Package ‘RoBMA’

July 8, 2021

Title Robust Bayesian Meta-Analyses

Version 2.0.0

Maintainer František Bartoš <f.bartos96@gmail.com>

Description A framework for estimating ensembles of meta-analytic models (assuming either presence or absence of the effect, heterogeneity, and publication bias). The RoBMA framework uses Bayesian model-averaging to combine the competing meta-analytic models into a model ensemble, weights the posterior parameter distributions based on posterior model probabilities and uses Bayes factors to test for the presence or absence of the individual components (e.g., effect vs. no effect; Bartoš et al., 2021, <doi:10.31234/osf.io/kvsp7>; Maier, Bartoš & Wagenmakers, in press, <doi:10.31234/osf.io/u4cns>). Users can define a wide range of non-informative or informative prior distributions for the effect size, heterogeneity, and publication bias components (including selection models and PET-PEESE). The package provides convenient functions for summary, visualizations, and fit diagnostics.

URL https://fbartos.github.io/RoBMA/

BugReports https://github.com/FBartos/RoBMA/issues

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

SystemRequirements JAGS >= 4.3.0 (https://mcmc-jags.sourceforge.io/)

NeedsCompilation yes

Depends R (>= 4.0.0)

Imports BayesTools, runjags, bridgesampling, rjags, coda, psych, stats, graphics, extraDistr, scales, calr, Rdpack, ggplot2

Suggests parallel, rstan, metaBMA, testthat, vdifffr, knitr, rmarkdown, covr

RdMacros Rdpack
VignetteBuilder knitr

Author František Bartoš [aut, cre] (<https://orcid.org/0000-0002-0018-5573>),
Maximilian Maier [aut] (<https://orcid.org/0000-0002-9873-6096>),
Eric-Jan Wagenmakers [ths] (<https://orcid.org/0000-0003-1596-1034>),
Joris Goosen [ctb],
Matthew Denwood [cph] (Original copyright holder of some modified code
where indicated.),
Martyn Plummer [cph] (Original copyright holder of some modified code
where indicated.)

Repository CRAN

Date/Publication 2021-07-08 21:50:10 UTC

R topics documented:

RoBMA-package .. 3
Anderson2010 .. 3
Bem2011 ... 4
check_RoBMA ... 5
check_setup ... 5
combine_data ... 7
diagnostics ... 9
effect_sizes ... 11
forest ... 12
is.RoBMA ... 13
plot.RoBMA .. 14
plot_models .. 15
print.RoBMA .. 17
print.summary.RoBMA .. 18
prior ... 18
prior_none ... 20
prior_PEESE .. 21
prior_PET ... 22
prior_weightfunction .. 23
RoBMA ... 24
RoBMA_control .. 30
RoBMA_options .. 31
sample_sizes .. 32
standard_errors ... 33
summary.RoBMA ... 34
update.RoBMA .. 36
weighted_normal ... 39

Index 41
Description

RoBMA: Robust Bayesian meta-analysis with adjustments for publication bias and ability to specify informed prior distributions and draw inference with inclusion Bayes factors.

User guide

The RoBMA user guide vignette explains the methods in detail, and gives several worked examples. A further vignette RoBMA-examples gives a few more complicated examples, and users are encouraged to submit their own.

Author(s)

František Bartoš <f.bartos96@gmail.com>

See Also

Useful links:
- https://fbartos.github.io/RoBMA/

Anderson2010

Description

The data set contains correlation coefficients, sample sizes, and labels for 27 experimental studies focusing on the effect of violent video games on aggressive behavior. The full original data can found at https://github.com/Joe-Hilgard/Anderson-meta.

Usage

Anderson2010

Format

A data.frame with 3 columns and 23 observations.

Value

A data.frame.
References

Bem2011

9 experimental studies from from Bem (2011) as described in Bem et al. (2011)

Description

The data set contains Cohen’s d effect sizes, standard errors, and labels for 9 experimental studies of precognition from the infamous Bem (2011) as analyzed in his later meta-analysis (Bem et al. 2011).

Usage

Bem2011

Format

A data.frame with 3 columns and 9 observations.

Value

a data.frame.

References

check_RoBMA

Check fitted RoBMA object for errors and warnings

Description

Checks fitted RoBMA object for warnings and errors and prints them to the console.

Usage

check_RoBMA(fit)

Arguments

fit a fitted RoBMA object.

Value

check_RoBMA returns a vector of error and warning messages.

check_setup

Prints summary of "RoBMA" ensemble implied by the specified priors

Description

check_setup prints summary of "RoBMA" ensemble implied by the specified prior distributions. It is useful for checking the ensemble configuration prior to fitting all of the models.

Usage

check_setup(
 model_type = NULL,
 priors_effect = prior(distribution = "normal", parameters = list(mean = 0, sd = 1)),
 priors_heterogeneity = prior(distribution = "invgamma", parameters = list(shape = 1, scale = 0.15)),
 priors_bias = list(prior_weightfunction(distribution = "two.sided", parameters = list(alpha = c(1, 1), steps = c(0.05)), prior_weights = 1/12),
 prior_weightfunction(distribution = "two.sided", parameters = list(alpha = c(1, 1, 1), steps = c(0.05, 0.1)), prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1), steps = c(0.05)), prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1), steps = c(0.025, 0.05)), prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1, 1), steps = c(0.025, 0.05, 0.5)), prior_weights = 1/12),
 prior_PET(distribution = "Cauchy", parameters = list(0, 1), truncation = list(0, Inf), prior_weights = 1/4),
 prior_PEESE(distribution = "Cauchy", parameters = list(0, 1), truncation = list(0, Inf), prior_weights = 1/4)),
 priors_heterogeneity = prior(distribution = "invgamma", parameters = list(shape = 1, scale = 0.15)),
 priors_bias = list(prior_weightfunction(distribution = "two.sided", parameters = list(alpha = c(1, 1), steps = c(0.05)), prior_weights = 1/12),
 prior_weightfunction(distribution = "two.sided", parameters = list(alpha = c(1, 1, 1), steps = c(0.05, 0.1)), prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1), steps = c(0.05)), prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1), steps = c(0.025, 0.05, 0.5)), prior_weights = 1/12),
 prior_PET(distribution = "Cauchy", parameters = list(0, 1), truncation = list(0, Inf), prior_weights = 1/4),
 prior_PEESE(distribution = "Cauchy", parameters = list(0, 1), truncation = list(0, Inf), prior_weights = 1/4)),
 model_type = NULL,
 priors_effect = prior(distribution = "normal", parameters = list(mean = 0, sd = 1)),
 priors_heterogeneity = prior(distribution = "invgamma", parameters = list(shape = 1, scale = 0.15)),
 priors_bias = list(prior_weightfunction(distribution = "two.sided", parameters = list(alpha = c(1, 1), steps = c(0.05)), prior_weights = 1/12),
 prior_weightfunction(distribution = "two.sided", parameters = list(alpha = c(1, 1, 1), steps = c(0.05, 0.1)), prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1), steps = c(0.05)), prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1), steps = c(0.025, 0.05, 0.5)), prior_weights = 1/12),
 prior_PET(distribution = "Cauchy", parameters = list(0, 1), truncation = list(0, Inf), prior_weights = 1/4),
 prior_PEESE(distribution = "Cauchy", parameters = list(0, 1), truncation = list(0, Inf), prior_weights = 1/4)),
 ...
check_setup

parameters = list(0, 5), truncation = list(0, Inf), prior_weights = 1/4)),
priors_effect_null = prior(distribution = "point", parameters = list(location = 0)),
priors_heterogeneity_null = prior(distribution = "point", parameters = list(location = 0)),
priors_bias_null = prior_none(),
models = FALSE,
silent = FALSE)

Arguments

model_type string specifying the RoBMA ensemble. Defaults to NULL. The other options are "PSMA", "PP", and "2w" which override settings passed to the priors_effect, priors_heterogeneity, priors_effect, priors_effect_null, priors_heterogeneity_null, priors_bias_null, and priors_effect. See details for more information about the different model types.
priors_effect list of prior distributions for the effect size (mu) parameter that will be treated as belonging to the alternative hypothesis. Defaults to a standard normal distribution prior(distribution = "normal", parameters = list(mean = 0, sd = 1)).
priors_heterogeneity list of prior distributions for the heterogeneity tau parameter that will be treated as belonging to the alternative hypothesis. Defaults to prior(distribution = "invgamma", parameters = list(shape = 1, scale = .15)) that is based on heterogeneities estimates from psychology (van Erp et al. 2017).
priors_bias list of prior distributions for the publication bias adjustment component that will be treated as belonging to the alternative hypothesis. Defaults to list(prior_weightfunction(distribution = "two.sided", parameters = list(alpha = c(1,1), steps = c(0.05)), prior_weights = 1/12), prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1,1), steps = c(0.05), prior_weights = 1/12), prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1,1,1), steps = c(0.025,0.05)), prior_weights = 1/12), prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1,1,1), steps = c(0.025,0.05,0.5)), prior_weights = 1/12), prior_PET(distribution = "Cauchy", parameters = list(0,1), truncation = list(0,Inf), prior_weights = 1/4), prior_PEESE(distribution = "Cauchy", parameters = list(0,5), truncation = list(0,Inf), prior_weights = 1/4), corresponding to the RoBMA-PSMA model introduce by Bartoš et al. (2021).
priors_effect_null list of prior distributions for the effect size (mu) parameter that will be treated as belonging to the null hypothesis. Defaults to a point null hypotheses at zero, prior(distribution = "point", parameters = list(location = 0)).
priors_heterogeneity_null list of prior distributions for the heterogeneity tau parameter that will be treated as belonging to the null hypothesis. Defaults to a point null hypotheses at zero (a
combine_data

Combines different effect sizes into a common metric

Description

combine_data combines different effect sizes into a common measure specified in transformation. Either a data.frame data with columns named corresponding to the arguments or vectors with individual values can be passed.

Usage

```r
combine_data(
  d = NULL,
  r = NULL,
  z = NULL,
  logOR = NULL,
  t = NULL,
  y = NULL,
  se = NULL,
  v = NULL,
  n = NULL,
  lCI = NULL,
  uCI = NULL,
  study_names = NULL,
  data = NULL,
  transformation = "fishers_z",
  return_all = FALSE
)
```
Arguments

- `d`: a vector of effect sizes measured as Cohen's d
- `r`: a vector of effect sizes measured as correlations
- `z`: a vector of effect sizes measured as Fisher's z
- `logOR`: a vector of effect sizes measured as log odds ratios
- `t`: a vector of t/z-statistics
- `y`: a vector of unspecified effect sizes (note that effect size transformations are unavailable with this type of input)
- `se`: a vector of standard errors of the effect sizes
- `v`: a vector of variances of the effect sizes
- `n`: a vector of overall sample sizes
- `lCI`: a vector of lower bounds of confidence intervals
- `uCI`: a vector of upper bounds of confidence intervals
- `study_names`: an optional argument with the names of the studies
- `data`: a data frame with column names corresponding to the variable names used to supply data individually
- `transformation`: transformation to be applied to the supplied effect sizes before fitting the individual models. Defaults to "fishers_z". We highly recommend using "fishers_z" transformation since it is the only variance stabilizing measure and does not bias PET and PEESSE style models. The other options are "cohens_d", correlation coefficient "r" and "logOR". Supplying "none" will treat the effect sizes as unstandardized and refrain from any transformations.
- `return_all`: whether data frame containing all filled values should be returned. Defaults to FALSE

Details

The aim of the function is to combine different, already calculated, effect size measures. In order to obtain effect size measures from raw values, e.g. mean differences, standard deviations, and sample sizes, use `escalc` function.

The function checks the input values and in transforming the input into a common effect size measure in the following fashion:

1. obtains missing standard errors by squaring variances
2. obtains missing standard errors from confidence intervals (after transformation to Fisher's z scale for d and r).
3. obtains missing sample sizes (or standard errors for logOR) from t-statistics and effect sizes
4. obtains missing standard errors from sample sizes and effect sizes
5. obtains missing sample sizes from standard errors and effect sizes
6. obtains missing t-statistics from sample sizes and effect sizes (or standard errors and effect sizes for logOR)
7. changes the effect sizes direction to be positive
8. transforms effect sizes into the common effect size
9. transforms standard errors into the common metric

If the transforms is NULL or an unstandardized effect size \(y \) is supplied, steps 4-9 are skipped.

Value

combine_data returns a data.frame.

See Also

RoBMA(), check_setup(), effect_sizes(), standard_errors(), and sample_sizes()

diagnostics

Checks a fitted RoBMA object

Description

diagnostics creates visual checks of individual models convergence. Numerical overview of individual models can be obtained by summary(object,type = "models",diagnostics = TRUE), or even more detailed information by summary(object,type = "individual").

Usage

diagnostics(
 fit, parameter, type, plot_type = "base", show_models = NULL, lags = 30, title = is.null(show_models) | length(show_models) > 1,
 ...
)

Arguments

fit a fitted RoBMA object
parameter a parameter to be plotted. Either "\(\mu \)", "\(\tau \)", "\(\omega \)", "PET", or "PEESE".

Plots individual models' convergence. Can be abbreviated to first letters.
plot_type whether to use a base plot "base" or ggplot2 "ggplot" for plotting. Defaults to "base".

Value

combine_data returns a data.frame.

See Also

RoBMA(), check_setup(), effect_sizes(), standard_errors(), and sample_sizes()
show_models MCMC diagnostics of which models should be plotted. Defaults to NULL which plots MCMC diagnostics for a specified parameter for every model that is part of the ensemble.

lags number of lags to be shown for type = "autocorrelation". Defaults to 30.
title whether the model number should be displayed in title. Defaults to TRUE when more than one model is selected.

... additional arguments to be passed to par if plot_type = "base".

Details

The visualization functions are based on stan_plot function and its color schemes.

Value

diagnostics returns either NULL if plot_type = "base" or an object/list of objects (depending on the number of parameters to be plotted) of class 'ggplot2' if plot_type = "ggplot2".

See Also

RoBMA(), summary.RoBMA()

Examples

Not run:
using the example data from Anderson et al. 2010 and fitting the default model
(note that the model can take a while to fit)
fit <- RoBMA(r = Anderson2010$r, n = Anderson2010$n, study_names = Anderson2010$labels)

ggplot2 version of all of the plots can be obtained by adding 'model_type = "ggplot"
diagnostics function allows to visualize diagnostics of a fitted RoBMA object, for example,
the trace plot for the mean parameter in each model model
diagnostics(fit, parameter = "mu", type = "chain")

in order to show the trace plot only for the 11th model, add show_models parameter
diagnostics(fit, parameter = "mu", type = "chain", show_models = 11)

furthermore, the autocorrelations
diagnostics(fit, parameter = "mu", type = "autocorrelation")

and overlying densities for each plot can also be visualize
diagnostics(fit, parameter = "mu", type = "densities")

End(Not run)
Description

Functions for transforming between different effect size measures.

Usage

d2r(d)
d2logOR(d)
r2d(r)
r2z(r)
logOR2d(logOR)
z2r(z)
d2z(d)
r2logOR(r)
logOR2z(logOR)
logOR2r(logOR)
z2d(z)
z2logOR(z)

Arguments

d Cohen’s d.
r correlation coefficient.
logOR log(odd ratios).
z Fisher’s z.

Details

All transformations are based on (Borenstein et al. 2011). In case that a direct transformation is not available, the transformations are chained to provide the effect size of interest.
References

See Also

 `standard_errors()`, `sample_sizes()`

forest
Forest plot for a RoBMA object

Description

forest creates a forest plot for a "RoBMA" object.

Usage

```r
forest(
  x,  
  conditional = FALSE,  
  plot_type = "base",  
  output_scale = NULL,  
  order = NULL,  
  ...
)
```

Arguments

- **x**: a fitted RoBMA object
- **conditional**: whether conditional estimates should be plotted. Defaults to FALSE which plots the model-averaged estimates. Note that both "weightfunction" and "PET-PEESE" are always ignoring the other type of publication bias adjustment.
- **plot_type**: whether to use a base plot "base" or ggplot2 "ggplot" for plotting. Defaults to "base".
- **output_scale**: transform the effect sizes and the meta-analytic effect size estimate to a different scale. Defaults to NULL which returns the same scale as the model was estimated on.
- **order**: order of the studies. Defaults to NULL - ordering as supplied to the fitting function. Studies can be ordered either "ascending" or "descending" by effect size, or by labels "alphabetical".
- **...**: list of additional graphical arguments to be passed to the plotting function. Supported arguments are lwd, lty, col, col.fill, xlab, ylab, main, xlim, ylim to adjust the line thickness, line type, line color, fill color, x-label, y-label, title, x-axis range, and y-axis range respectively.
is.RoBMA

Value

forest returns either NULL if plot_type = "base" or an object object of class 'ggplot2' if plot_type = "ggplot2".

Examples

Not run:
using the example data from Anderson et al. 2010 and fitting the default model
(note that the model can take a while to fit)
fit <- RoBMA(r = Anderson2010$r, n = Anderson2010$n, study_names = Anderson2010$labels)

ggplot2 version of all of the plots can be obtained by adding 'model_type = "ggplot"
the forest function creates a forest plot for a fitted RoBMA object, for example,
the forest plot for the individual studies and the model-averaged effect size estimate
forest(fit)

the conditional effect size estimate
forest(fit, conditional = TRUE)

or transforming the effect size estimates to Fisher’s z
forest(fit, output_scale = "fishers_z")

End(Not run)

is.RoBMA

Reports whether x is a RoBMA object

Description

Reports whether x is a RoBMA object

Usage

is.RoBMA(x)

Arguments

x

an object to test

Value

is.RoBMA returns a boolean.
Description

plot.RoBMA allows to visualize different "RoBMA" object parameters in various ways. See type for the different model types.

Usage

S3 method for class 'RoBMA'
plot(
 x,
 parameter = "mu",
 conditional = FALSE,
 plot_type = "base",
 prior = FALSE,
 rescale_x = FALSE,
 show_data = TRUE,
 dots_prior = NULL,
 ...
)

Arguments

x a fitted RoBMA object

parameter a parameter to be plotted. Defaults to "mu" (for the effect size). The additional options are "tau" (for the heterogeneity), "weightfunction" (for the estimated weightfunction), or "PET-PEESE" (for the PET-PEESE regression).

conditional whether conditional estimates should be plotted. Defaults to FALSE which plots the model-averaged estimates. Note that both "weightfunction" and "PET-PEESE" are always ignoring the other type of publication bias adjustment.

plot_type whether to use a base plot "base" or ggplot2 "ggplot" for plotting. Defaults to "base".

prior whether prior distribution should be added to figure. Defaults to FALSE.

rescale_x whether the x-axis of the "weightfunction" should be re-scaled to make the x-ticks equally spaced. Defaults to FALSE.

show_data whether the study estimates and standard errors should be show in the "PET-PEESE" plot. Defaults to TRUE.

dots_prior list of additional graphical arguments to be passed to the plotting function of the prior distribution. Supported arguments are lwd, lty, col, and col.fill, to adjust the line thickness, line type, line color, and fill color of the prior distribution respectively.
plot_models

... list of additional graphical arguments to be passed to the plotting function. Supported arguments are lwd, lty, col, col.fill, xlab, ylab, main, xlim, ylim to adjust the line thickness, line type, line color, fill color, x-label, y-label, title, x-axis range, and y-axis range respectively.

Value

plot.RoBMA returns either NULL if plot_type = "base" or an object object of class 'ggplot2' if plot_type = "ggplot2".

See Also

RoBMA()

Examples

Not run:
using the example data from Anderson et al. 2010 and fitting the default model
(note that the model can take a while to fit)
fit <- RoBMA(r = Anderson2010$r, n = Anderson2010$n, study_names = Anderson2010$labels)

ggplot2 version of all of the plots can be obtained by adding 'model_type = "ggplot"
the 'plot' function allows to visualize the results of a fitted RoBMA object, for example;
the model-averaged effect size estimate
plot(fit, parameter = "mu")

and show both the prior and posterior distribution
plot(fit, parameter = "mu", prior = TRUE)

conditional plots can by obtained by specifying
plot(fit, parameter = "mu", conditional = TRUE)

plotting function also allows to visualize the weight function
plot(fit, parameter = "weightfunction")

re-scale the x-axis
plot(fit, parameter = "weightfunction", rescale_x = TRUE)

or visualize the PET-PEESE regression line
plot(fit, parameter = "PET-PEESE")

End(Not run)
Description

plot_models plots individual models' estimates for a "RoBMA" object.

Usage

```r
plot_models(
  x,
  parameter = "mu",
  conditional = FALSE,
  plot_type = "base",
  order = "decreasing",
  order_by = "model",
  ...
)
```

Arguments

- `x`: a fitted RoBMA object
- `parameter`: a parameter to be plotted. Defaults to "mu" (for the effect size). The additional option is "tau" (for the heterogeneity).
- `conditional`: whether conditional estimates should be plotted. Defaults to FALSE which plots the model-averaged estimates. Note that both "weightfunction" and "PET-PEESE" are always ignoring the other type of publication bias adjustment.
- `plot_type`: whether to use a base plot "base" or ggplot2 "ggplot" for plotting. Defaults to "base".
- `order`: how the models should be ordered. Defaults to "decreasing" which orders them in decreasing order in accordance to `order_by` argument. The alternative is "decreasing".
- `order_by`: what feature should be use to order the models. Defaults to "model" which orders the models according to their number. The alternatives are "estimate" (for the effect size estimates), "probability" (for the posterior model probability), and "BF" (for the inclusion Bayes factor).
- `...`: list of additional graphical arguments to be passed to the plotting function. Supported arguments are `lwd`, `lty`, `col`, `col.fill`, `xlab`, `ylab`, `main`, `xlim`, `ylim` to adjust the line thickness, line type, line color, fill color, x-label, y-label, title, x-axis range, and y-axis range respectively.

Value

`plot_models` returns either `NULL` if `plot_type = "base"` or an object object of class 'ggplot2' if `plot_type = "ggplot2"`.

Examples

```r
## Not run:
# using the example data from Anderson et al. 2010 and fitting the default model
# (note that the model can take a while to fit)
```
fit <- RoBMA(r = Anderson2010$r, n = Anderson2010$n, study_names = Anderson2010$labels)

ggplot2 version of all of the plots can be obtained by adding 'model_type = "ggplot"
the plot_models function creates a plot for of the individual models' estimates, for example,
the effect size estimates from the individual models can be obtained with
plot_models(fit)

and effect size estimates from only the conditional models
plot_models(fit, conditional = TRUE)

End(Not run)

print.RoBMA

Prints a fitted RoBMA object

Description

Prints a fitted RoBMA object

Usage

```
## S3 method for class 'RoBMA'
print(x, ...)
```

Arguments

- `x` a fitted RoBMA object.
- `...` additional arguments.

Value

`print.RoBMA` invisibly returns the print statement.

See Also

`RoBMA()`
print.summary.RoBMA

Prints summary object for RoBMA method

Description

Prints summary object for RoBMA method

Usage

```r
## S3 method for class 'summary.RoBMA'
print(x, ...)
```

Arguments

- `x`: a summary of a RoBMA object
- `...`: additional arguments

Value

`print.summary.RoBMA` invisibly returns the print statement.

See Also

- `RoBMA()`

prior

Creates a prior distribution

Description

`prior` creates a prior distribution. The prior can be visualized by the `plot` function.

Usage

```r
prior(
  distribution,
  parameters,
  truncation = list(lower = -Inf, upper = Inf),
  prior_weights = 1
)
```
Arguments

distribution name of the prior distribution. The possible options are
"point" for a point density characterized by a location parameter.
"normal" for a normal distribution characterized by a mean and sd parameters.
"lognormal" for a lognormal distribution characterized by a meanlog and sdlog parameters.
"cauchy" for a Cauchy distribution characterized by a location and scale parameters. Internally converted into a generalized t-distribution with df = 1.
"t" for a generalized t-distribution characterized by a location, scale, and df parameters.
"gamma" for a gamma distribution characterized by either shape and rate, or shape and scale parameters. The later is internally converted to the shape and rate parametrization
"invgamma" for an inverse-gamma distribution characterized by a shape and scale parameters. The JAGS part uses a 1/gamma distribution with a shape and rate parameter.
"beta" for a beta distribution characterized by an alpha and beta parameters.
"exp" for an exponential distribution characterized by either rate or scale parameter. The later is internally converted to rate.
"uniform" for a uniform distribution defined on a range from a to b

parameters list of appropriate parameters for a given distribution.

truncation list with two elements, lower and upper, that define the lower and upper truncation of the distribution. Defaults to list(lower = -Inf, upper = Inf). The truncation is automatically set to the bounds of the support.

prior_weights prior odds associated with a given distribution. The value is passed into the model fitting function, which creates models corresponding to all combinations of prior distributions for each of the model parameters and sets the model priors odds to the product of its prior distributions.

Value

prior and prior_none return an object of class 'prior'. A named list containing the distribution name, parameters, and prior weights.

See Also

plot.prior(), Normal, Lognormal, Cauchy, Beta, Exponential, LocationScaleT, InvGamma.

Examples

create a standard normal prior distribution
p1 <- prior(distribution = "normal", parameters = list(mean = 1, sd = 1))

create a half-normal standard normal prior distribution
p2 <- prior(distribution = "normal", parameters = list(mean = 1, sd = 1),
prior_none

prior_none

Creates a prior distribution

Description

prior_none creates a prior distribution. The prior can be visualized by the plot function.

Usage

prior_none(prior_weights = 1)

Arguments

prior_weights prior odds associated with a given distribution. The value is passed into the model fitting function, which creates models corresponding to all combinations of prior distributions for each of the model parameters and sets the model priors odds to the product of its prior distributions.

Value

prior and prior_none return an object of class 'prior'. A named list containing the distribution name, parameters, and prior weights.

See Also

plot.prior(), Normal, Lognormal, Cauchy, Beta, Exponential, LocationScaleT, InvGamma.

Examples

create a standard normal prior distribution
p1 <- prior(distribution = "normal", parameters = list(mean = 1, sd = 1))

create a half-normal standard normal prior distribution
p2 <- prior(distribution = "normal", parameters = list(mean = 1, sd = 1),
 truncation = list(lower = 0, upper = Inf))

the prior distribution can be visualized using the plot function
(see ?plot.prior for all options)
plot(p1)
prior_PEESE

Creates a prior distribution for PET or PEESE models

Description

prior creates a prior distribution for fitting a PET or PEESE style models in RoBMA. The prior distribution can be visualized by the plot function.

Usage

prior_PEESE(
 distribution,
 parameters,
 truncation = list(lower = 0, upper = Inf),
 prior_weights = 1
)

Arguments

distribution name of the prior distribution. The possible options are
 "point" for a point density characterized by a location parameter.
 "normal" for a normal distribution characterized by a mean and sd parameters.
 "lognormal" for a lognormal distribution characterized by a meanlog and sdlog parameters.
 "cauchy" for a Cauchy distribution characterized by a location and scale parameters. Internally converted into a generalized t-distribution with df = 1.
 "t" for a generalized t-distribution characterized by a location, scale, and df parameters.
 "gamma" for a gamma distribution characterized by either shape and rate, or shape and scale parameters. The later is internally converted to the shape and rate parametrization
 "invgamma" for an inverse-gamma distribution characterized by a shape and scale parameters. The JAGS part uses a 1/gamma distribution with a shape and rate parameter.
 "beta" for a beta distribution characterized by an alpha and beta parameters.
 "exp" for an exponential distribution characterized by either rate or scale parameter. The later is internally converted to rate.
 "uniform" for a uniform distribution defined on a range from a to b
parameters list of appropriate parameters for a given distribution.
truncation list with two elements, lower and upper, that define the lower and upper truncation of the distribution. Defaults to list(lower = -Inf, upper = Inf). The truncation is automatically set to the bounds of the support.
prior_PET

prior_weights prior odds associated with a given distribution. The value is passed into the model fitting function, which creates models corresponding to all combinations of prior distributions for each of the model parameters and sets the model priors odds to the product of its prior distributions.

Value

prior_PET and prior_PEESE return an object of class 'prior'.

See Also

plot.prior(), prior()

Examples

create a half-Cauchy prior distribution
(PET and PEESE specific functions automatically set lower truncation at 0)
p1 <- prior_PET(distribution = "Cauchy", parameters = list(location = 0, scale = 1))

plot(p1)

prior_PET *Creates a prior distribution for PET or PEESE models*

Description

prior creates a prior distribution for fitting a PET or PEESE style models in RoBMA. The prior distribution can be visualized by the plot function.

Usage

prior_PET(
 distribution,
 parameters,
 truncation = list(lower = 0, upper = Inf),
 prior_weights = 1
)

Arguments

distribution name of the prior distribution. The possible options are
 "point" for a point density characterized by a location parameter.
 "normal" for a normal distribution characterized by a mean and sd parameters.
 "lognormal" for a lognormal distribution characterized by a meanlog and sdlog parameters.
 "cauchy" for a Cauchy distribution characterized by a location and scale parameters. Internally converted into a generalized t-distribution with df = 1.
prior_weightfunction

"t" for a generalized t-distribution characterized by a location, scale, and df parameters.

"gamma" for a gamma distribution characterized by either shape and rate, or shape and scale parameters. The later is internally converted to the shape and rate parametrization.

"invgamma" for an inverse-gamma distribution characterized by a shape and scale parameters. The JAGS part uses a 1/gamma distribution with a shape and rate parameter.

"beta" for a beta distribution characterized by an alpha and beta parameters.

"exp" for an exponential distribution characterized by either rate or scale parameter. The later is internally converted to rate.

"uniform" for a uniform distribution defined on a range from a to b.

parameters list of appropriate parameters for a given distribution.

truncation list with two elements, lower and upper, that define the lower and upper truncation of the distribution. Defaults to list(lower = -Inf, upper = Inf). The truncation is automatically set to the bounds of the support.

prior_weights prior odds associated with a given distribution. The value is passed into the model fitting function, which creates models corresponding to all combinations of prior distributions for each of the model parameters and sets the model priors odds to the product of its prior distributions.

Value

prior_PET and prior_PEESE return an object of class ‘prior’.

See Also

plot.prior(), prior()

Examples

create a half-Cauchy prior distribution
(PET and PEESE specific functions automatically set lower truncation at 0)
p1 <- prior_PET(distribution = "Cauchy", parameters = list(location = 0, scale = 1))
plot(p1)

prior_weightfunction
Creates a prior distribution for a weight function

Description

prior_weightfunction creates a prior distribution for fitting a RoBMA selection model. The prior can be visualized by the plot function.
Usage

prior_weightfunction(distribution, parameters, prior_weights = 1)

Arguments

distribution name of the prior distribution. The possible options are
 "two.sided" for a two-sided weight function characterized by a vector steps
 and vector alpha parameters. The alpha parameter determines an alpha
 parameter of Dirichlet distribution which cumulative sum is used for the
 weights omega.
 "one.sided" for a one-sided weight function characterized by either a vector
 steps and vector alpha parameter, leading to a monotonic one-sided func-
 tion, or by a vector steps, vector alpha1, and vector alpha2 parameters
 leading non-monotonic one-sided weight function. The alpha/alpha1 and
 alpha2 parameters determine an alpha parameter of Dirichlet distribution
 which cumulative sum is used for the weights omega.

parameters list of appropriate parameters for a given distribution.

prior_weights prior odds associated with a given distribution. The model fitting function usu-
 ally creates models corresponding to all combinations of prior distributions for
 each of the model parameters, and sets the model priors odds to the product
 of its prior distributions.

Value

prior_weightfunction returns an object of class 'prior'.

See Also

plot.prior()

Examples

p1 <- prior_weightfunction("one-sided", parameters = list(steps = c(.05, .10), alpha = c(1, 1, 1)))

the prior distribution can be visualized using the plot function
(see ?plot.prior for all options)
plot(p1)

RoBMA

Estimate a Robust Bayesian Meta-Analysis

Description

RoBMA is used to estimate a Robust Bayesian Meta-Analysis. The interface allows a complete cus-

omization of the ensemble with different prior (or list of prior) distributions for each component.
Usage

RoBMA(
 d = NULL,
 r = NULL,
 logOR = NULL,
 z = NULL,
 y = NULL,
 se = NULL,
 v = NULL,
 n = NULL,
 lCI = NULL,
 uCI = NULL,
 t = NULL,
 study_names = NULL,
 data = NULL,
 transformation = if (is.null(y)) "fishers_z" else "none",
 prior_scale = if (is.null(y)) "cohens_d" else "none",
 effect_direction = "positive",
 model_type = NULL,
 priors_effect = prior(distribution = "normal", parameters = list(mean = 0, sd = 1)),
 priors_heterogeneity = prior(distribution = "invgamma", parameters = list(shape = 1, scale = 0.15)),
 priors_bias = list(prior_weightfunction(distribution = "two.sided", parameters = list(alpha = c(1, 1), steps = c(0.05)), prior_weights = 1/12),
 prior_weightfunction(distribution = "two.sided", parameters = list(alpha = c(1, 1, 1), steps = c(0.05, 0.1)), prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1), steps = c(0.05)), prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1), steps = c(0.05, 0.5)), prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1, 1), steps = c(0.025, 0.05, 0.5)),
 prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1, 1), steps = c(0.025, 0.05, 0.5)),
 prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1, 1), steps = c(0.025, 0.05, 0.5)),
 prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1, 1), steps = c(0.025, 0.05, 0.5)),
 prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1, 1), steps = c(0.025, 0.05, 0.5)),
 prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1, 1), steps = c(0.025, 0.05, 0.5)),
 prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1, 1), steps = c(0.025, 0.05, 0.5)),
 prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1, 1), steps = c(0.025, 0.05, 0.5)),
 prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1, 1), steps = c(0.025, 0.05, 0.5)),
 prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1, 1), steps = c(0.025, 0.05, 0.5)),
 prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1, 1), steps = c(0.025, 0.05, 0.5)),
 prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1, 1), steps = c(0.025, 0.05, 0.5)),
 prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1, 1), steps = c(0.025, 0.05, 0.5)),
 prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1, 1), steps = c(0.025, 0.05, 0.5)),
 prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1, 1), steps = c(0.025, 0.05, 0.5)),
 prior_weights = 1/12),
 prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1, 1), steps = c(0.025, 0.05, 0.5)),
 prior_weights = 1/12)),
 priors_effect_null = prior(distribution = "point", parameters = list(location = 0)),
 priors_heterogeneity_null = prior(distribution = "point", parameters = list(location = 0)),
 priors_bias_null = prior_none(),
 chains = 3,
 sample = 5000,
 burnin = 2000,
 adapt = 500,
 thin = 1,
 parallel = FALSE,
 autofit = TRUE,
 autofit_control = set_autofit_control(),
 convergence_checks = set_convergence_checks(),


```
save = "all",
seed = NULL,
silent = TRUE
)
```

Arguments

- **d**: a vector of effect sizes measured as Cohen’s d
- **r**: a vector of effect sizes measured as correlations
- **logOR**: a vector of effect sizes measured as log odds ratios
- **z**: a vector of effect sizes measured as Fisher’s z
- **y**: a vector of unspecified effect sizes (note that effect size transformations are unavailable with this type of input)
- **se**: a vector of standard errors of the effect sizes
- **v**: a vector of variances of the effect sizes
- **n**: a vector of overall sample sizes
- **lCI**: a vector of lower bounds of confidence intervals
- **uCI**: a vector of upper bounds of confidence intervals
- **t**: a vector of t/z-statistics
- **study_names**: an optional argument with the names of the studies
- **data**: a data frame with column names corresponding to the variable names used to supply data individually
- **transformation**: transformation to be applied to the supplied effect sizes before fitting the individual models. Defaults to "fishers_z". We highly recommend using "fishers_z" transformation since it is the only variance stabilizing measure and does not bias PET and PEESE style models. The other options are "cohens_d", correlation coefficient "r" and "logOR". Supplying "none" will treat the effect sizes as unstandardized and refrain from any transformations.
- **prior_scale**: a scale used to define priors. Defaults to "cohens_d". Other options are "fishers_z", correlation coefficient "r", and "logOR". The prior scale does not need to match the effect sizes measure - the samples from prior distributions are internally transformed to match the transformation of the data. The prior_scale corresponds to the scale of default output, but can be changed within the summary function.
- **effect_direction**: the expected direction of the effect. The one-sided selection sets the weights omega to 1 to significant results in the expected direction. Defaults to "positive" (another option is "negative").
- **model_type**: string specifying the RoBMA ensemble. Defaults to NULL. The other options are "PSMA", "PP", and "2w" which override settings passed to the priors_effect, priors_heterogeneity,priors_effect,priors_effect_null,priors_heterogeneity_null, priors_bias_null, and priors_effect. See details for more information about the different model types.
priors_effect list of prior distributions for the effect size (μ) parameter that will be treated as belonging to the alternative hypothesis. Defaults to a standard normal distribution `prior(distribution = "normal",parameters = list(mean = 0, sd = 1)).`

priors_heterogeneity list of prior distributions for the heterogeneity τ parameter that will be treated as belonging to the alternative hypothesis. Defaults to `prior(distribution = "invgamma",parameters = list(shape = 1, scale = .15))` that is based on heterogeneity estimates from psychology (van Erp et al. 2017).

priors_bias list of prior distributions for the publication bias adjustment component that will be treated as belonging to the alternative hypothesis. Defaults to `list(prior_weightfunction(distribution = "two.sided",parameters = list(alpha = c(1,1), steps = c(0.05)),prior_weights = 1/12),prior_weightfunction(distribution = "two.sided",parameters = list(alpha = c(1,1,1), steps = c(0.05, 0.10)),prior_weights = 1/12),prior_weightfunction(distribution = "one.sided",parameters = list(alpha = c(1,1), steps = c(0.05)),prior_weights = 1/12),prior_weightfunction(distribution = "one.sided",parameters = list(alpha = c(1,1,1), steps = c(0.025, 0.05)),prior_weights = 1/12),prior_weightfunction(distribution = "one.sided",parameters = list(alpha = c(1,1,1), steps = c(0.05, 0.5)),prior_weights = 1/12),prior_weightfunction(distribution = "one.sided",parameters = list(alpha = c(1,1,1,1), steps = c(0.025, 0.05, 0.5)),prior_weights = 1/12),prior_weightfunction(distribution = "one.sided",parameters = list(alpha = c(1,1,1,1), steps = c(0.05, 0.5)),prior_weights = 1/12))`, corresponding to the RoBMA-PSMA model introduced by Bartoš et al. (2021).

priors_effect_null list of prior distributions for the effect size (μ) parameter that will be treated as belonging to the null hypothesis. Defaults to a point null hypotheses at zero, `prior(distribution = "point",parameters = list(location = 0)).`

priors_heterogeneity_null list of prior distributions for the heterogeneity τ parameter that will be treated as belonging to the null hypothesis. Defaults to a point null hypotheses at zero (a fixed effect meta-analytic model), `prior(distribution = "point",parameters = list(location = 0)).`

priors_bias_null list of prior weight functions for the ω parameter that will be treated as belonging to the null hypothesis. Defaults no publication bias adjustment, `prior_none()`.

chains a number of chains of the MCMC algorithm

sample a number of sampling iterations of the MCMC algorithm. Defaults to 5000.

burnin a number of burnin iterations of the MCMC algorithm. Defaults to 2000.

adapt a number of adaptation iterations of the MCMC algorithm. Defaults to 500.

thin a thinning of the chains of the MCMC algorithm. Defaults to 1.

parallel whether the individual models should be fitted in parallel. Defaults to FALSE. The implementation is not completely stable and might cause a connection error.

autofit whether the model should be fitted until the convergence criteria (specified in autofit_control) are satisfied. Defaults to TRUE.
autofit_control
allows to pass autofit control settings with the `set_autofit_control()` function. See `?set_autofit_control` for options and default settings.

convergence_checks
automatic convergence checks to assess the fitted models, passed with `set_convergence_checks()` function. See `?set_convergence_checks` for options and default settings.

save
whether all models posterior distributions should be kept after obtaining a model-averaged result. Defaults to "all" which does not remove anything. Set to "min" to significantly reduce the size of final object, however, some model diagnostics and further manipulation with the object will not be possible.

seed
a seed to be set before model fitting, marginal likelihood computation, and posterior mixing for reproducibility of results. Defaults to NULL - no seed is set.

silent
whether all print messages regarding the fitting process should be suppressed. Defaults to TRUE. Note that parallel = TRUE also suppresses all messages.

Details
The default settings of the RoBMA 2.0 package corresponds to the RoBMA-PSMA ensemble proposed by Bartoš et al. (2021). The previous versions of the package (i.e., RoBMA < 2.0) used specifications proposed by Maier et al. (in press) (this specification can be easily obtained by setting `model_type = "2w"`. The RoBMA-PP specification from Bartoš et al. (2021) can be obtained by setting `model_type = "PP"`. The vignette("CustomEnsembles") and vignette("ReproducingBMA") vignettes describe how to use `RoBMA()` to fit custom meta-analytic ensembles (see `prior()` for more information about prior distributions).

The RoBMA function first generates models from a combination of the provided priors for each of the model parameters. Then, the individual models are fitted using `autorun.jags` function. A marginal likelihood is computed using `bridge_sampler` function. The individual models are then combined into an ensemble using the posterior model probabilities using BayesTools package.

Generic `summary.RoBMA()`, `print.RoBMA()`, and `plot.RoBMA()` functions are provided to facilitate manipulation with the ensemble. A visual check of the individual model diagnostics can be obtained using the `diagnostics()` function. The fitted model can be further updated or modified by `update.RoBMA()` function.

Value
`RoBMA` returns an object of class 'RoBMA'.

References

See Also

summary.RoBMA(), update.RoBMA(), check_setup()

Examples

Not run:
using the example data from Bem 2011 and fitting the default (RoBMA-PSMA) model
fit <- RoBMA(d = Bem2011$d, se = Bem2011$se, study_names = Bem2011$study)

in order to speed up the process, we can turn the parallelization on
fit <- RoBMA(d = Bem2011$d, se = Bem2011$se, study_names = Bem2011$study, parallel = TRUE)

we can get a quick overview of the model coefficients just by printing the model
fit

a more detailed overview using the summary function (see '?summary.RoBMA' for all options)
summary(fit)

the model-averaged effect size estimate can be visualized using the plot function
(see '?plot.RoBMA' for all options)
plot(fit, parameter = "mu")

forest plot can be obtained with the forest function (see '?forest' for all options)
forest(fit)

plot of the individual model estimates can be obtained with the plot_models function
(see '?plot_models' for all options)
plot_models(fit)

diagnostics for the individual parameters in individual models can be obtained using diagnostics
function (see '?diagnostics' for all options)
diagnostics(fit, parameter = "mu", type = "chains")

the RoBMA-PP can be fitted with addition of the 'model_type' argument
fit_PP <- RoBMA(d = Bem2011$d, se = Bem2011$se, study_names = Bem2011$study, model_type = "PP")

as well as the original version of RoBMA (with two weightfunctions)
fit_original <- RoBMA(d = Bem2011$d, se = Bem2011$se, study_names = Bem2011$study, model_type = "2w")

or different prior distribution for the effect size (e.g., a half-normal distribution)
(see 'vignette("CustomEnsembles")' for a detailed guide on specifying a custom model ensemble)
fit <- RoBMA(d = Bem2011$d, se = Bem2011$se, study_names = Bem2011$study, priors_effect = prior("normal", parameters = list(0, 1), truncation = list(0, Inf)))
End(Not run)

RoBMA_control

Control MCMC fitting process

Description

Controls settings for the autofit process of the MCMC JAGS sampler (specifies termination criteria), and values for the convergence checks.

Usage

```r
set_autofit_control(
  max_Rhat = 1.05,
  min_ESS = 500,
  max_error = NULL,
  max_SD_error = NULL,
  max_time = list(time = 60, unit = "mins"),
  sample_extend = 1000
)

set_convergence_checks(
  max_Rhat = 1.05,
  min_ESS = 500,
  max_error = NULL,
  max_SD_error = NULL,
  remove_failed = FALSE,
  balance_probability = TRUE
)
```

Arguments

- `max_Rhat` maximum value of the R-hat diagnostic. Defaults to 1.05.
- `min_ESS` minimum estimated sample size. Defaults to 500.
- `max_error` maximum value of the MCMC error. Defaults to NULL. Be aware that PEESE publication bias adjustment can have estimates on different scale than the rest of the output, resulting in relatively large max MCMC error.
- `max_SD_error` maximum value of the proportion of MCMC error of the estimated SD of the parameter. Defaults to NULL.
- `max_time` list with the time and unit specifying the maximum autofitting process per model. Passed to `difftime` function (possible units are "secs", "mins", "hours", "days", "weeks", "years"). Defaults to list(time = 60, unit = "mins").
- `sample_extend` number of samples to extend the fitting process if the criteria are not satisfied. Defaults to 1.05.
RoBMA_options

- **remove_failed**: whether models not satisfying the convergence checks should be removed from the inference. Defaults to `FALSE` - only a warning is raised.

- **balance_probability**: whether prior model probability should be balanced across the combinations of models with the same H0/H1 for effect / heterogeneity / bias in the case of non-convergence. Defaults to `TRUE`.

Value

- `set_autofit_control` returns a list of autofit control settings and `set_convergence_checks` returns a list of convergence checks settings.

See Also

- `RoBMA`, `update.RoBMA`

RoBMA_options

- **Options for the RoBMA package**

Description

A placeholder object and functions for the RoBMA package. (adapted from the runjags R package).

Usage

- `RoBMA.options(...)`

- `RoBMA.get_option(name)`

Arguments

- **...**: named option(s) to change - for a list of available options, see details below.

- **name**: the name of the option to get the current value of - for a list of available options, see details below.

Value

The current value of all available RoBMA options (after applying any changes specified) is returned invisibly as a named list.
Sample sizes to standard errors calculations

Description

Functions for transforming between standard errors and sample sizes (assuming equal sample sizes per group).

Usage

\[
\begin{align*}
\text{se}_d(d, n) \\
n_d(d, se) \\
\text{se}_r(r, n) \\
n_r(r, se) \\
\text{se}_z(n) \\
n_z(se)
\end{align*}
\]

Arguments

- d: Cohen’s d
- n: sample size of the corresponding effect size
- se: standard error of the corresponding effect size
- r: correlation coefficient

Details

Calculations for Cohen’s d, Fisher’s z, and log(OR) are based on (Borenstein et al. 2011). Calculations for correlation coefficient were modified to make the standard error corresponding to the computed on Fisher’s z scale under the same sample size (in order to make all other transformations consistent). In case that a direct transformation is not available, the transformations are chained to provide the effect size of interest.

Note that sample size and standard error calculation for log(OR) is not available. The standard error is highly dependent on the odds within the groups and sample sizes for individual events are required. Theoretically, the sample size could be obtained by transforming the effect size and standard error to a different measure and obtaining the sample size using corresponding function, however, it leads to a very poor approximation and it is not recommended.

References

See Also

effect_sizes(), standard_errors()

standard_errors Standard errors transformations

Description

Functions for transforming between standard errors of different effect size measures.

Usage

se_d2se_logOR(se_d, logOR)
se_d2se_r(se_d, d)
se_r2se_d(se_r, r)
se_logOR2se_d(se_logOR, logOR)
se_d2se_z(se_d, d)
se_r2se_z(se_r, r)
se_r2se_logOR(se_r, r)
se_logOR2se_r(se_logOR, logOR)
se_logOR2se_z(se_logOR, logOR)
se_z2se_d(se_z, z)
se_z2se_r(se_z, z)
se_z2se_logOR(se_z, z)

Arguments

se_d standard error of Cohen’s d
logOR log(odds ratios)
d Cohen’s d
se_r standard error of correlation coefficient
r correlation coefficient
se_logOR standard error of log(odds ratios)
se_z standard error of Fisher’s z
z Fisher’s z
Details

Transformations for Cohen’s d, Fisher’s z, and log(OR) are based on (Borenstein et al. 2011). Calculations for correlation coefficient were modified to make the standard error corresponding to the computed on Fisher’s z scale under the same sample size (in order to make all other transformations consistent). In case that a direct transformation is not available, the transformations are chained to provide the effect size of interest.

It is important to keep in mind that the transformations are only approximations to the true values. From our experience, se_d2se_z works well for values of se(Cohen’s d) < 0.5. Do not forget that the effect sizes are standardized and variance of Cohen’s d = 1. Therefore, a standard error of study cannot be larger unless the participants provided negative information (of course, the variance is dependent on the effect size as well, and, can therefore be larger).

When setting prior distributions, do NOT attempt to transform a standard normal distribution on Cohen’s d (mean = 0, sd = 1) to a normal distribution on Fisher’s z with mean 0 and sd = se_d2se_z(0, 1). The approximation does NOT work well in this range of values. Instead, approximate the sd of distribution on Fisher’s z using samples in this way: sd(d2z(rnorm(10000,0,1))) or, specify the distribution on Cohen’s d directly.

References

See Also
effect_sizes(), sample_sizes()

Description

summary.RoBMA creates summary tables for a RoBMA object.

Usage

```
# S3 method for class 'RoBMA'
summary(
  object,
  type = "ensemble",
  conditional = FALSE,
  output_scale = NULL,
  probs = c(0.025, 0.975),
  logBF = FALSE,
  BF01 = FALSE,
  short_name = FALSE,
  remove_spike_0 = FALSE,
  ...
)
```
summary.RoBMA

Arguments

object a fitted RoBMA object
type whether to show the overall RoBMA results ("ensemble"), an overview of the individual models ("models"), an overview of the individual models MCMC diagnostics ("diagnostics"), or a detailed summary of the individual models ("individual"). Can be abbreviated to first letters.
conditional show the conditional estimates (assuming that the alternative is true). Defaults to FALSE. Only available for type == "conditional".
output_scale transform the meta-analytic estimates to a different scale. Defaults to NULL which returns the same scale as the model was estimated on.
probs quantiles of the posterior samples to be displayed. Defaults to c(.025,.975)
logBF show log of Bayes factors. Defaults to FALSE.
BF01 show Bayes factors in support of the null hypotheses. Defaults to FALSE.
short_name whether priors names should be shortened to the first (couple) of letters. Defaults to FALSE.
remove_spike_0 whether spike prior distributions with location at zero should be omitted from the summary. Defaults to FALSE.
...

Value

summary.RoBMA returns a list of tables of class 'BayesTools_table'.

Note

See diagnostics() for visual convergence checks of the individual models.

See Also

RoBMA(), diagnostics(), check_RoBMA()

Examples

Not run:
using the example data from Anderson et al. 2010 and fitting the default model
(note that the model can take a while to fit)
fit <- RoBMA(r = Anderson2010$r, n = Anderson2010$n, study_names = Anderson2010$labels)

summary can provide many details about the model
summary(fit)

estimates from the conditional models can be obtained with
summary(fit, conditional = TRUE)

overview of the models and their prior and posterior probability, marginal likelihood,
and inclusion Bayes factor can be obtained with
summary(fit, type = "models")
diagnostics overview, containing the maximum R-hat, minimum ESS, maximum MCMC error, and # maximum MCMC error / sd across parameters for each individual model can be obtained with summary(fit, type = "diagnostics")

summary of individual models and their parameters can be further obtained by summary(fit, type = "individual")

End(Not run)

update.RoBMA

Updates a fitted RoBMA object

Description

update.RoBMA can be used to

1. add an additional model to an existing "RoBMA" object by specifying either a null or alternative prior for each parameter and the prior odds of the model (prior_weights), see the vignette("CustomEnsembles") vignette,
2. change the prior odds of fitted models by specifying a vector prior_weights of the same length as the fitted models,
3. refitting models that failed to converge with updated settings of control parameters,
4. or changing the convergence criteria and recalculating the ensemble results by specifying new control argument and setting refit_failed == FALSE.

Usage

```r
## S3 method for class 'RoBMA'
update(
  object,
  refit_failed = TRUE,
  prior_effect = NULL,
  prior_heterogeneity = NULL,
  prior_bias = NULL,
  prior_weights = NULL,
  prior_effect_null = NULL,
  prior_heterogeneity_null = NULL,
  prior_bias_null = NULL,
  study_names = NULL,
  chains = NULL,
  adapt = NULL,
  burnin = NULL,
  sample = NULL,
  thin = NULL,
  autofit = NULL,
)
Arguments

**object**
a fitted RoBMA object

**refit_failed**
whether failed models should be refitted. Relevant only if new priors or prior_weights are not supplied. Defaults to TRUE.

**prior_effect**
prior distribution for the effect size ($\mu$) parameter that will be treated as belonging to the alternative hypothesis. Defaults to NULL.

**prior_heterogeneity**
prior distribution for the heterogeneity $\tau$ parameter that will be treated as belonging to the alternative hypothesis. Defaults to NULL.

**prior_bias**
prior distribution for the publication bias adjustment component that will be treated as belonging to the alternative hypothesis. Defaults to NULL.

**prior_weights**
either a single value specifying prior model weight of a newly specified model using priors argument, or a vector of the same length as already fitted models to update their prior weights.

**prior_effect_null**
prior distribution for the effect size ($\mu$) parameter that will be treated as belonging to the null hypothesis. Defaults to NULL.

**prior_heterogeneity_null**
prior distribution for the heterogeneity $\tau$ parameter that will be treated as belonging to the null hypothesis. Defaults to NULL.

**prior_bias_null**
prior distribution for the publication bias adjustment component that will be treated as belonging to the null hypothesis. Defaults to NULL.

**study_names**
an optional argument with the names of the studies

**chains**
a number of chains of the MCMC algorithm

**adapt**
a number of adaptation iterations of the MCMC algorithm. Defaults to 500.

**burnin**
a number of burnin iterations of the MCMC algorithm. Defaults to 2000.

**sample**
a number of sampling iterations of the MCMC algorithm. Defaults to 5000.

**thin**
a thinning of the chains of the MCMC algorithm. Defaults to 1.

**autofit**
whether the model should be fitted until the convergence criteria (specified in autofit_control) are satisfied. Defaults to TRUE.

**parallel**
whether the individual models should be fitted in parallel. Defaults to FALSE. The implementation is not completely stable and might cause a connection error.
autofit_control allows to pass autofit control settings with the `set_autofit_control()` function. See `?set_autofit_control` for options and default settings.

convergence_checks automatic convergence checks to assess the fitted models, passed with `set_convergence_checks()` function. See `?set_convergence_checks` for options and default settings.

save whether all models posterior distributions should be kept after obtaining a model-averaged result. Defaults to "all" which does not remove anything. Set to "min" to significantly reduce the size of final object, however, some model diagnostics and further manipulation with the object will not be possible.

seed a seed to be set before model fitting, marginal likelihood computation, and posterior mixing for reproducibility of results. Defaults to NULL – no seed is set.

silent whether all print messages regarding the fitting process should be suppressed. Defaults to TRUE. Note that parallel = TRUE also suppresses all messages.

... additional arguments.

Details

See `RoBMA()` for more details.

Value

`RoBMA()` returns an object of class 'RoBMA'.

See Also

`RoBMA()`, `summary.RoBMA()`, `prior()`, `check_setup()`

Examples

```r
Not run:
using the example data from Bem 2011 and fitting the default (RoBMA-PSMA) model
fit <- RoBMA(d = Bem2011$d, se = Bem2011$se, study_names = Bem2011$study)

the update function allows us to change the prior model weights of each model
fit1 <- update(fit, prior_weights = c(0, rep(1, 35)))

add an additional model with different priors specification
(see `?prior` for more information)
fit2 <- update(fit,
 priors_effect_null = prior("point", parameters = list(location = 0)),
 priors_heterogeneity = prior("normal",
 parameters = list(mean = 0, sd = 1),
 truncation = list(lower = 0, upper = Inf)),
 priors_bias = prior_weightfunction("one-sided",
 parameters = list(cuts = c(.05, .10, .20),
 alpha = c(1, 1, 1, 1))))

refit the models with an increased number of sample iterations
fit3 <- update(fit, sample = 10000)
```
Density, distribution function, quantile function and random generation for the weighted normal distribution with mean, standard deviation sd, steps steps (or critical values) crit_x), and weights omega.

Usage

dwnorm(
x, mean, sd,
steps = if (!is.null(crit_x)) NULL, omega, 
crit_x = if (!is.null(steps)) NULL, 
type = "two.sided", 
log = FALSE
)

pwnorm(
q, mean, sd,
steps = if (!is.null(crit_x)) NULL, omega, 
crit_x = if (!is.null(steps)) NULL, 
type = "two.sided", 
lower.tail = TRUE, 
log.p = FALSE
)

qwnorm(
p, mean, sd,
steps = if (!is.null(crit_x)) NULL, omega, 
crit_x = if (!is.null(steps)) NULL, 
type = "two.sided"
lower.tail = TRUE,
log.p = FALSE
)

rwnorm(
    n,
    mean,
    sd,
    steps = if (!is.null(crit_x)) NULL,
    omega,
    crit_x = if (!is.null(steps)) NULL,
    type = "two.sided"
)

Arguments

x, q vector of quantiles.
mean mean
sd standard deviation.
steps vector of steps for the weight function.
omega vector of weights defining the probability of observing a t-statistics between each of the two steps.
crit.x vector of critical values defining steps (if steps are not supplied).
type type of weight function (defaults to "two.sided").
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are \( P[X \leq x] \), otherwise, \( P[X \geq x] \).
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number required.

Details

The mean, sd, steps, omega can be supplied as a vectors (mean, sd) or matrices (steps, omega) with length / number of rows equal to x/q/p. Otherwise, they are recycled to the length of the result.

Value

dwnorm gives the density, dwnorm gives the distribution function, qwnorm gives the quantile function, and rwnorm generates random deviates.

See Also

Normal
Index

* datasets
  Anderson2010, 3
  Bem2011, 4

* package
  RoBMA-package, 3
  _PACKAGE (RoBMA-package), 3
  Anderson2010, 3
  autorun.jags, 28
  BayesTools, 28
  Bem2011, 4
  Beta, 19, 20
  bridge_sampler, 28
  Cauchy, 19, 20
  check_RoBMA, 5
  check_RoBMA(), 35
  check_setup, 5
  check_setup(), 9, 29, 38
  combine_data, 7
  d2logOR (effect_sizes), 11
  d2r (effect_sizes), 11
  d2z (effect_sizes), 11
  diagnostics, 9
  diagnostics(), 28, 35
  difftime, 30
  dwnorm (weighted_normal), 39
  effect_sizes, 11
  effect_sizes(), 9, 33, 34
  escalc, 8
  Exponential, 19, 20
  forest, 12
  InvGamma, 19, 20
  is.RoBMA, 13
  LocationScaleT, 19, 20
  Lognormal, 19, 20
  logOR2d (effect_sizes), 11
  logOR2r (effect_sizes), 11
  logOR2z (effect_sizes), 11
  n_d (sample_sizes), 32
  n_r (sample_sizes), 32
  n_z (sample_sizes), 32
  Normal, 19, 20, 40
  par, 10
  plot.prior(), 19, 20, 22–24
  plot.RoBMA, 14
  plot.RoBMA(), 28
  plot_models, 15
  print.RoBMA, 17
  print.RoBMA(), 28
  print.summary.RoBMA, 18
  prior, 18
  prior(), 22, 23, 28, 38
  prior_none, 20
  prior_PEESE, 21
  prior_PET, 22
  prior_weightfunction, 23
  pwnorm (weighted_normal), 39
  qwnorm (weighted_normal), 39
  r2d (effect_sizes), 11
  r2logOR (effect_sizes), 11
  r2z (effect_sizes), 11
  RoBMA, 24, 31
  RoBMA(), 7, 9, 10, 15, 17, 18, 28, 35, 38
  RoBMA-package, 3
  RoBMA.get_option (RoBMA_options), 31
  RoBMA.options (RoBMA_options), 31
  RoBMA_control, 30
  RoBMA.options, 31
  rwnorm (weighted_normal), 39
  sample_sizes, 32
sample_sizes(), 9, 12, 34
se_d(sample_sizes), 32
se_d2se_logOR(standard_errors), 33
se_d2se_r(standard_errors), 33
se_d2se_z(standard_errors), 33
se_logOR2se_d(standard_errors), 33
se_logOR2se_r(standard_errors), 33
se_logOR2se_z(standard_errors), 33
se_r(sample_sizes), 32
se_r2se_d(standard_errors), 33
se_r2se_logOR(standard_errors), 33
se_r2se_z(standard_errors), 33
se_z(sample_sizes), 32
se_z2se_d(standard_errors), 33
se_z2se_logOR(standard_errors), 33
se_z2se_r(standard_errors), 33
set_autofit_control(RoBMA_control), 30
set_autofit_control(), 28, 38
set_autofit_control,(RoBMA_control), 30
set_convergence_checks(RoBMA_control), 30
set_convergence_checks(), 28, 38
stan_plot, 10
standard_errors, 33
standard_errors(), 9, 12, 33
summary.RoBMA, 34
summary.RoBMA(), 10, 28, 29, 38

update.RoBMA, 31, 36
update.RoBMA(), 28, 29

weighted_normal, 39

z2d(effect_sizes), 11
z2logOR(effect_sizes), 11
z2r(effect_sizes), 11