar and the text. The value is scaled to the plot. The smaller value increases the space.

The main title for each plot. If not specified, the "id" will be used.

An integer to specify the size of the title.

An integer to specify the size of the axes characters.

An integer to specify the size of the axes labels.

Logical. If TRUE (default), multiple plots are displayed on the same page.

An integer to specify the number of rows in the multiple plot page.

An integer to specify the number of columns in the multiple plot page.

An arrangelist is returned when `multiplot` is `TRUE`. Otherwise a list is returned.

Takahiro Shimada

kml_track, dupfilter, ddfilter, vmax, vmaxlp

#### Load data sets
## Fastloc GPS data obtained from two green turtles
data(turtle)
data(turtle2)
turtles<-rbind(turtle, turtle2)

#### Filter temporal and/or spatial duplicates
turtle.dup <- dupfilter(turtles, step.time=5/60, step.dist=0.001)

#### ddfilter
V <- vmax(turtle.dup)
VLP <- vmaxlp(turtle.dup)
turtle.dd <- ddfilter(turtle.dup, vmax=V, vmaxlp=VLP)

#### Plot filtered data for each animal
## using the low-resolution world map
map_track(turtle.dd, point.size = 2, line.size = 0.5, axes.lab.size = 0, ncol=2, nrow=1)

## Not run:
## using the high-resolution google satellite images
map_track(turtle.dd, bgmap = "satellite", google.key = "key", ncol=2)

## End(Not run)
percent_vol

Description
Function to calculate a percent volume on a utilisation distribution (UD)

Usage
percent_vol(x, percent = 100)

Arguments
x A vector containing the probability density.
percent An integer specifying the percent volume of a UD to be considered.

Details
This function calculates a percent volume on a UD. The probability beyond the specified range will be assigned with a zero value.

Value
A vector containing the specified percent volume.

Author(s)
Takahiro Shimada

SandyStrait

Description
This map layer outlines the coast around Sandy Strait, Australia.

Usage
SandyStrait

Format
A data.frame
tidalplane  

*Tidal plane table for Sandy Strait, Australia*

**Description**

A semidiurnal tidal plane table containing the height of the mean tidal planes and the average time differences of tide at different locations within Sandy Strait.

**Usage**

tidalplane

**Format**

A data frame with 2 rows and 6 variables:

- **standard.port**: identifier for a tidal observation station.
- **secondary.port**: identifier for a station at which tide is only predicted using the tidal records observed at the related standard port.
- **lat**: latitude in decimal degrees.
- **lon**: longitude in decimal degrees.
- **timeDiff**: time difference between standard port and its associated secondary port.
- **datumDiff**: baseline difference in metres between the bathymetry model and tidal observations/predictions, if each data uses different datum (e.g. LAT and MSL).

**Source**

The State of Queensland (Department of Transport and Main Roads), Tidal planes.

---

tidedata  

*Tidal data for Sandy Strait, Australia*

**Description**

A dataset containing tidal observations recorded at Bundaberg, Australia.

**Usage**

tidedata

**Format**

A data frame with 26351 rows and 3 variables:

- **tideDT**: GMT date & time of each observation in class `POSIXct`.
- **reading**: observed tidal height in metres.
- **standard.port**: identifier of the tidal station.
Source

The State of Queensland (Department of Transport and Main Roads), Tidal data.

---

**track_param**  
*Calculate parameters between locations*

### Description

Calculate time, distance, speed, and inner angle between successive locations

### Usage

```r
track_param(
 sdata,
 param = c("time", "distance", "speed", "angle", "mean speed", "mean angle"),
 days = 2
)
```

### Arguments

- **sdata**: A data frame containing columns with the following headers: "id", "DateTime", "lat", "lon". The function calculates each movement parameter by a unique "id" (e.g. transmitter number, identifier for each animal). "DateTime" is the GMT date & time of each location in class `POSIXct` or `character` with the following format "2012-06-03 01:33:46". "lat" and "lon" are the latitude and longitude of each location in decimal degrees.

- **param**: A string or vector specifying movement parameters to be calculated. Options are 'time', 'distance', 'speed', 'angle', 'mean speed' and 'mean angle'. See details.

- **days**: A numeric value specifying the number of days to calculate mean speeds and angles. This argument is only used when 'mean speed' and/or 'mean angle' are selected in `param`.

### Details

This function calculates various parameters of tracks. time (h), distance (km), speed (km/h) and inner angle (degrees) are calculated from each pair of successive locations. mean speed (km/h) and angle (degrees) are calculated from locations over a specified number of days.

### Value

The input data is returned with new columns containing the requested parameters. "pTime" and "sTime" are hours from a previous and to a subsequent fix respectively. "pDist" and "sDist" are straight distances in kilometres from a previous and to a subsequent fix respectively. "pSpeed" and "sSpeed" are linear speed (km/h) from a previous and to a subsequent fix respectively. "inAng" is the degree between the bearings of lines joining successive location points. "meanSpeed" and "meanAngle" are the mean speed and degree over a specified number of days.
Examples

```r
Load turtle tracking data
data(turtle)

Filter temporal and/or spatial duplicates
turtle.dup <- dupfilter(turtle, step.time=5/60, step.dist=0.001)

ddfilter
turtle.dd <- ddfilter(turtle.dup, vmax=9.9, qi=4, ia=90, vmaxlp=2.0)

Mean speed over 2 days
mean.speed <- track_param(turtle.dd, param = c('speed', 'mean speed'), days=2)

Plot data
ggplot(data = mean.speed, aes(x=lon, y=lat)) +
 geom_path(colour = "grey") +
 geom_point(aes(colour=meanSpeed))
```

### Description
A dataset containing Fastloc GPS locations of a green turtle tracked in Sandy Strait, Australia.

### Usage
turtle

### Format
A data frame with 429 rows and 5 variables:
- **id**: identifier for each animal.
- **DateTime**: GMT date & time of each location in class `POSIXct`.
- **lat**: latitude in decimal degrees.
- **lon**: longitude in decimal degrees.
- **qi**: quality index associated with each location fix. The input values can be either the number of GPS satellites or Argos Location Classes. Argos Location Classes will be converted to numerical values, where "A", "B", "Z" will be replaced with "-1", "-2", "-3" respectively. The greater number indicates a higher accuracy.
Description

A dataset containing Fastloc GPS locations of a green turtle tracked in Moreton Bay, Australia.

Usage
turtle2

Format

A data frame with 276 rows and 5 variables:

id  identifier for each animal.

DateTime  GMT date & time of each location in class POSIXct.

lat  latitude in decimal degrees.

lon  longitude in decimal degrees.

qi  quality index associated with each location fix. The input values can be either the number of GPS satellites or Argos Location Classes. Argos Location Classes will be converted to numerical values, where "A", "B", "Z" will be replaced with "-1", "-2", "-3" respectively. The greater number indicates a higher accuracy.

Source

ud_matrix

A matrix containing probability distributions of flatback turtles

Description
Inter-nesting utilisation distributions of 15 flatback turtles (*Natator depressus*) that nested in Curtis Island, Australia. The UDs were calculated using the sample tracking data `flatback` and reduced grid resolution (1 km) instead of 50m as used in Shimada et al. (2021). See GitHub for an example code of UD estimation.

Usage

ud_matrix

Format

A matrix

Source


ud_raster

A list of raster data containing probability distributions of flatback turtles

Description
Inter-nesting utilisation distributions of 15 flatback turtles (*Natator depressus*) that nested in Curtis Island, Australia. The UDs were calculated using the sample tracking data `flatback` and reduced grid resolution (1 km) instead of 50m as used in Shimada et al. (2021). See GitHub for an example code of UD estimation.

Usage

ud_raster

Format

A list of 15 RasterLayer objects

Source

Description

Function to estimate the maximum linear speed between two consecutive locations.

Usage

\[
v\text{max}(s\text{data, } q\text{i} = 5, \text{ prob } = 0.99, \ldots)
\]

Arguments

- **sdata**: A data frame containing columns with the following headers: "id", "DateTime", "lat", "lon", "qi". See the data `turtle` for an example. The function filters the input data by a unique "id" (e.g. transmitter number, identifier for each animal). "DateTime" is the GMT date & time of each location in class `POSIXct` or `character` with the following format "2012-06-03 01:33:46". "lat" and "lon" are the latitude and longitude of each location in decimal degrees. "qi" is the quality index associated with each location fix. The input values can be either the number of GPS satellites or Argos Location Classes. Argos Location Classes will be converted to numerical values, where "A", "B", "Z" will be replaced with ",-1", ",-2", ",-3" respectively. The greater number indicates a higher accuracy.
- **qi**: An integer specifying the lowest quality index of a location that is qualified to be used in the estimation. Default is 5 (e.g. 5 GPS satellite or more).
- **prob**: A numeric value to specify a sample quantile. Default is 0.99.
- **...**: Extra arguments passed to `dupfilter`.

Details

The function first calculates the linear speed between each pair of two consecutive locations. It then discards extreme values, based on the specified quantile, to exclude potential outliers from the estimation process. The maximum value in the retained dataset (i.e. without outliers) represents the maximum linear speed at which an animal would travel between two consecutive locations.

Value

Maximum linear speed (vmax) estimated from the input data. The unit is km/h.

Author(s)

Takahiro Shimada

References

See Also
ddfilter, ddfilter_speed, track_param, dupfilter

---

### vmaxlp

**Estimate maximum one-way linear speed of a loop trip**

**Description**

Function to estimate the maximum one-way linear speed of a loop trip as described in Shimada et al. (2012).

**Usage**

vmaxlp(sdata, qi = 4, prob = 0.99, ...)

**Arguments**

- **sdata**: A data frame containing columns with the following headers: "id", "DateTime", "lat", "lon", "qi". See the data turtle for an example. The function filters the input data by a unique "id" (e.g. transmitter number, identifier for each animal). "DateTime" is the GMT date & time of each location in class POSIXct or character with the following format "2012-06-03 01:33:46". "lat" and "lon" are the recorded latitude and longitude in decimal degrees. "qi" is the quality index associated with each location fix. The input values can be either the number of GPS satellites or Argos Location Classes. Argos Location Classes will be converted to numerical values, where "A", "B", "Z" will be replaced with "-1", "-2", "-3" respectively. The greater number indicates a higher accuracy.

- **qi**: An integer specifying the minimum quality index associated with a location used for the estimation. Default is 4 (e.g. 4 GPS satellite or more).

- **prob**: A numeric value to specify a sample quantile. Default is 0.99.

- **...**: Extra arguments passed to dupfilter.

**Details**

The function first detects a "loop trip". Loop trip behaviour is represented by spatial departure and return involving more than 3 consecutive locations (Shimada et al. 2012). The function calculates the net (i.e. straight-line) distance between the departure and turning point as well as the turning point and return location of a loop trip. It then calculates the one-way travelling speed to or from each turning point for each loop trip. The function discards extreme values, based on the specified quantile, to exclude potential outliers from the estimation process. The maximum value in the retained dataset (i.e. without outliers) represents the maximum one-way linear speed at which an animal would travel during a loop trip.

**Value**

Maximum one-way linear speed of a loop trip (vmaxlp) estimated from the input data. The unit km/h.
vmaxlp

Note
The input data must not contain temporal or spatial duplicates. A minimum of 8 locations are required.

Author(s)
Takahiro Shimada

References

See Also
ddfilter, ddfilter_loop, track_param, dupfilter
Index

* datasets
  Australia, 4
  bathymodel, 4
  flatback, 24
  SandyStrait, 29
  tidalplane, 30
  tidedata, 30
  turtle, 32
  turtle2, 33
  ud_matrix, 34
  ud_raster, 34

asymptote, 2
Australia, 4

bathymodel, 4
boot_area, 3, 4, 5
boot_overlap, 3, 4, 6

character, 9, 11, 12, 14, 16, 18, 20–23, 25, 27, 31, 35, 36

ddfilter, 8, 11–13, 15, 28, 36, 37
ddfilter_loop, 10, 11, 13, 37
ddfilter_speed, 10, 12, 12, 36
depthfilter, 13
distfilter, 16
dupfilter, 15, 18, 20–24, 28, 35–37
dupfilter_exact, 19, 19, 21, 23, 24
dupfilter_qi, 19, 20, 20, 23, 24
dupfilter_space, 19–21, 21, 24
dupfilter_time, 19–21, 23, 23

extract, 14

flatback, 24, 34

get_map, 27

kml, 25
kml_track, 25, 28

linetype, 27

map_track, 25, 26

percent_vol, 29
plotKML, 25
POSIXct, 9, 11, 12, 14, 16, 18, 20–25, 27, 30–33, 35, 36

register_google, 27

SandyStrait, 29
shape, 27

tidalplane, 30
tidedata, 30
track_param, 13, 19–21, 23, 24, 31, 36, 37
turtle, 9, 11, 12, 14, 16, 18, 20–23, 32, 35, 36
turtle2, 33

ud_matrix, 34
ud_raster, 34

vmax, 9, 10, 12, 13, 28, 35
vmaxlp, 9–12, 28, 36

world, 27