Package ‘Riemann’

June 20, 2021

Type Package

Title Learning with Data on Riemannian Manifolds

Version 0.1.3

Description We provide a variety of algorithms for manifold-valued data, including Fréchet summaries, hypothesis testing, clustering, visualization, and other learning tasks. See Bhattacharya and Bhattacharya (2012) <doi:10.1017/CBO9781139094764> for general exposition to statistics on manifolds.

License MIT + file LICENSE

Imports CVXR, Rcpp (>= 1.0.5), Rdpack, RiemBase, Rdimtools, T4cluster, DEoptim, lpSolve, Matrix, maotai, stats, utils, ggrepel

Encoding UTF-8

URL https://kisungyou.com/Riemann/

BugReports https://github.com/kisungyou/Riemann/issues

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.1.1

RdMacros Rdpack

Depends R (>= 2.10)

Suggests knitr, rmarkdown, rgdal, usmap, ggplot2, maptools

VignetteBuilder knitr

NeedsCompilation yes

Author Kisung You [aut, cre] (<https://orcid.org/0000-0002-8584-459X>)

Maintainer Kisung You <kisungyou@outlook.com>

Repository CRAN

Date/Publication 2021-06-20 09:50:02 UTC
R topics documented:

acr ... 3
acg ... 4
cities ... 5
gorilla ... 6
hands ... 11
mac ... 12
mixspnorm .. 13
orbital ... 15
passiflora ... 16
predict.m2skreg .. 17
predict.mixspnorm ... 18
riem.clrq .. 19
riem.coreset18B ... 21
riem.distlp .. 23
riem.dtw ... 24
riem.fanova ... 26
riem.hclust ... 27
riem.interp ... 29
riem.interps ... 30
riem.isomap ... 31
riem.kmeans ... 33
riem.kmeans18B ... 35
riem.kmeanspp ... 37
riem.kmedoids ... 39
riem.knn .. 40
riem.kpca ... 42
riem.m2skreg .. 43
riem.m2skregCV ... 45
riem.mds .. 46
riem.mean .. 48
riem.median ... 49
riem.nlmshift ... 50
riem.pdist .. 52
riem.pdist2 ... 53
riem.pga .. 55
riem.rmml ... 56
riem.sammon .. 57
riem.sc05Z ... 59
riem.scNJW .. 60
riem.scSM ... 62
riem.scUL .. 64
riem.seb .. 65
riem.test2bg14 .. 67
riem.test2wass ... 69
Angular Central Gaussian Distribution

Description

For a hypersphere S^{p-1} in \mathbb{R}^p, Angular Central Gaussian (ACG) distribution $ACG_p(A)$ is defined via a density

$$f(x|A) = |A|^{-1/2}(x^T A^{-1} x)^{-p/2}$$

with respect to the uniform measure on S^{p-1} and A is a symmetric positive-definite matrix. Since $f(x|A) = f(-x|A)$, it can also be used as an axial distribution on real projective space, which is unit sphere modulo $\{+1, -1\}$. One constraint we follow is that $f(x|A) = f(x|cA)$ for $c > 0$ in that we use a normalized version for numerical stability by restricting $tr(A) = p$.

Usage

```r
dacg(datalist, A)
racg(n, A)
mle.acg(datalist, ...)
```
Arguments

dataolist a list of length-p unit-norm vectors.

A a $(p \times p)$ symmetric positive-definite matrix.

n the number of samples to be generated.

... extra parameters for computations, including

maxiter maximum number of iterations to be run (default: 50).

eps tolerance level for stopping criterion (default: 1e-5).

Value

dacg gives a vector of evaluated densities given samples. racg generates unit-norm vectors in \mathbb{R}^p wrapped in a list. mle.acg estimates the SPD matrix A.

References

Examples

```r
# Example with Angular Central Gaussian Distribution
#
# Given a fixed $A$, generate samples and estimate $A$ via ML.
#
## GENERATE AND MLE in R^5
# Generate data
Atrue = diag(5)  # true SPD matrix
sam1 = racg(50, Atrue)  # random samples
sam2 = racg(100, Atrue)

# MLE
Amle1 = mle.acg(sam1)
Amle2 = mle.acg(sam2)

# Visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
image(Atrue[,5:1], axes=FALSE, main="true SPD")
image(Amle1[,5:1], axes=FALSE, main="MLE with n=50")
image(Amle2[,5:1], axes=FALSE, main="MLE with n=100")
par(opar)
```
Description

As of January 2006, there are 60 cities in the contiguous U.S. with population size larger than 300000. We extracted information of the cities from the data delivered by maps package. Variables coord and cartesian are two identical representations of locations, which can be mutually converted by sphere.convert.

Usage

data(cities)

Format

a named list containing

names a length-60 vector of city names.
coord a (60 × 2) matrix of latitude and longitude.
cartesian a (60 × 3) matrix of cartesian coordinates on the unit sphere.
population a length-60 vector of cities’ populations.

See Also

wrap.sphere

Examples

LOAD THE DATA AND WRAP AS RiemObj
data(cities)
myriem = wrap.sphere(cities$cartesian)

COMPUTE INTRINSIC/EXTRINSIC MEANS
intmean = as.vector(riem.mean(myriem, geometry="intrinsic")$mean)
extmean = as.vector(riem.mean(myriem, geometry="extrinsic")$mean)

CONVERT TO GEOGRAPHIC COORDINATES (Lat/Lon)
geo.int = sphere.xyz2geo(intmean)
geo.ext = sphere.xyz2geo(extmean)
Data: Gorilla Skull

Description

This is 29 male and 30 female gorillas’ skull landmark data where each individual is represented as 8-ad/landmarks in 2 dimensions. This is a re-arranged version of the data from shapes package.

Usage

data(gorilla)

Format

a named list containing

male a 3d array of size \((8 \times 2 \times 29)\)
female a 3d array of size \((8 \times 2 \times 30)\)

References

See Also

wrap.landmark

Examples

data(gorilla) # load the data
riem.female = wrap.landmark(gorilla$female) # wrap as RIEMOBJ
opar <- par(no.readonly=TRUE)
for (i in 1:30){
 if (i < 2){
 plot(riem.female$data[[i]], cex=0.5,
 xlim=c(-1,1)/2, ylim=c(-2,2)/5,
 main="30 female gorilla skull preshapes",
 xlab="dimension 1", ylab="dimension 2")
 lines(riem.female$data[[i]])
 } else {
 points(riem.female$data[[i]], cex=0.5)
 lines(riem.female$data[[i]])
 }
}
Estimation of Distribution Algorithm with MACG Distribution

Description

For a function $f : Gr(k, p) \rightarrow \mathbb{R}$, find the minimizer and the attained minimum value with estimation of distribution algorithm using MACG distribution.

Usage

`grassmann.optmacg(func, p, k, ...)`

Arguments

- `func`: a function to be minimized.
- `p`: dimension parameter as in $Gr(k, p)$.
- `k`: dimension parameter as in $Gr(k, p)$.
- `...`: extra parameters including
 - `n.start`: number of runs; algorithm is executed `n.start` times (default: 10).
 - `maxiter`: maximum number of iterations for each run (default: 100).
 - `popsize`: the number of samples generated at each step for stochastic search (default: 100).
 - `ratio`: ratio in $(0, 1)$ where top $\text{ratio} \times \text{popsize}$ samples are chosen for parameter update (default: 0.25).
 - `print.progress`: a logical; if TRUE, it prints each iteration (default: FALSE).

Value

A named list containing:

- `cost`: minimized function value.
- `solution`: a $(p \times k)$ matrix that attains the cost.

Examples

```r
#---------------------------------------------------------------
# Optimization for Eigen-Decomposition
#
# Given (5x5) covariance matrix S, eigendecomposition is can be
# considered as an optimization on Grassmann manifold. Here,
# we are trying to find top 3 eigenvalues and compare.
#---------------------------------------------------------------
```
PREPARE
A = cov(matrix(rnorm(100*5), ncol=5)) # define covariance
myfunc <- function(p){ # cost function to minimize
 return(sum(-diag(t(p)%*%A%*%p)))
}

SOLVE THE OPTIMIZATION PROBLEM
Aout = grassmann.optmacg(myfunc, p=5, k=3, popsize=100, n.start=30)

COMPUTE EIGENVALUES
1. USE SOLUTIONS TO THE ABOVE OPTIMIZATION
abase = Aout$solution
eig3sol = sort(diag(t(abase)%*%A%*%abase), decreasing=TRUE)

2. USE BASIC 'EIGEN' FUNCTION
eig3dec = sort(eigen(A)$values, decreasing=TRUE)[1:3]

VISUALIZE
opar <- par(no.readonly=TRUE)
yran = c(min(min(eig3sol),min(eig3dec))*0.95,
 max(max(eig3sol),max(eig3dec))*1.05)
plot(1:3, eig3sol, type="b", col="red", pch=19, ylim=yran,
 xlab="index", ylab="eigenvalue", main="compare top 3 eigenvalues")
lines(1:3, eig3dec, type="b", col="blue", pch=19)
legend(1.55, max(yran), legend=c("optimization","decomposition"), col=c("red","blue"),
 lty=rep(1,2), pch=19)
par(opar)

grassmann.runif

Generate Uniform Samples on Grassmann Manifold

Description
It generates \(n \) random samples from Grassmann manifold \(Gr(k, p) \).

Usage
grassmann.runif(n, k, p, type = c("list", "array", "riemdata"))

Arguments
- \(n \quad \text{number of samples to be generated.} \)
- \(k \quad \text{dimension of the subspace.} \)
- \(p \quad \text{original dimension (of the ambient space).} \)
- \(\text{type} \quad \text{return type:} \)
 - "list" a length-\(n \) list of \((p \times k)\) basis of \(k \)-subspaces.
 - "array" a \((p \times k \times n)\) 3D array whose slices are \(k \)-subspace basis.
 - "riemdata" a S3 object. See wrap.grassmann for more details.
Value

an object from one of the above by type option.

References

See Also

stiefel.runif, wrap.grassmann

Examples

#---
Draw Samples on Grassmann Manifold
#---
Multiple Return Types with 3 Observations of 5-dim subspaces in R^10
dat.list = grassmann.runif(n=3, k=5, p=10, type="list")
dat.arr3 = grassmann.runif(n=3, k=5, p=10, type="array")
dat.riem = grassmann.runif(n=3, k=5, p=10, type="riemdata")

gassmann.utest Test of Uniformity on Grassmann Manifold

Description

Given the data on Grassmann manifold $Gr(k, p)$, it tests whether the data is distributed uniformly.

Usage

gassmann.utest(gobj, method = c("Bing", "BingM"))

Arguments

gobj a S3 "riemdata" class of Grassmann-valued data.
method (case-insensitive) name of the test method containing "Bing" Bingham statistic.
"BingM" modified Bingham statistic with better order of error.
Value

a (list) object of S3 class htest containing:

- **statistic** a test statistic.
- **p.value** p-value under H_0.
- **alternative** alternative hypothesis.
- **method** name of the test.
- **data.name** name(s) of provided sample data.

References

See Also

wrap.grassmann

Examples

```r
# Compare Bingham's original and modified versions of the test
#
# Test 1. sample uniformly from Gr(2,4)
# Test 2. use perturbed principal components from 'iris' data in R^4
# which is concentrated around a point to reject H0.
#---------------------------------------------------------------
## Data Generation
# 1. uniform data
myobj1 = grassmann.runif(n=100, k=2, p=4)

# 2. perturbed principal components
data(iris)
irdat = list()
for (n in 1:100){
  tmpdata = iris[1:50,1:4] + matrix(rnorm(50*4,sd=0.5),ncol=4)
  irdat[n][] = eigen(cov(tmpdata))$vectors[,1:2]
}
myobj2 = wrap.grassmann(irdat)

## Test 1 : uniform data
grassmann.utest(myobj1, method="Bing")
grassmann.utest(myobj1, method="BingM")

## Tests : iris data
grassmann.utest(myobj2, method="bINg") # method names are
grassmann.utest(myobj2, method="BiNgM") # CASE - INSENSITIVE!
```
Desription

This dataset contains 10 shapes of 4 subjects’s left hands where each shape is represented by 56 landmark points. For each person, first six shapes are equally spaced sequence from maximally to minimally spread fngures. The rest are arbitrarily chosen with two constraints; (1) the palm should face the support and (2) the contour should contain no crossings.

Usage

data(hands)

Format

a named list containing

data an \((56 \times 2 \times 40)\) array of landmarks for 40 subjects.

person a length-40 vector of subject indices.

References

Stegmann M, Gomez D (2002) "A Brief Introduction to Statistical Shape Analysis." Informatics and Mathematical Modelling, Technical University of Denmark, DTU.

See Also

wrap.landmark

Examples

```r
## LOAD THE DATA
data(hands)

## VISUALIZE 6 HANDS OF PERSON 1
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,3))
for (i in 1:6){
  xx = hands$data[,1,i]
  yy = hands$data[,2,i]
  plot(xx,yy,"b", cex=0.9)
}
par(opar)
```
Matrix Angular Central Gaussian Distribution

Description

For Stiefel and Grassmann manifolds $St(r, p)$ and $Gr(r, p)$, the matrix variant of ACG distribution is known as Matrix Angular Central Gaussian (MACG) distribution $MACG_{p, r}(\Sigma)$ with density

$$f(X|\Sigma) = |\Sigma|^{-r/2} |X^T \Sigma^{-1} X|^{-p/2}$$

where Σ is a $(p \times p)$ symmetric positive-definite matrix. Similar to vector-variate ACG case, we follow a convention that $tr(\Sigma) = p$.

Usage

dmacg(datalist, Sigma)

rmacg(n, r, Sigma)

mle.macg(datalist, ...)

Arguments

datalist a list of $(p \times r)$ orthonormal matrices.
Sigma a $(p \times p)$ symmetric positive-definite matrix.
n the number of samples to be generated.
r the number of basis.
... extra parameters for computations, including
 maxiter maximum number of iterations to be run (default: 50).
 eps tolerance level for stopping criterion (default: 1e-5).

Value

dmacg gives a vector of evaluated densities given samples. rmacg generates $(p \times r)$ orthonormal matrices wrapped in a list. mle.macg estimates the SPD matrix Σ.

References

mixspnorm

See Also

acg

Examples

Example with Matrix Angular Central Gaussian Distribution
Given a fixed Sigma, generate samples and estimate Sigma via ML.

GENERATE AND MLE in St(2,5)/Gr(2,5)
Generate data
Strue = diag(5) # true SPD matrix
sam1 = rmacg(n=50, r=2, Strue) # random samples
sam2 = rmacg(n=100, r=2, Strue) # random samples
MLE
Smle1 = mle.macg(sam1)
Smle2 = mle.macg(sam2)
Visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
image(Strue[,5:1], axes=FALSE, main="true SPD")
image(Smle1[,5:1], axes=FALSE, main="MLE with n=50")
image(Smle2[,5:1], axes=FALSE, main="MLE with n=100")
par(opar)

mixspnorm

Finite Mixture of Spherical Normal Distributions

Description

For \(n \) observations on a \((p - 1)\) sphere in \(\mathbb{R}^p \), a finite mixture model is fitted whose components are spherical normal distributions via the following model

\[
f(x; \{w_k, \mu_k, \lambda_k\}_{k=1}^K) = \sum_{k=1}^{K} w_k SN(x; \mu_k, \lambda_k)
\]

with parameters \(w_k \)'s for component weights, \(\mu_k \)'s for component locations, and \(\lambda_k \)'s for component concentrations.

Usage

mixspnorm(
 data,
 k = 2,
)
same.lambda = FALSE,
variants = c("soft", "hard", "stochastic"),
...
)

Arguments

data data vectors in form of either an \((n \times p)\) matrix or a length-\(n\) list. See \texttt{wrap.sphere}
for descriptions on supported input types.
k the number of clusters (default: 2).
same.lambda a logical; \texttt{TRUE} to use same concentration parameter across all components, or
\texttt{FALSE} otherwise.
variants type of the class assignment methods, one of "soft", "hard", and "stochastic".
... extra parameters including

\texttt{maxiter} the maximum number of iterations (default: 50).
\texttt{eps} stopping criterion for the EM algorithm (default: 1e-6).
\texttt{printer} a logical; \texttt{TRUE} to show history of the algorithm, \texttt{FALSE} otherwise.

Value

a named list of S3 class \texttt{mixspnorm} containing

\texttt{cluster} a length-\(n\) vector of class labels (from 1 : \(k\)).
\texttt{loglkd} log likelihood of the fitted model.
\texttt{criteria} a vector of information criteria.
\texttt{parameters} a list containing \texttt{proportion}, \texttt{center}, and \texttt{concentration}. See the section for more
details.
\texttt{membership} an \((n \times k)\) row-stochastic matrix of membership.

Parameters of the fitted model

A fitted model is characterized by three parameters. For \(k\)-mixture model on a \((p - 1)\) sphere in \(\mathbb{R}^p\),
(1) \texttt{proportion} is a length-\(k\) vector of component weight that sums to 1, (2) \texttt{center} is an \((k \times p)\)
matrix whose rows are cluster centers, and (3) \texttt{concentration} is a length-\(k\) vector of concentration
parameters for each component.

Examples

```r
# LOAD THE CITY DATA AND WRAP AS RIEMOBJ
data(cities)
locations = cities$cartesian
embed2 = array(0,c(60,2))
for (i in 1:60){
  embed2[i,] = sphere.xyz2geo(locations[i,])
}
```
FIT THE MODEL WITH DIFFERENT K's
k2 = mixspnorm(locations, k=2)
k3 = mixspnorm(locations, k=3)
k4 = mixspnorm(locations, k=4)

VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(embed2, col=k2$cluster, pch=19, main="K=2")
plot(embed2, col=k3$cluster, pch=19, main="K=3")
plot(embed2, col=k4$cluster, pch=19, main="K=4")
par(opar)

orbital

Data: Normal Vectors to the Orbital Planes of the 9 Planets

Description

The 9 planets in our solar system are evolving the sun via their own orbits. This data provides normal vector of the orbital planes. Normal vectors are unit-norm vectors, so that they are thought to reside on 2-dimensional sphere.

Usage

data(orbital)

Format

an (9 × 3) matrix where each row is a normal vector for a planet.

See Also

wrap.sphere

Examples

```r
## LOAD THE DATA AND WRAP AS RIEMOBJ
data(orbital)
myorb = wrap.sphere(orbital)

## VISUALIZE
mds2d = riem.mds(myorb)$embed
opar <- par(no.readonly=TRUE)
plot(mds2d, main="9 Planets", pch=19, xlab="x", ylab="y")
par(opar)
```
passiflora

Data: Passiflora Leaves

Description

Passiflora is a genus of about 550 species of flowering plants. This dataset contains 15 landmarks in 2 dimension of 3319 leaves of 40 species. Papers listed in the reference section analyzed the data and found 7 clusters.

Usage

data(passiflora)

Format

A named list containing

- **data** a 3d array of size $(15 \times 2 \times 3319)$.
- **species** a length-3319 vector of 40 species factors.
- **class** a length-3319 vector of 7 cluster factors.

References

See Also

wrap.landmark

Examples

data(passiflora) # load the data
riemobj = wrap.landmark(passiflora$data) # wrap as RIEMOBJ
pga2d = riem.pga(riemobj)$embed # embedding via PGA

opar <- par(no.readonly=TRUE) # visualize
plot(pga2d, col=passiflora$class, pch=19, cex=0.7,
 main="PGA Embedding of Passiflora Leaves",
 xlab="dimension 1", ylab="dimension 2")
par(opar)
predict.m2skreg
Prediction for Manifold-to-Scalar Kernel Regression

Description
Given new observations $X_1, X_2, \ldots, X_M \in \mathcal{M}$, plug in the data with respect to the fitted model for prediction.

Usage
```r
## S3 method for class 'm2skreg'
predict(object, newdata, geometry = c("intrinsic", "extrinsic"), ...)
```

Arguments
- **object**: an object of m2skreg class. See `riem.m2skreg` for more details.
- **newdata**: a S3 "riemdata" class for manifold-valued data corresponding to X_1, \ldots, X_M.
- **geometry**: (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.
- **...**: further arguments passed to or from other methods.

Value
a length-M vector of predicted values.

See Also
- `riem.m2skreg`

Examples
```r
# Example on Sphere S^2
# X : equi-spaced points from (0,0,1) to (0,1,0)  
y : sin(x) with perturbation
#
# Our goal is to check whether the predict function works well  
# by comparing the originally predicted values vs. those of the same data.
#---------------------------------------------------------------
# GENERATE DATA
npts = 100
nlev = 0.25
thetas = seq(from=0, to=pi/2, length.out=npts)
Xstack = cbind(rep(0,npts), sin(thetas), cos(thetas))
Xriem = wrap.sphere(Xstack)
```

predict.mixspnorm

S3 Method for Prediction upon Fitted 'mixspnorm' Model

Description

Given new data with the fitted mixture of spherical normals on a sphere, predict the class labels for the newly provided data according to the fitted model.

Usage

S3 method for class 'mixspnorm'
predict(object, newdata, ...)

Arguments

object an object of mixspnorm class. See mixspnorm for more details.
newdata data vectors in form of either an \((m \times p)\) matrix or a length-\(m\) list. See wrap.sphere for descriptions on supported input types.
... further arguments passed to or from other methods.

Value

a length-\(m\) vector of class labels.

See Also

mixspnorm
Examples

```r
# LOAD THE CITY DATA AND WRAP AS RIEMOBJ
data(cities)
locations = cities$cartesian
embed2 = array(0,c(60,2))
for (i in 1:60){
  embed2[i,] = sphere.xyz2geo(locations[i,])
}

# FIT THE MODEL K=3
k3fit = mixspnorm(locations, k=3)
k3fitlab = k3fit$cluster

# PREDICT THE CLASS LABEL WITH THE SAME DATA
k3predict = predict(k3fit, locations)

# VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2))
plot(embed2, col=k3fitlab, pch=19, main="fitted")
plot(embed2, col=k3predict, pch=19, main="predicted")
par(opar)
```

Description

Given \(N \) observations \(X_1, X_2, \ldots, X_N \in \mathcal{M} \), perform clustering via Competitive Learning Riemannian Quantization (CLRQ). Originally, the algorithm is designed for finding voronoi cells that are used in domain quantization. Given the discrete measure of data, centers of the cells play a role of cluster centers and data are labeled accordingly based on the distance to voronoi centers. For an iterative update of centers, gradient descent algorithm adapted for the Riemannian manifold setting is used with the gain factor sequence

\[
\gamma_t = \frac{a}{1 + b \sqrt{t}}
\]

where two parameters \(a, b \) are represented by `par.a` and `par.b`. For initialization, we provide k-means++ and random seeding options as in k-means.

Usage

```r
riem.clrq(riemobj, k = 2, init = c("plus", "random"), gain.a = 1, gain.b = 1)
```
Arguments

riemobj a S3 "riemdata" class for \(N \) manifold-valued data.

k the number of clusters.

init (case-insensitive) name of an initialization scheme. (default: "plus".)

gain.a parameter \(a \) for gain factor sequence.

gain.b parameter \(b \) for gain factor sequence.

Value

a named list containing

- **centers** a 3d array where each slice along 3rd dimension is a matrix representation of class centers.

- **cluster** a length-\(N \) vector of class labels (from 1 : \(k \)).

References

See Also

riem.kmeans

Examples

```
#--------------------------- Example on Sphere : a dataset with three types ---------------------------
#
# class 1 : 10 perturbed data points near (1,0,0) on S^2 in R^3
# class 2 : 10 perturbed data points near (0,1,0) on S^2 in R^3
# class 3 : 10 perturbed data points near (0,0,1) on S^2 in R^3
#
## GENERATE DATA
mydata = list()
for (i in 1:10){
  tgt = c(1, stats::rnorm(2, sd=0.1))
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 11:20){
  tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1))
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 21:30){
  tgt = c(stats::rnorm(2, sd=0.1), 1)
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
```
myriem = wrap.sphere(mydata)
mlabs = rep(c(1,2,3), each=10)

CLRQ WITH K=2,3,4
clust2 = riem.clrq(myriem, k=2)
clust3 = riem.clrq(myriem, k=3)
clust4 = riem.clrq(myriem, k=4)

MDS FOR VISUALIZATION
mds2d = riem.mds(myriem, ndim=2)$embed

VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
plot(mds2d, pch=19, main="true label", col=mlabs)
plot(mds2d, pch=19, main="K=2", col=clust2$cluster)
plot(mds2d, pch=19, main="K=3", col=clust3$cluster)
plot(mds2d, pch=19, main="K=4", col=clust4$cluster)
par(opar)

riem.coreset18B

Build Lightweight Coreset

Description

Given manifold-valued data $X_1, X_2, \ldots, X_N \in \mathcal{M}$, this algorithm finds the coreset of size M that can be considered as a compressed representation according to the lightweight coreset construction scheme proposed by the reference below.

Usage

riem.coreset18B(
 riemobj,
 M = length(riemobj$data)/2,
 geometry = c("intrinsic", "extrinsic"),
 ...
)

Arguments

riemobj a S3 "riemdata" class for N manifold-valued data.
M the size of coreset (default: $N/2$).
geometry (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.
maxiter maximum number of iterations to be run (default: 50).
eps tolerance level for stopping criterion (default: 1e-5).
Value

- a named list containing
 - **coreid**: a length-M index vector of the coreset.
 - **weight**: a length-M vector of weights for each element.

References

Examples

```r
# Example on Sphere : a dataset with three types
#
# * 10 perturbed data points near (1,0,0) on S^2 in R^3
# * 10 perturbed data points near (0,1,0) on S^2 in R^3
# * 10 perturbed data points near (0,0,1) on S^2 in R^3
#---------------------------------------------
## GENERATE DATA
mydata = list()
for (i in 1:10){
  tgt = c(1, stats::rnorm(2, sd=0.1))
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
} 
for (i in 11:20){
  tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1))
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
} 
for (i in 21:30){
  tgt = c(stats::rnorm(2, sd=0.1), 1)
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem = wrap.sphere(mydata)

## MDS FOR VISUALIZATION
embed2 = riem.mds(myriem, ndim=2)$embed

## FIND CORESET OF SIZES 3, 6, 9
core1 = riem.coreset18B(myriem, M=3)
core2 = riem.coreset18B(myriem, M=6)
core3 = riem.coreset18B(myriem, M=9)

col1 = rep(1,30); col1[core1$coreid] = 2
col2 = rep(1,30); col2[core2$coreid] = 2
col3 = rep(1,30); col3[core3$coreid] = 2

## VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
```
riem.distlp

Distance between Two Curves on Manifolds

Description

Given two curves $\gamma_1, \gamma_2 : I \to M$, we are interested in measuring the discrepancy of two curves. Usually, data are given as discrete observations so we are offering several methods to perform the task. See the section below for detailed description.

Usage

riem.distlp(
 riemobj1,
 riemobj2,
 vect = NULL,
 geometry = c("intrinsic", "extrinsic"),
 ...
)

Arguments

riemobj1 a S3 "riemdata" class for N manifold-valued data along the curve.
riemobj2 a S3 "riemdata" class for N manifold-valued data along the curve.
vect a vector of domain values. If given NULL (default), sequence 1:N is set.
geometry (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.
... extra parameters including
 p an exponent (default: 2).

Value

the distance value.

Default Method

Trapezoidal Approximation Assume $\gamma_1(t_i) = X_i$ and $\gamma_2(t_i) = Y_i$ for $i = 1, 2, \ldots, N$. In the Euclidean space, L_p distance between two scalar-valued functions is defined as

$$L_p(\gamma_1(x), \gamma_2(x)) = \int_X |\gamma_1(x) - \gamma_2(x)|^p dx$$
We extend this approach to manifold-valued curves

\[L_p^p(\gamma_1(t), \gamma_2(t)) = \int_{t \in I} d_p(\gamma_1(t), \gamma_2(t)) \, dt \]

where \(d(\cdot, \cdot) \) is an intrinsic/extrinsic distance on manifolds. With the given representations, the above integral is approximated using trapezoidal rule.

Examples

```r
# Curves on Sphere
#
# curve1 : y = 0.5*cos(x) on the tangent space at (0,0,1)
# curve2 : y = 0.5*cos(x) on the tangent space at (0,0,1)
# curve3 : y = 0.5*sin(x) on the tangent space at (0,0,1)
#
# * distance between curve1 & curve2 should be close to 0.
# * distance between curve1 & curve3 should be large.
```

```r
generate <-
vecx = seq(from=-0.9, to=0.9, length.out=50)
vecy1 = 0.5*cos(vecx) + rnorm(50, sd=0.05)
vecy2 = 0.5*cos(vecx) + rnorm(50, sd=0.05)
vecy3 = 0.5*sin(vecx) + rnorm(50, sd=0.05)

# WRAP AS RIEMOBJ
mat1 = cbind(vecx, vecy1, 1); mat1 = mat1/sqrt(rowSums(mat1^2))
mat2 = cbind(vecx, vecy2, 1); mat2 = mat2/sqrt(rowSums(mat2^2))
mat3 = cbind(vecx, vecy3, 1); mat3 = mat3/sqrt(rowSums(mat3^2))

curve1 = wrap.sphere(mat1)
curve2 = wrap.sphere(mat2)
curve3 = wrap.sphere(mat3)

calculate distances
riem.distlp(curve1, curve2, vect=vecx)
riem.distlp(curve1, curve3, vect=vecx)
```

Description

Given two time series - a query \(X = (X_1, X_2, \ldots, X_N) \) and a reference \(Y = (Y_1, Y_2, \ldots, Y_M) \), \texttt{riem.dtw} computes the most basic version of Dynamic Time Warping (DTW) distance between two series using a symmetric step pattern, meaning no window constraints and others at all. Although the scope of DTW in Euclidean space-valued objects is rich, it is scarce for manifold-valued curves. If you are interested in the topic, we refer to \texttt{dtw} package.
Usage

riem.dtw(riemobj1, riemobj2, geometry = c("intrinsic", "extrinsic"))

Arguments

riemobj1 a S3 "riemdata" class for M manifold-valued data along the curve.
riemobj2 a S3 "riemdata" class for N manifold-valued data along the curve.
geometry (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.

Value

the distance value.

See Also

dtw

Examples

#---
Curves on Sphere
#
curve1 : y = 0.5*cos(x) on the tangent space at (0,0,1)
curve2 : y = 0.5*sin(x) on the tangent space at (0,0,1)
#
we will generate two sets for curves of different sizes.
#---
GENERATION
clist = list()
for (i in 1:10){ # curve type 1
 vecx = seq(from=-0.9, to=0.9, length.out=sample(10:50, 1))
 vecy = 0.5*cos(vecx) + rnorm(length(vecx), sd=0.1)
 mats = cbind(vecx, vecy, 1)
 clist[[i]] = wrap.sphere(mats/sqrt(rowSums(mats^2)))
}
for (i in 1:10){ # curve type 2
 vecx = seq(from=-0.9, to=0.9, length.out=sample(10:50, 1))
 vecy = 0.5*sin(vecx) + rnorm(length(vecx), sd=0.1)
 mats = cbind(vecx, vecy, 1)
 clist[[i+10]] = wrap.sphere(mats/sqrt(rowSums(mats^2)))
}

COMPUTE DISTANCES
outint = array(0,c(20,20))
outext = array(0,c(20,20))
for (i in 1:19){
 for (j in 2:20){
 outint[i,j] <- outint[j,i] <- riem.dtw(clist[[i]], clist[[j]],
 geometry="intrinsic")
outext[i,j] <- outext[j,i] <- riem.dtw(clist[[i]], clist[[j]],
 geometry="extrinsic")
}
}
VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
image(outint[,20:1], axes=FALSE, main="intrinsic DTW Distance")
image(outext[,20:1], axes=FALSE, main="extrinsic DTW Distance")
par(opar)

riem.fanova
Fréchet Analysis of Variance

Description

Given sets of manifold-valued data $X^{(1)}_{1:n_1}, X^{(2)}_{1:n_2}, \ldots, X^{(m)}_{1:n_m}$, performs analysis of variance to test equality of distributions. This means, small p-value implies that at least one of the equalities does not hold.

Usage

riem.fanova(..., maxiter = 50, eps = 1e-05)

riem.fanovaP(..., maxiter = 50, eps = 1e-05, nperm = 99)

Arguments

- ...: S3 objects of `riemdata` class for manifold-valued data.
- maxiter: maximum number of iterations to be run.
- eps: tolerance level for stopping criterion.
- nperm: the number of permutations for resampling-based test.

Value

a (list) object of S3 class `htest` containing:

- statistic: a test statistic.
- p.value: p-value under H_0.
- alternative: alternative hypothesis.
- method: name of the test.
- data.name: name(s) of provided sample data.
References

Examples

```r
# Example on Sphere : Uniform Samples
#
# Each of 4 classes consists of 20 uniform samples from uniform
# density on 2-dimensional sphere S^2 in R^3.
#---------------------------------------------------------------
## PREPARE DATA OF 4 CLASSES
ndata = 200
class1 = list()
class2 = list()
class3 = list()
class4 = list()
for (i in 1:ndata){
  tmpxy = matrix(rnorm(4*2, sd=0.1), ncol=2)
tmpz = rep(1,4)
tmp3d = cbind(tmpxy, tmpz)
tmp = tmp3d/sqrt(rowSums(tmp3d^2))
  class1[[i]] = tmp[1,]
class2[[i]] = tmp[2,]
class3[[i]] = tmp[3,]
class4[[i]] = tmp[4,]
}
obj1 = wrap.sphere(class1)
obj2 = wrap.sphere(class2)
obj3 = wrap.sphere(class3)
obj4 = wrap.sphere(class4)

## RUN THE ASYMPTOTIC TEST
riem.fanova(obj1, obj2, obj3, obj4)

## RUN THE PERMUTATION TEST WITH MANY PERMUTATIONS
riem.fanovaP(obj1, obj2, obj3, obj4, nperm=999)
```

riem.hclust

Hierarchical Agglomerative Clustering

Description

Given N observations $X_1, X_2, \ldots, X_M \in \mathcal{M}$, perform hierarchical agglomerative clustering with the *fastcluster* package’s implementation.
Usage

riem.hclust(
 riemobj,
 geometry = c("intrinsic", "extrinsic"),
 method = c("single", "complete", "average", "mcquitty", "ward.D", "ward.D2",
 "centroid", "median"),
 members = NULL
)

Arguments

riemobj a S3 "riemdata" class for \(N \) manifold-valued data.
geometry (case-insensitive) name of geometry: either geodesic ("intrinsic") or embed-
ded ("extrinsic") geometry.
method agglomeration method to be used. This must be one of "single", "complete",
"average", "mcquitty", "ward.D", "ward.D2", "centroid" or "median".
members NULL or a vector whose length equals the number of observations. See hclust
for details.

Value

an object of class hclust. See hclust for details.

See Also

hclust

Examples

#--
Example on Sphere : a dataset with three types
#
class 1 : 10 perturbed data points near (1,0,0) on S^2 in R^3
class 2 : 10 perturbed data points near (0,1,0) on S^2 in R^3
class 3 : 10 perturbed data points near (0,0,1) on S^2 in R^3
#--
GENERATE DATA
mydata = list()
for (i in 1:10){
 tgt = c(1, stats::rnorm(2, sd=0.1))
 mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 11:20){
 tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1))
 mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 21:30){
 tgt = c(stats::rnorm(2, sd=0.1), 1)
 mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
Geodesic Interpolation

Description

Given 2 observations $X_1, X_2 \in \mathcal{M}$, find the interpolated point of a geodesic $\gamma(t)$ for $t \in (0, 1)$ which assumes two endpoints $\gamma(0) = X_1$ and $\gamma(1) = X_2$.

Usage

```r
riem.interp(riemobj, t = 0.5, geometry = c("intrinsic", "extrinsic"))
```

Arguments

- `riemobj`: a S3 "riemdata" class for 2 manifold-valued data where the first object is the starting point.
- `t`: a scalar in $(0, 1)$ for which the interpolation is taken.
- `geometry`: (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.

Value

an interpolated object in matrix representation on \mathcal{M}.

Examples

```r
#-----------------------------------------------
# Geodesic Interpolation between (1,0) and (0,1) in S^1
#-----------------------------------------------
## PREPARE DATA
sp.start = c(1,0)
sp.end = c(0,1)
sp.data = wrap.sphere(rbind(sp.start, sp.end))

## FIND THE INTERPOLATED POINT AT "t=0.25"
```
mid.int = as.vector(riem.interp(sp.data, t=0.25, geometry="intrinsic"))
mid.ext = as.vector(riem.interp(sp.data, t=0.25, geometry="extrinsic"))

VISUALIZE
Prepare Lines and Points
thetas = seq(from=0, to=pi/2, length.out=100)
quarter = cbind(cos(thetas), sin(thetas))
pic.pts = rbind(sp.start, mid.int, mid.ext, sp.end)
pic.col = c("black","red","green","black")

Draw
opar <- par(no.readonly=TRUE)
par(pty="s")
plot(quarter, main="two interpolated points at t=0.25",
 xlab="x", ylab="y", type="l")
points(pic.pts, col=pic.col, pch=19)
text(mid.int[1]-0.1, mid.int[2], "intrinsic", col="red")
text(mid.ext[1]-0.1, mid.ext[2], "extrinsic", col="green")
par(opar)

riem.interps
Geodesic Interpolation of Multiple Points

Description

Given 2 observations $X_1, X_2 \in \mathcal{M}$, find the interpolated points of a geodesic $\gamma(t)$ for $t \in (0, 1)$ which assumes two endpoints $\gamma(0) = X_1$ and $\gamma(1) = X_2$.

Usage

riem.interps(
 riemobj,
 vect = c(0.25, 0.5, 0.75),
 geometry = c("intrinsic", "extrinsic")
)

Arguments

riemobj
a S3 "riemdata" class for 2 manifold-valued data where the first object is the starting point.

vect
a length-T vector in $(0, 1)$ for which the interpolations are taken.

gometry
(case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.

Value

a 3d array where T slices along 3rd dimension are interpolated objects in matrix representation.
Examples

Geodesic Interpolation between (1,0) and (0,1) in S^1

PREPARE DATA
sp.start = c(1,0)
sp.end = c(0,1)
sp.data = wrap.sphere(rbind(sp.start, sp.end))

FIND THE INTERPOLATED POINT AT FOR t=0.1, 0.2, ..., 0.9.
myvect = seq(from=0.1, to=0.9, by=0.1)
geo.int = riem.interps(sp.data, vect=myvect, geometry="intrinsic")
geo.ext = riem.interps(sp.data, vect=myvect, geometry="extrinsic")

geo.int = matrix(geo.int, byrow=TRUE, ncol=2) # re-arrange for plotting
geo.ext = matrix(geo.ext, byrow=TRUE, ncol=2)

VISUALIZE
Prepare Lines and Points
thetas = seq(from=0, to=pi/2, length.out=100)
quarter = cbind(cos(thetas), sin(thetas))

pts.int = rbind(sp.start, geo.int, sp.end)
pts.ext = rbind(sp.start, geo.ext, sp.end)
col.int = c("black", rep("red",9), "black")
col.ext = c("black", rep("blue",9), "black")

Draw
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
plot(quarter, main="intrinsic interpolation", # intrinsic geodesic
 xlab="x", ylab="y", type="l")
points(pts.int, col=col.int, pch=19)
for (i in 1:9){
 text(geo.int[i,1]*0.9, geo.int[i,2]*0.9,
 paste0(round(i/10,2)), col="red")
}
plot(quarter, main="extrinsic interpolation", # intrinsic geodesic
 xlab="x", ylab="y", type="l")
points(pts.ext, col=col.ext, pch=19)
for (i in 1:9){
 text(geo.ext[i,1]*0.9, geo.ext[i,2]*0.9,
 paste0(round(i/10,2)), col="blue")
}
par(opar)
Description

ISOMAP - isometric feature mapping - is a dimensionality reduction method to apply classical multidimensional scaling to the geodesic distance that is computed on a weighted nearest neighborhood graph. Nearest neighbor is defined by k-NN where two observations are said to be connected when they are mutually included in each other’s nearest neighbor. Note that it is possible for geodesic distances to be Inf when nearest neighbor graph construction incurs separate connected components. When an extra parameter padding=TRUE, infinite distances are replaced by 2 times the maximal finite geodesic distance.

Usage

riem.isomap(
 riemobj,
 ndim = 2,
 nnbd = 5,
 geometry = c("intrinsic", "extrinsic"),
 ...
)

Arguments

riemobj a S3 "riemdata" class for N manifold-valued data.
ndim an integer-valued target dimension (default: 2).
nnbd the size of nearest neighborhood (default: 5).
geometry (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.
... extra parameters including
 padding a logical; if TRUE, Inf-valued geodesic distances are replaced by 2 times the maximal geodesic distance in the data.

Value

a named list containing

embed an $(N \times ndim)$ matrix whose rows are embedded observations.

References

Examples

Example on Sphere : a dataset with three types
10 perturbed data points near (1,0,0) on S^2 in R^3
riem.kmeans

K-Means Clustering

Description

Given N observations $X_1, X_2, \ldots, X_N \in \mathcal{M}$, perform k-means clustering by minimizing within-cluster sum of squares (WCSS). Since the problem is NP-hard and sensitive to the initialization, we provide an option with multiple starts and return the best result with respect to WCSS.

Usage

riem.kmeans(riemobj, k = 2, geometry = c("intrinsic", "extrinsic"), ...)
Arguments

riemobj a S3 "riemdata" class for \(N \) manifold-valued data.
k the number of clusters.
geometry (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.
... extra parameters including
algorithm (case-insensitive) name of an algorithm; "MacQueen" (default), or "Lloyd".
init (case-insensitive) name of an initialization scheme; "plus" for k-means++ (default), or "random".
maxiter maximum number of iterations to be run (default: 50).
nstart the number of random starts (default: 5).

Value

a named list containing

- **cluster** a length-\(N \) vector of class labels (from 1 : \(k \)).
- **means** a 3d array where each slice along 3rd dimension is a matrix representation of class mean.
- **score** within-cluster sum of squares (WCSS).

References

See Also

riem.kmeanspp

Examples

```r
# Example on Sphere : a dataset with three types
#
# class 1 : 10 perturbed data points near (1,0,0) on S^2 in R^3
# class 2 : 10 perturbed data points near (0,1,0) on S^2 in R^3
# class 3 : 10 perturbed data points near (0,0,1) on S^2 in R^3
#
## GENERATE DATA
mydata = list()
for (i in 1:10){
  tgt = c(1, stats::rnorm(2, sd=0.1))
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
```
for (i in 11:20){
 tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1))
 mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 21:30){
 tgt = c(stats::rnorm(2, sd=0.1), 1)
 mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem = wrap.sphere(mydata)
mylabs = rep(c(1,2,3), each=10)

K-MEANS WITH K=2,3,4
clust2 = riem.kmeans(myriem, k=2)
clust3 = riem.kmeans(myriem, k=3)
clust4 = riem.kmeans(myriem, k=4)

MDS FOR VISUALIZATION
mds2d = riem.mds(myriem, ndim=2)$embed

VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
plot(mds2d, pch=19, main="true label", col=mylabs)
plot(mds2d, pch=19, main="K=2", col=clust2$cluster)
plot(mds2d, pch=19, main="K=3", col=clust3$cluster)
plot(mds2d, pch=19, main="K=4", col=clust4$cluster)
par(opar)

K-Means Clustering with Lightweight Coreset

Description

The modified version of lightweight coreset for scalable k-means computation is applied for manifold-valued data $X_1, X_2, \ldots, X_N \in M$. The smaller the set is, the faster the execution becomes with potentially larger quantization errors.

Usage

riem.kmeans18B(
 riemobj,
 k = 2,
 M = length(riemobj$data)/2,
 geometry = c("intrinsic", "extrinsic"),
 ...)

Arguments

riemobj a S3 "riemdata" class for \(N \) manifold-valued data.
k the number of clusters.
\(M \) the size of coreset (default: \(N/2 \)).
geometry (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.

... extra parameters including

maxiter maximum number of iterations to be run (default:50).
nstart the number of random starts (default: 5).

Value

a named list containing

cluster a length-\(N \) vector of class labels (from 1 : \(k \)).
means a 3d array where each slice along 3rd dimension is a matrix representation of class mean.
score within-cluster sum of squares (WCSS).

References

See Also

riem.coreset18B

Examples

Example on Sphere : a dataset with three types
#
class 1 : 10 perturbed data points near (1,0,0) on S^2 in R^3
class 2 : 10 perturbed data points near (0,1,0) on S^2 in R^3
class 3 : 10 perturbed data points near (0,0,1) on S^2 in R^3
GENERATE DATA
mydata = list()
for (i in 1:10){
 tgt = c(1, stats::rnorm(2, sd=0.1))
 mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 11:20){
 tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1))
 mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 21:30){

tgt = c(stats::rnorm(2, sd=0.1), 1)
mydata[i] = tgt/sqrt(sum(tgt^2))
}
myriem = wrap.sphere(mydata)
mylabs = rep(c(1,2,3), each=10)

TRY DIFFERENT SIZES OF CORESET WITH K=4 FIXED
core1 = riem.kmeans18B(myriem, k=3, M=5)
core2 = riem.kmeans18B(myriem, k=3, M=10)
core3 = riem.kmeans18B(myriem, k=3, M=15)

MDS FOR VISUALIZATION
mds2d = riem.mds(myriem, ndim=2)$embed

VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
plot(mds2d, pch=19, main="true label", col=mylabs)
plot(mds2d, pch=19, main="kmeans18B: M=5", col=core1$cluster)
plot(mds2d, pch=19, main="kmeans18B: M=10", col=core2$cluster)
plot(mds2d, pch=19, main="kmeans18B: M=15", col=core3$cluster)
par(opar)

riem.kmeanspp
K-Means++ Clustering

Description

Given N observations $X_1, X_2, \ldots, X_N \in \mathcal{M}$, perform k-means++ clustering algorithm using pairwise distances. The algorithm was originally designed as an efficient initialization method for k-means algorithm.

Usage

riem.kmeanspp(riemobj, k = 2, geometry = c("intrinsic", "extrinsic"))

Arguments

- **riemobj**: a S3 "riemdata" class for N manifold-valued data.
- **k**: the number of clusters.
- **geometry**: (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.

Value

a named list containing

- **centers**: a length-k vector of sampled centers’ indices.
- **cluster**: a length-N vector of class labels (from $1 : k$).
References

Examples

Example on Sphere: a dataset with three types
#
class 1: 10 perturbed data points near (1,0,0) on S^2 in R^3
class 2: 10 perturbed data points near (0,1,0) on S^2 in R^3
class 3: 10 perturbed data points near (0,0,1) on S^2 in R^3
#---
GENERATE DATA
mydata = list()
for (i in 1:10){
 tgt = c(1, stats::rnorm(2, sd=0.1))
 mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 11:20){
 tgt = c(stats::rnorm(1, sd=0.1), 1, rnorm(1, sd=0.1))
 mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 21:30){
 tgt = c(stats::rnorm(2, sd=0.1), 1)
 mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem = wrap.sphere(mydata)
mylabs = rep(c(1,2,3), each=10)

K-MEANS++ WITH K=2,3,4
clust2 = riem.kmeanspp(myriem, k=2)
clust3 = riem.kmeanspp(myriem, k=3)
clust4 = riem.kmeanspp(myriem, k=4)

MDS FOR VISUALIZATION
mds2d = riem.mds(myriem, ndim=2)$embed

VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
plot(mds2d, pch=19, main="true label", col=mylabs)
plot(mds2d, pch=19, main="K=2", col=clust2$cluster)
plot(mds2d, pch=19, main="K=3", col=clust3$cluster)
plot(mds2d, pch=19, main="K=4", col=clust4$cluster)
par(opar)
Description
Given \(N \) observations \(X_1, X_2, \ldots, X_N \in \mathcal{M} \), perform k-medoids clustering using pairwise distances.

Usage
riem.kmedoids(riemobj, k = 2, geometry = c("intrinsic", "extrinsic"))

Arguments
- riemobj: a S3 "riemdata" class for \(N \) manifold-valued data.
- k: the number of clusters.
- geometry: (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.

Value
a named list containing
- medoids: a length-\(k \) vector of medoids' indices.
- cluster: a length-\(N \) vector of class labels (from 1 : \(k \)).

See Also
pam

Examples
```r
#---------------------------------------------------------------
# Example on Sphere : a dataset with three types
#
# class 1 : 10 perturbed data points near (1,0,0) on S^2 in R^3
# class 2 : 10 perturbed data points near (0,1,0) on S^2 in R^3
# class 3 : 10 perturbed data points near (0,0,1) on S^2 in R^3
#---------------------------------------------------------------
## GENERATE DATA
mydata = list()
for (i in 1:10){
  tgt = c(1, stats::rnorm(2, sd=0.1))
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 11:20){
  tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1))
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
```
for (i in 21:30)
 tgt = c(stats::rnorm(2, sd=0.1), 1)
 mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem = wrap.sphere(mydata)
mylabs = rep(c(1,2,3), each=10)

K-MEDOIDS WITH K=2,3,4
clust2 = riem.kmedoids(myriem, k=2)
clust3 = riem.kmedoids(myriem, k=3)
clust4 = riem.kmedoids(myriem, k=4)

MDS FOR VISUALIZATION
mds2d = riem.mds(myriem, ndim=2)$embed

VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
plot(mds2d, pch=19, main="true label", col=mylabs)
plot(mds2d, pch=19, main="K=2", col=clust2$cluster)
plot(mds2d, pch=19, main="K=3", col=clust3$cluster)
plot(mds2d, pch=19, main="K=4", col=clust4$cluster)
par(opar)

riem.knn
Find K-Nearest Neighbors

Description

Given N observations $X_1, X_2, \ldots, X_N \in M$, `riem.knn` constructs k-nearest neighbors.

Usage

`riem.knn(riemobj, k = 2, geometry = c("intrinsic", "extrinsic"))`

Arguments

- `riemobj`: a S3 `riemdata` class for N manifold-valued data.
- `k`: the number of neighbors to find.
- `geometry`: (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.

Value

A named list containing

- `nn.idx`: an $(N \times k)$ neighborhood index matrix.
- `nn.dist`: an $(N \times k)$ distances from a point to its neighbors.
Examples

Example on Sphere : a dataset with three types
#
* 10 perturbed data points near (1,0,0) on S^2 in R^3
* 10 perturbed data points near (0,1,0) on S^2 in R^3
* 10 perturbed data points near (0,0,1) on S^2 in R^3
#
GENERATE DATA
mydata = list()
for (i in 1:10){
 tgt = c(1, stats::rnorm(2, sd=0.1))
 mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 11:20){
 tgt = c(rnorm(1, sd=0.1), 1, rnorm(1, sd=0.1))
 mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 21:30){
 tgt = c(stats::rnorm(2, sd=0.1), 1)
 mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem = wrap.sphere(mydata)
mylabs = rep(c(2,3,4), each=10)

K-NN CONSTRUCTION WITH K=5 & K=10
knn1 = riem.knn(myriem, k=5)
knn2 = riem.knn(myriem, k=10)

MDS FOR VISUALIZATION
embed2 = riem.mds(myriem, ndim=2)$embed

VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
plot(embed2, pch=19, main="knn with k=4", col=mylabs)
for (i in 1:30){
 for (j in 1:5){
 lines(embed2[c(i,knn1$nn.idx[i,j]),])
 }
}
plot(embed2, pch=19, main="knn with k=8", col=mylabs)
for (i in 1:30){
 for (j in 1:10){
 lines(embed2[c(i,knn2$nn.idx[i,j]),])
 }
}
par(opar)
Kernel Principal Component Analysis

Description

Although the method of Kernel Principal Component Analysis (KPCA) was originally developed to visualize non-linearly distributed data in Euclidean space, we graft this to the case for manifolds where extrinsic geometry is explicitly available. The algorithm uses Gaussian kernel with

\[K(X_i, X_j) = \exp \left(-\frac{d^2(X_i, X_j)}{2\sigma^2} \right) \]

where \(\sigma \) is a bandwidth parameter and \(d(\cdot, \cdot) \) is an extrinsic distance defined on a specific manifold.

Usage

riem.kpca(riemobj, ndim = 2, sigma = 1)

Arguments

- **riemobj**: a S3 "riemdata" class for \(N \) manifold-valued data.
- **ndim**: an integer-valued target dimension (default: 2).
- **sigma**: the bandwidth parameter (default: 1).

Value

a named list containing

- **embed**: an \((N \times ndim) \) matrix whose rows are embedded observations.
- **vars**: a length-\(N \) vector of eigenvalues from kernelized covariance matrix.

References

Examples

```
# Example for Gorilla Skull Data : 'gorilla'
# PREPARE THE DATA
# Aggregate two classes into one set
data(gorilla)
mygorilla = array(0,c(8,2,59))
```
for (i in 1:29){
 mygorilla[,,i] = gorilla$male[,,i]
}
for (i in 30:59){
 mygorilla[,,i] = gorilla$female[,,i-29]
}

gor.riem = wrap.landmark(mygorilla)
gor.labs = c(rep("red",29), rep("blue",30))

APPLY KPCA WITH DIFFERENT KERNEL BANDWIDTHS
kpca1 = riem.kpca(gor.riem, sigma=0.01)
k pca2 = riem.kpca(gor.riem, sigma=1)
k pca3 = riem.kpca(gor.riem, sigma=100)

VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
plot(kpca1$embed, pch=19, col=gor.labs, main="sigma=1/100")
plot(kpca2$embed, pch=19, col=gor.labs, main="sigma=1")
plot(kpca3$embed, pch=19, col=gor.labs, main="sigma=100")
par(opar)

riem.m2skreg

Manifold-to-Scalar Kernel Regression

Description

Given N observations $X_1, X_2, \ldots, X_N \in \mathcal{M}$ and scalars $y_1, y_2, \ldots, y_N \in \mathbb{R}$, perform the Nadaraya-Watson kernel regression by

\[
\hat{m}_h(X) = \frac{\sum_{i=1}^{n} K \left(\frac{d(X, X_i)}{h} \right) y_i}{\sum_{i=1}^{n} K \left(\frac{d(X, X_i)}{h} \right)}
\]

where the Gaussian kernel is defined as

\[
K(x) := \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{x^2}{2} \right)
\]

with the bandwidth parameter $h > 0$ that controls the degree of smoothness.

Usage

riem.m2skreg(
 riemobj,
 y,
 bandwidth = 0.5,
 geometry = c("intrinsic", "extrinsic")
)
Arguments

riemobj a S3 "riemdata" class for \(N \) manifold-valued data corresponding to \(X_1, \ldots, X_N \).
y a length-\(N \) vector of dependent variable values.
bandwidth a nonnegative number that controls smoothness.
geometry (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.

Value

a named list of S3 class m2skreg containing

ypred a length-\(N \) vector of smoothed responses.
bandwidth the bandwidth value that was originally provided, which is saved for future use.
inputs a list containing both riemobj and y for future use.

Examples

#---
Example on Sphere S^2
#---
X : equi-spaced points from (0,0,1) to (0,1,0)
y : sin(x) with perturbation
#---
GENERATE DATA
npts = 100
nlev = 0.25
thetas = seq(from=0, to=pi/2, length.out=npts)
Xstack = cbind(rep(0,npts), sin(thetas), cos(thetas))
Xriem = wrap.sphere(Xstack)
ytrue = sin(seq(from=0, to=2*pi, length.out=npts))
ynoise = ytrue + rnorm(npts, sd=nlev)

FIT WITH DIFFERENT BANDWIDTHS
fit1 = riem.m2skreg(Xriem, ynoise, bandwidth=0.001)
fit2 = riem.m2skreg(Xriem, ynoise, bandwidth=0.01)
fit3 = riem.m2skreg(Xriem, ynoise, bandwidth=0.1)

VISUALIZE
xgrd <- 1:npts
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(xgrd, fit1$ypred, pch=19, cex=0.5, "b", xlab="", ylim=c(-2,2), main="h=1e-3")
lines(xgrd, ytrue, col="red", lwd=1.5)
plot(xgrd, fit2$ypred, pch=19, cex=0.5, "b", xlab="", ylim=c(-2,2), main="h=1e-2")
lines(xgrd, ytrue, col="red", lwd=1.5)
plot(xgrd, fit3$ypred, pch=19, cex=0.5, "b", xlab="", ylim=c(-2,2), main="h=1e-1")
lines(xgrd, ytrue, col="red", lwd=1.5)
par(opar)
Manifold-to-Scalar Kernel Regression with K-Fold Cross Validation

(data)

Usage

riem.m2skregCV(
 riemobj,
 y,
 bandwidths = seq(from = 0.01, to = 1, length.out = 10),
 geometry = c("intrinsic", "extrinsic"),
 kfold = 5
)

Arguments

riemobj a S3 "riemdata" class for \(N \) manifold-valued data corresponding to \(X_1, \ldots, X_N \).
y a length-\(N \) vector of dependent variable values.
bandwidths a vector of nonnegative numbers that control smoothness.
geometry (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.
kfold the number of folds for cross validation.

Value

a named list of S3 class m2skreg containing

ypred a length-\(N \) vector of optimal smoothed responses.
bandwidth the optimal bandwidth value.
inputs a list containing both riemobj and y for future use.
errors a matrix whose columns are bandwidths values and corresponding errors measure in SSE.

Examples

#---
Example on Sphere S^2
#
X : equi-spaced points from (0,0,1) to (0,1,0)
y : sin(x) with perturbation
GENERATE DATA
set.seed(496)
npts = 100
nlev = 0.25
thetas = seq(from=0, to=pi/2, length.out=npts)
Xstack = cbind(rep(0,npts), sin(thetas), cos(thetas))

Xriem = wrap.sphere(Xstack)
ytrue = sin(seq(from=0, to=2*pi, length.out=npts))
ynoise = ytrue + rnorm(npts, sd=nlev)

FIT WITH 5-FOLD CV
cv_band = (10^seq(from=-4, to=-1, length.out=200))
cv_fit = riem.m2skregCV(Xriem, ynoise, bandwidths=cv_band)
cv_err = cv_fit$errors

VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2))
plot(1:npts, cv_fit$ypred, pch=19, cex=0.5, "b", xlab="", main="optimal prediction")
lines(1:npts, ytrue, col="red", lwd=1.5)
plot(cv_err[,1], cv_err[,2], "b", pch=19, cex=0.5, main="5-fold CV errors",
 xlab="bandwidth", ylab="SSE")
abline(v=cv_fit$bandwidth, col="blue", lwd=1.5)
par(opar)

riem.mds

Multidimensional Scaling

Description

Given N observations $X_1, X_2, \ldots, X_N \in M$, apply multidimensional scaling to get low-dimensional embedding in Euclidean space. Usually, $ndim=2,3$ are chosen for visualization.

Usage

```r
riem.mds(riemobj, ndim = 2, geometry = c("intrinsic", "extrinsic"))
```

Arguments

- **riemobj**: a S3 "riemdata" class for N manifold-valued data.
- **ndim**: an integer-valued target dimension (default: 2).
- **geometry**: (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.
Value

- **Value**
 a named list containing

 embed an \((N \times ndim)\) matrix whose rows are embedded observations.

 stress discrepancy between embedded and original distances as a measure of error.

References

Examples

```r
# Example on Sphere: a dataset with three types
#
# 10 perturbed data points near (1,0,0) on S^2 in R^3
# 10 perturbed data points near (0,1,0) on S^2 in R^3
# 10 perturbed data points near (0,0,1) on S^2 in R^3
#
## GENERATE DATA
mydata = list()
for (i in 1:10){
  tgt = c(1, stats::rnorm(2, sd=0.1))
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 11:20){
  tgt = c(rnorm(1, sd=0.1), 1, rnorm(1, sd=0.1))
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 21:30){
  tgt = c(stats::rnorm(2, sd=0.1), 1)
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem = wrap.sphere(mydata)
mylabs = rep(c(1,2,3), each=10)

## MDS EMBEDDING WITH TWO GEOMETRIES
embed2int = riem.mds(myriem, geometry="intrinsic")$embed
embed2ext = riem.mds(myriem, geometry="extrinsic")$embed

## VISUALIZE
opar = par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
plot(embed2int, main="intrinsic MDS", ylim=c(-2,2), col=mylabs, pch=19)
plot(embed2ext, main="extrinsic MDS", ylim=c(-2,2), col=mylabs, pch=19)
par(opar)
```
Fréchet Mean and Variation

Description

Given N observations $X_1, X_2, \ldots, X_N \in \mathcal{M}$, compute Fréchet mean and variation with respect to the geometry by minimizing

$$
\min_x \sum_{n=1}^{N} w_n \rho^2(x, x_n), \quad x \in \mathcal{M}
$$

where $\rho(x, y)$ is a distance for two points $x, y \in \mathcal{M}$. If non-uniform weights are given, normalized version of the mean is computed and if weight=NULL, it automatically sets equal weights ($w_i = 1/n$) for all observations.

Usage

riem.mean(riemobj, weight = NULL, geometry = c("intrinsic", "extrinsic"), ...)

Arguments

- **riemobj**: a S3 "riemdata" class for N manifold-valued data.
- **weight**: weight of observations; if NULL it assumes equal weights, or a nonnegative length-N vector that sums to 1 should be given.
- **geometry**: (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.
- **maxiter** maximum number of iterations to be run (default: 50).
- **eps** tolerance level for stopping criterion (default: 1e-5).

Value

a named list containing

- **mean** a mean matrix on \mathcal{M}.
- **variation** sum of (weighted) squared distances.

Examples

```r
#------------------------------------------
# Example on Sphere : points near (0,1) on S^1 in R^2
#------------------------------------------
## GENERATE DATA
ndata = 50
mydat = array(0, c(ndata, 2))
for (i in 1:ndata){
  tgt = c(stats::rnorm(1, sd=2), 1)
  mydat[i,] = tgt
}
```
mydat[i,] = tgt/sqrt(sum(tgt^2))
}
myriem = wrap.sphere(mydat)

COMPUTE TWO MEANS
mean.int = as.vector(riem.mean(myriem, geometry="intrinsic")$mean)
mean.ext = as.vector(riem.mean(myriem, geometry="extrinsic")$mean)

VISUALIZE
opar <- par(no.readonly=TRUE)
plot(mydat[,1], mydat[,2], pch=19, xlim=c(-1.1,1.1), ylim=c(0,1.1),
 main="BLUE-extrinsic vs RED-intrinsic")
arrows(x0=0,y0=0,x1=mean.int[1],y1=mean.int[2],col="red")
arrows(x0=0,y0=0,x1=mean.ext[1],y1=mean.ext[2],col="blue")
par(opar)

riem.median

Fréchet Median and Variation

Description

Given N observations $X_1, X_2, \ldots, X_N \in \mathcal{M}$, compute Fréchet median and variation with respect to the geometry by minimizing

$$\min_x \sum_{n=1}^{N} w_n \rho(x, x_n), \quad x \in \mathcal{M}$$

where $\rho(x, y)$ is a distance for two points $x, y \in \mathcal{M}$. If non-uniform weights are given, normalized version of the mean is computed and if `weight=NULL`, it automatically sets equal weights for all observations.

Usage

riem.median(
 riemobj,
 weight = NULL,
 geometry = c("intrinsic", "extrinsic"),
 ...
)

Arguments

riemobj a S3 "riemdata" class for N manifold-valued data.

weight weight of observations; if NULL it assumes equal weights, or a nonnegative length-N vector that sums to 1 should be given.

geometry (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.
... extra parameters including

maxiter maximum number of iterations to be run (default: 50).
eps tolerance level for stopping criterion (default: 1e-5).

Value

a named list containing

median a median matrix on \mathcal{M}.
variation sum of (weighted) distances.

Examples

```r
#---------------------------------------------------------------
# Example on Sphere : points near (0,1) on S^1 in R^2
#---------------------------------------------------------------
## GENERATE DATA
ndata = 50
mydat = array(0,c(ndata,2))
for (i in 1:ndata){
  tgt = c(stats::rnorm(1, sd=2), 1)
  mydat[i,] = tgt/sqrt(sum(tgt^2))
}
myriem = wrap.sphere(mydat)

## COMPUTE TWO MEANS
med.int = as.vector(riem.median(myriem, geometry="intrinsic")$median)
med.ext = as.vector(riem.median(myriem, geometry="extrinsic")$median)

## VISUALIZE
opar <- par(no.readonly=TRUE)
plot(mydat[,1], mydat[,2], pch=19, xlim=c(-1.1,1.1), ylim=c(0,1.1),
    main="BLUE-extrinsic vs RED-intrinsic")
arrows(x0=0,y0=0,x1=med.int[1],y1=med.int[2],col="red")
arrows(x0=0,y0=0,x1=med.ext[1],y1=med.ext[2],col="blue")
par(opar)
```

Description

Given N observations $X_1, X_2, \ldots, X_N \in \mathcal{M}$, perform clustering of the data based on the nonlinear mean shift algorithm. Gaussian kernel is used with the bandwidth h as of

$$G(x_i, x_j) \propto \exp \left(-\frac{\rho^2(x_i, x_j)}{h^2} \right)$$
where $\rho(x, y)$ is geodesic distance between two points $x, y \in \mathcal{M}$. Numerically, some of the limiting points that collapse into the same cluster are not exact. For such purpose, we require maxk parameter to search the optimal number of clusters based on k-medoids clustering algorithm in conjunction with silhouette criterion.

Usage

```r
riem.nmshift(riemobj, h = 1, maxk = 5, maxiter = 50, eps = 1e-05)
```

Arguments

- **riemobj**: a S3 "riemdata" class for N manifold-valued data.
- **h**: bandwidth parameter. The larger the h is, the more blurring is applied.
- **maxk**: maximum number of clusters to determine the optimal number of clusters.
- **maxiter**: maximum number of iterations to be run.
- **eps**: tolerance level for stopping criterion.

Value

a named list containing

- **distance**: an $(N \times N)$ distance between modes corresponding to each data point.
- **cluster**: a length-N vector of class labels.

References

Examples

```r
#----------------------------------------
# Example on Sphere : a dataset with three types
#
# class 1 : 10 perturbed data points near (1,0,0) on S^2 in R^3
# class 2 : 10 perturbed data points near (0,1,0) on S^2 in R^3
# class 3 : 10 perturbed data points near (0,0,1) on S^2 in R^3
#
## GENERATE DATA
set.seed(496)
ndata = 10
mydata = list()
for (i in 1:ndata){
  tgt = c(1, stats::rnorm(2, sd=0.1))
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in (ndata+1):(2*ndata)){
  tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1))
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
```
for (i in ((2*ndata)+1):(3*ndata)){
 tgt = c(stats::rnorm(2, sd=0.1), 1)
 mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem = wrap.sphere(mydata)
mylabs = rep(c(1,2,3), each=ndata)

RUN NONLINEAR MEANSHIFT FOR DIFFERENT 'h' VALUES
run1 = riem.nmshift(myriem, maxk=10, h=0.1)
run2 = riem.nmshift(myriem, maxk=10, h=1)
run3 = riem.nmshift(myriem, maxk=10, h=10)

MDS FOR VISUALIZATION
mds2d = riem.mds(myriem, ndim=2)$embed

VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,3), pty="s")
plot(mds2d, pch=19, main="label : h=0.1", col=run1$cluster)
plot(mds2d, pch=19, main="label : h=1", col=run2$cluster)
plot(mds2d, pch=19, main="label : h=10", col=run3$cluster)
image(run1$distance[,30:1], axes=FALSE, main="distance : h=0.1")
image(run2$distance[,30:1], axes=FALSE, main="distance : h=1")
image(run3$distance[,30:1], axes=FALSE, main="distance : h=10")
par(opar)

riem.pdist

Compute Pairwise Distances for Data

Description

Given N observations $X_1, X_2, \ldots, X_N \in \mathcal{M}$, compute pairwise distances.

Usage

riem.pdist(riemobj, geometry = c("intrinsic", "extrinsic"), as.dist = FALSE)

Arguments

- **riemobj**: a S3 "riemdata" class for N manifold-valued data.
- **geometry**: (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") in geometry
- **as.dist**: logical; if TRUE, it returns dist object, else it returns a symmetric matrix.

Value

a S3 dist object or $(N \times N)$ symmetric matrix of pairwise distances according to as.dist parameter.
Examples

Example on Sphere: a dataset with two types
#
group1: perturbed data points near (0,0,1) on S^2 in R^3
group2: perturbed data points near (1,0,0) on S^2 in R^3

GENERATE DATA
mydata = list()
sdval = 0.1
for (i in 1:10){
tgt = c(stats::rnorm(2, sd=sdval), 1)
mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 11:20){
tgt = c(1, stats::rnorm(2, sd=sdval))
mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem = wrap.sphere(mydata)

COMPARE TWO DISTANCES
dint = riem.pdist(myriem, geometry="intrinsic", as.dist=FALSE)
dext = riem.pdist(myriem, geometry="extrinsic", as.dist=FALSE)

VISUALIZE
opar = par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
image(dint[,nrow(dint):1], main="intrinsic", axes=FALSE)
image(dext[,nrow(dext):1], main="extrinsic", axes=FALSE)
par(opar)

riem.pdist2

Compute Pairwise Distances for Two Sets of Data

Description

Given M observations $X_1, X_2, \ldots, X_M \in \mathcal{M}$ and N observations $Y_1, Y_2, \ldots, Y_N \in \mathcal{M}$, compute pairwise distances between two sets’ elements.

Usage

riem.pdist2(riemobj1, riemobj2, geometry = c("intrinsic", "extrinsic"))

Arguments

riemobj1 a S3 "riemdata" class for M manifold-valued data.
riemobj2 a S3 "riemdata" class for N manifold-valued data.
geometry (case-insensitive) name of geometry: either geodesic ("intrinsic") or embedded ("extrinsic") geometry.
Value

an \((M \times N)\) matrix of distances.

Examples

```r
# Example on Sphere: a dataset with two types

## GENERATE DATA
mydata1 = list()
mydata2 = list()
for (i in 1:10){
  tgt = c(stats::rnorm(2, sd=0.1), 1)
  mydata1[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 1:10){
  tgt = c(1, stats::rnorm(2, sd=0.1))
  mydata2[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 11:20){
  tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1))
  mydata2[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 21:30){
  tgt = c(stats::rnorm(2, sd=0.1), 1)
  mydata2[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem1 = wrap.sphere(mydata1)
myriem2 = wrap.sphere(mydata2)

## COMPARE TWO DISTANCES
dint = riem.pdist2(myriem1, myriem2, geometry="intrinsic")
dext = riem.pdist2(myriem1, myriem2, geometry="extrinsic")

## VISUALIZE
opar = par(no.readonly=TRUE)
par(mfrow=c(1,2))
image(dint[nrow(dint):1,], main="intrinsic", axes=FALSE)
image(dext[nrow(dext):1,], main="extrinsic", axes=FALSE)
par(opar)
```
Principal Geodesic Analysis

Description

Given N observations $X_1, X_2, \ldots, X_N \in M$, Principal Geodesic Analysis (PGA) finds a low-dimensional embedding by decomposing 2nd-order information in tangent space at an intrinsic mean of the data.

Usage

riem.pga(riemobj, ndim = 2)

Arguments

- **riemobj**: a S3 "riemdata" class for N manifold-valued data.
- **ndim**: an integer-valued target dimension.

Value

a named list containing

- **center**: an intrinsic mean in a matrix representation form.
- **embed**: an $(N \times ndim)$ matrix whose rows are embedded observations.

References

Examples

```r
#---------------------------------------------------------------
# Example on Sphere : a dataset with three types
#
# 10 perturbed data points near (1,0,0) on S^2 in R^3
# 10 perturbed data points near (0,1,0) on S^2 in R^3
# 10 perturbed data points near (0,0,1) on S^2 in R^3
#---------------------------------------------------------------
## GENERATE DATA
mydata = list()
for (i in 1:10){
  tgt = c(1, stats::rnorm(2, sd=0.1))
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 11:20){
  tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1))
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
```
for (i in 21:30){
 tgt = c(stats::rnorm(2, sd=0.1), 1)
 mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem = wrap.sphere(mydata)
mylabs = rep(c(1,2,3), each=10)

EMBEDDING WITH MDS AND PGA
embed2mds = riem.mds(myriem, ndim=2, geometry="intrinsic")$embed
embed2pga = riem.pga(myriem, ndim=2)$embed

VISUALIZE
opar = par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
plot(embed2mds, main="Multidimensional Scaling", col=mylabs, pch=19)
plot(embed2pga, main="Principal Geodesic Analysis", col=mylabs, pch=19)
par(opar)

riem.rmml

Riemannian Manifold Metric Learning

Description

Given N observations $X_1, X_2, \ldots, X_N \in \mathcal{M}$ and corresponding label information, `riem.rmml` computes pairwise distance of data under Riemannian Manifold Metric Learning (RMML) framework based on equivariant embedding. When the number of data points is not sufficient, an inverse of scatter matrix does not exist analytically so the small regularization parameter λ is recommended with default value of $\lambda = 0.1$.

Usage

`riem.rmml(riemobj, label, lambda = 0.1, as.dist = FALSE)`

Arguments

- **riemobj**: a S3 "riemdata" class for N manifold-valued data.
- **label**: a length-N vector of class labels. NA values are omitted.
- **lambda**: regularization parameter. If $\lambda \leq 0$, no regularization is applied.
- **as.dist**: logical; if TRUE, it returns dist object, else it returns a symmetric matrix.

Value

a S3 dist object or $(N \times N)$ symmetric matrix of pairwise distances according to as.dist parameter.
References

Examples

Distance between Two Classes of SPD Matrices
#
Class 1 : Empirical Covariance from Standard Normal Distribution
Class 2 : Empirical Covariance from Perturbed 'iris' dataset
#---

DATA GENERATION
data(iris)
ndata = 10
mydata = list()
for (i in 1:ndata){
 mydata[[i]] = stats::cov(matrix(rnorm(100*4),ncol=4))
}
for (i in (ndata+1):(2*ndata)){
 tmpdata = as.matrix(iris[,1:4]) + matrix(rnorm(150*4,sd=0.5),ncol=4)
 mydata[[i]] = stats::cov(tmpdata)
}
myriem = wrap.spd(mydata)
mylabs = rep(c(1,2), each=ndata)

COMPUTE GEODESIC AND RMML PAIRWISE DISTANCE
pdgeo = riem.pdist(myriem)
pmmdl = riem.rmml(myriem, label=mylabs)

VISUALIZE
opar = par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
image(pdgeo[(2*ndata):1], main="geodesic distance", axes=FALSE)
image(pmmdl[(2*ndata):1], main="RMML distance", axes=FALSE)
par(opar)

riem.sammon

Sammon Mapping

Description

Given N observations $X_1, X_2, \ldots, X_N \in M$, apply Sammon mapping, a non-linear dimensionality reduction method. Since the method depends only on the pairwise distances of the data, it can be adapted to the manifold-valued data.
Usage

riem.sammon(riemobj, ndim = 2, geometry = c("intrinsic", "extrinsic"), ...)

Arguments

- **riemobj**: a S3 "riemdata" class for N manifold-valued data.
- **ndim**: an integer-valued target dimension (default: 2).
- **geometry** (case-insensitive) name of geometry: either geodesic ("intrinsic") or embedded ("extrinsic") geometry.
- **...**: extra parameters including
 - **maxiter**: maximum number of iterations to be run (default: 50).
 - **eps**: tolerance level for stopping criterion (default: 1e-5).

Value

a named list containing

- **embed**: an $(N \times ndim)$ matrix whose rows are embedded observations.
- **stress**: discrepancy between embedded and original distances as a measure of error.

References

Examples

```r
# Example on Sphere : a dataset with three types
#
# 10 perturbed data points near (1,0,0) on S^2 in R^3
# 10 perturbed data points near (0,1,0) on S^2 in R^3
# 10 perturbed data points near (0,0,1) on S^2 in R^3
#
## GENERATE DATA
mydata = list()
for (i in 1:10){
  tgt = c(1, stats::rnorm(2, sd=0.1))
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 11:20){
  tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1))
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 21:30){
  tgt = c(stats::rnorm(2, sd=0.1), 1)
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem = wrap.sphere(mydata)
```
COMPARE SAMMON WITH MDS
embed2mds = riem.mds(myriem, ndim=2)$embed
embed2sam = riem.sammon(myriem, ndim=2)$embed

VISUALIZE
opar = par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
plot(embed2mds, col=mylabs, pch=19, main="MDS")
plot(embed2sam, col=mylabs, pch=19, main="Sammon mapping")
par(opar)

Description

Zelnik-Manor and Perona proposed a method to define a set of data-driven bandwidth parameters where σ_i is the distance from a point x_i to its nnbd-th nearest neighbor. Then the affinity matrix is defined as

$$A_{ij} = \exp(-d(x_i,d_j)^2/\sigma_i\sigma_j)$$

and the standard spectral clustering of Ng, Jordan, and Weiss (riem.scNJW) is applied.

Usage

riem.sc05Z(riemobj, k = 2, nnbd = 7, geometry = c("intrinsic", "extrinsic"))

Arguments

- **riemobj**: a S3 "riemdata" class for N manifold-valued data.
- **k**: the number of clusters (default: 2).
- **nnbd**: neighborhood size to define data-driven bandwidth parameter (default: 7).
- **geometry**: (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.

Value

a named list containing

- **cluster**: a length-N vector of class labels (from $1:k$).
- **eigval**: eigenvalues of the graph laplacian’s spectral decomposition.
- **embeds**: an $(N \times k)$ low-dimensional embedding.
References

Examples

```r
#------------------------------------------------------------
# Example on Sphere : a dataset with three types
#
# class 1 : 10 perturbed data points near (1,0,0) on S^2 in R^3
# class 2 : 10 perturbed data points near (0,1,0) on S^2 in R^3
# class 3 : 10 perturbed data points near (0,0,1) on S^2 in R^3
#------------------------------------------------------------
## GENERATE DATA
mydata = list()
for (i in 1:10){
  tgt = c(1, stats::rnorm(2, sd=0.1))
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 11:20){
  tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1))
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 21:30){
  tgt = c(stats::rnorm(2, sd=0.1), 1)
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem = wrap.sphere(mydata)
lab = rep(c(1,2,3), each=10)

## CLUSTERING WITH DIFFERENT K VALUES
cl2 = riem.sc05Z(myriem, k=2)$cluster
cl3 = riem.sc05Z(myriem, k=3)$cluster
cl4 = riem.sc05Z(myriem, k=4)$cluster

## MDS FOR VISUALIZATION
mds2d = riem.mds(myriem, ndim=2)$embed

## VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(mds2d, col=lab, pch=19, main="true label")
plot(mds2d, col=cl2, pch=19, main="riem.sc05Z: k=2")
plot(mds2d, col=cl3, pch=19, main="riem.sc05Z: k=3")
plot(mds2d, col=cl4, pch=19, main="riem.sc05Z: k=4")
par(opar)
```

Spectral Clustering by Ng, Jordan, and Weiss (2002)
Description

The version of Ng, Jordan, and Weiss first constructs the affinity matrix

$$A_{ij} = \exp(-d(x_i, d_j)^2/\sigma^2)$$

where σ is a common bandwidth parameter and performs k-means clustering on the row-space of eigenvectors for the symmetric graph laplacian matrix

$$L = D^{-1/2}(D - A)D^{-1/2}$$

Usage

riem.scNJW(riemobj, k = 2, sigma = 1, geometry = c("intrinsic", "extrinsic"))

Arguments

- **riemobj**: a S3 "riemdata" class for N manifold-valued data.
- **k**: the number of clusters (default: 2).
- **sigma**: bandwidth parameter (default: 1).
- **geometry**: (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.

Value

A named list containing

- **cluster**: a length-N vector of class labels (from 1 : k).
- **eigval**: eigenvalues of the graph laplacian’s spectral decomposition.
- **embeds**: an $(N \times k)$ low-dimensional embedding.

References

Examples

```R
# Example on Sphere : a dataset with three types
#
# class 1 : 10 perturbed data points near (1,0,0) on S^2 in R^3
# class 2 : 10 perturbed data points near (0,1,0) on S^2 in R^3
# class 3 : 10 perturbed data points near (0,0,1) on S^2 in R^3
#-------------------------------------------------------------
## GENERATE DATA
mydata = list()
for (i in 1:10){
```
tgt = c(1, stats::rnorm(2, sd=0.1))
mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 11:20){
tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1))
mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 21:30){
tgt = c(stats::rnorm(2, sd=0.1),1)
mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem = wrap.sphere(mydata)
lab = rep(c(1,2,3), each=10)

CLUSTERING WITH DIFFERENT K VALUES
c12 = riem.scNJW(myriem, k=2)$cluster
c13 = riem.scNJW(myriem, k=3)$cluster
c14 = riem.scNJW(myriem, k=4)$cluster

MDS FOR VISUALIZATION
mds2d = riem.mds(myriem, ndim=2)$embed

VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(mds2d, col=lab, pch=19, main="true label")
plot(mds2d, col=c12, pch=19, main="riem.scNJW: k=2")
plot(mds2d, col=c13, pch=19, main="riem.scNJW: k=3")
plot(mds2d, col=c14, pch=19, main="riem.scNJW: k=4")
par(opar)

riem.scSM

Spectral Clustering by Shi and Malik (2000)

Description

The version of Shi and Malik first constructs the affinity matrix

\[
A_{ij} = \exp\left(-d(x_i, d_j)^2/\sigma^2\right)
\]

where \(\sigma\) is a common bandwidth parameter and performs k-means clustering on the row-space of eigenvectors for the random-walk graph laplacian matrix

\[
L = D^{-1}(D - A)
\]

Usage

riem.scSM(riemobj, k = 2, sigma = 1, geometry = c("intrinsic", "extrinsic"))
Arguments

- **riemobj**: a S3 “riemdata” class for \(N \) manifold-valued data.
- **k**: the number of clusters (default: 2).
- **sigma**: bandwidth parameter (default: 1).
- **geometry**: (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.

Value

A named list containing:

- **cluster**: a length-\(N \) vector of class labels (from 1 : \(k \)).
- **eigval**: eigenvalues of the graph laplacian’s spectral decomposition.
- **embeds**: an \((N \times k)\) low-dimensional embedding.

References

Examples

```r
# Example on Sphere: a dataset with three types
#
# class 1: 10 perturbed data points near (1,0,0) on S^2 in R^3
# class 2: 10 perturbed data points near (0,1,0) on S^2 in R^3
# class 3: 10 perturbed data points near (0,0,1) on S^2 in R^3
#
## GENERATE DATA
mydata = list()
for (i in 1:10){
  tgt = c(1, stats::rnorm(2, sd=0.1))
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 11:20){
  tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1))
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 21:30){
  tgt = c(stats::rnorm(2, sd=0.1), 1)
  mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem = wrap.sphere(mydata)
lab = rep(c(1,2,3), each=10)

## CLUSTERING WITH DIFFERENT K VALUES
c12 = riem.scSM(myriem, k=2)$cluster
c13 = riem.scSM(myriem, k=3)$cluster
c14 = riem.scSM(myriem, k=4)$cluster
```
MDS FOR VISUALIZATION

```r
ds2d = riem.mds(myriem, ndim=2)$embed
```

VISUALIZE

```r
par <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(mds2d, col=lab, pch=19, main="true label")
plot(mds2d, col=cl2, pch=19, main="riem.scSM: k=2")
plot(mds2d, col=cl3, pch=19, main="riem.scSM: k=3")
plot(mds2d, col=cl4, pch=19, main="riem.scSM: k=4")
par(opar)
```

riem.scUL

Spectral Clustering with Unnormalized Laplacian

Description

The version of Shi and Malik first constructs the affinity matrix

\[A_{ij} = \exp\left(-\frac{d(x_i, d_j)^2}{\sigma^2}\right) \]

where \(\sigma \) is a common bandwidth parameter and performs k-means clustering on the row-space of eigenvectors for the unnormalized graph laplacian matrix

\[L = D - A \]

Usage

```r
riem.scUL(riemobj, k = 2, sigma = 1, geometry = c("intrinsic", "extrinsic"))
```

Arguments

- `riemobj` : a S3 "riemdata" class for \(N \) manifold-valued data.
- `k` : the number of clusters (default: 2).
- `sigma` : bandwidth parameter (default: 1).
- `geometry` : (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.

Value

a named list containing

- `cluster` : a length-\(N \) vector of class labels (from \(1 : k \)).
- `eigval` : eigenvalues of the graph laplacian’s spectral decomposition.
- `embeds` : an \((N \times k) \) low-dimensional embedding.
References

Examples

```r
# Example on Sphere : a dataset with three types
#
# class 1 : 10 perturbed data points near (1,0,0) on S^2 in R^3
# class 2 : 10 perturbed data points near (0,1,0) on S^2 in R^3
# class 3 : 10 perturbed data points near (0,0,1) on S^2 in R^3
#
## GENERATE DATA
mydata = list()
for (i in 1:10){
    tgt = c(i, stats::rnorm(2, sd=0.1))
    mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 11:20){
    tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1))
    mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 21:30){
    tgt = c(stats::rnorm(2, sd=0.1), 1)
    mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem = wrap.sphere(mydata)
lab = rep(c(1,2,3), each=10)

## CLUSTERING WITH DIFFERENT K VALUES
cl2 = riem.scUL(myriem, k=2)$cluster
cl3 = riem.scUL(myriem, k=3)$cluster
cl4 = riem.scUL(myriem, k=4)$cluster

## MDS FOR VISUALIZATION
mds2d = riem.mds(myriem, ndim=2)$embed

## VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(mds2d, col=lab, pch=19, main="true label")
plot(mds2d, col=cl2, pch=19, main="riem.scUL: k=2")
plot(mds2d, col=cl3, pch=19, main="riem.scUL: k=3")
plot(mds2d, col=cl4, pch=19, main="riem.scUL: k=4")
par(opar)
```

Find the Smallest Enclosing Ball
Description

Given \(N \) observations \(X_1, X_2, \ldots, X_N \in \mathcal{M} \), find the smallest enclosing ball.

Usage

\[
\text{riem.seb}(\text{riemobj}, \text{method} = \text{c("aa2013")}, \ldots)
\]

Arguments

- \textit{riemobj} a S3 "riemdata" class for \(N \) manifold-valued data.
- \textit{method} (case-insensitive) name of the algorithm to be used as follows;
- \ldots extra parameters including
 - \textbf{maxiter} maximum number of iterations to be run (default: 50).
 - \textbf{eps} tolerance level for stopping criterion (default: 1e-5).

Value

a named list containing

- \textbf{center} a matrix on \(\mathcal{M} \) that minimizes the radius.
- \textbf{radius} the minimal radius with respect to the center.

References

Examples

```r
# Euclidean Example : samples from Standard Normal in R^2
#----------------------------------------------------------
## GENERATE 25 OBSERVATIONS FROM N(0,I)
ndata = 25
mymats = array(0,c(ndata, 2))
mydata = list()
for (i in 1:ndata){
  mydata[[i]] = stats::rnorm(2)
mymats[i,] = mydata[[i]]
}
myriem = wrap.euclidean(mydata)

## COMPUTE
sebobj = riem.seb(myriem)
center = as.vector(sebobj$center)
radius = sebobj$radius
```
VISUALIZE

1. prepare the circle for drawing
theta = seq(from=0, to=2*pi, length.out=100)
coords = radius*cbind(cos(theta), sin(theta))
coords = coords + matrix(rep(center, each=100), ncol=2)

2. draw
opar <- par(no.readonly=TRUE)
par(pty="s")
plot(coords, type="l", lwd=2, col="red",
 main="Euclidean SEB", xlab="x", ylab="y")
points(mymats, pch=19) # data
points(center[1], center[2], pch=19, col="blue") # center
par(opar)

riem.test2bg14
Two-Sample Test modified from Biswas and Ghosh (2014)

Description

Given M observations $X_1, X_2, \ldots, X_M \in \mathcal{M}$ and N observations $Y_1, Y_2, \ldots, Y_N \in \mathcal{M}$, perform the permutation test of equal distribution

$$H_0 : \mathcal{P}_X = \mathcal{P}_Y$$

by the method from Biswas and Ghosh (2014). The method, originally proposed for Euclidean-valued data, is adapted to the general Riemannian manifold with intrinsic/extrinsic distance.

Usage

```r
riem.test2bg14(riemobj1, riemobj2, geometry = c("intrinsic", "extrinsic"), ...)
```

Arguments

- **riemobj1**: a S3 "riemdata" class for M manifold-valued data.
- **riemobj2**: a S3 "riemdata" class for N manifold-valued data.
- **geometry**: (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.
- **...**: extra parameters including
 - **nperm**: the number of permutations (default: 999).
Value

a (list) object of S3 class htest containing:

- **statistic**: a test statistic.
- **p.value**: p-value under H_0.
- **alternative**: alternative hypothesis.
- **method**: name of the test.
- **data.name**: name(s) of provided sample data.

References

Examples

```r
#------------------------------------------------------------
# Example on Sphere : a dataset with two types
#
# class 1 : 20 perturbed data points near (1,0,0) on S^2 in R^3
# class 2 : 30 perturbed data points near (0,1,0) on S^2 in R^3
#-------------------------------------------------------------
## GENERATE DATA
mydata1 = list()
mydata2 = list()
for (i in 1:20){
  tgt = c(1, stats::rnorm(2, sd=0.1))
  mydata1[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 1:20){
  tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1))
  mydata2[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem1 = wrap.sphere(mydata1)
myriem2 = wrap.sphere(mydata2)

## PERFORM PERMUTATION TEST
# it is expected to return a very small number.
riem.test2bg14(myriem1, myriem2, nperm=999)
```

```r
## Not run:
## CHECK WITH EMPIRICAL TYPE-1 ERROR
set.seed(777)
ntest = 1000
pvals = rep(0,ntest)
```
for (i in 1:ntest){
 X = cbind(matrix(rnorm(30*2, sd=0.1),ncol=2), rep(1,30))
 Y = cbind(matrix(rnorm(30*2, sd=0.1),ncol=2), rep(1,30))
 Xnorm = X/sqrt(rowSums(X^2))
 Ynorm = Y/sqrt(rowSums(Y^2))
 Xriem = wrap.sphere(Xnorm)
 Yriem = wrap.sphere(Ynorm)
 pvals[i] = riem.test2bg14(Xriem, Yriem, nperm=999)$p.value
}

emperr = round(sum((pvals <= 0.05))/ntest, 5)
print(paste0("* EMPIRICAL TYPE-1 ERROR=", emperr))
End(Not run)

riem.test2wass

Two-Sample Test with Wasserstein Metric

Description

Given \(M \) observations \(X_1, X_2, \ldots, X_M \in \mathcal{M} \) and \(N \) observations \(Y_1, Y_2, \ldots, Y_N \in \mathcal{M} \), permutation test based on the Wasserstein metric (see `riem.wasserstein` for more details) is applied to test whether two distributions are same or not, i.e.,

\[
H_0 : \mathcal{P}_X = \mathcal{P}_Y
\]

with Wasserstein metric \(\mathcal{W}_p \) being the measure of discrepancy between two samples.

Usage

```r
riem.test2wass(
  riemobj1, riemobj2,
  p = 2,
  geometry = c("intrinsic", "extrinsic"),
  ...
)
```

Arguments

- `riemobj1`: a S3 "riemdata" class for \(M \) manifold-valued data.
- `riemobj2`: a S3 "riemdata" class for \(N \) manifold-valued data.
- `p`: an exponent for Wasserstein distance \(\mathcal{W}_p \) (default: 2).
- `geometry`: (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.
- `...`: extra parameters including
nperm the number of permutations (default: 999).
use.smooth a logical; TRUE to use a smoothed Wasserstein distance, FALSE otherwise.

Value

a (list) object of S3 class htest containing:

statistic a test statistic.
p.value p-value under H_0.
alternative alternative hypothesis.
method name of the test.
data.name name(s) of provided sample data.

Examples

#---
Example on Sphere : a dataset with two types
#---
GENERATE DATA
mydata1 = list()
mydata2 = list()
for (i in 1:20){
 tgt = c(1, stats::rnorm(2, sd=0.1))
 mydata1[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 1:20){
 tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1))
 mydata2[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem1 = wrap.sphere(mydata1)
myriem2 = wrap.sphere(mydata2)

PERFORM PERMUTATION TEST
it is expected to return a very small number, but
small number of 'nperm' may not give a reasonable p-value.
riem.test2wass(myriem1, myriem2, nperm=99, use.smooth=FALSE)

Not run:
CHECK WITH EMPIRICAL TYPE-1 ERROR
set.seed(777)
ntest = 1000
pvals = rep(0,ntest)
for (i in 1:ntest){
 X = cbind(matrix(rnorm(30*2, sd=0.1),ncol=2), rep(1,30))
Y = cbind(matrix(rnorm(30*2, sd=0.1), ncol=2), rep(1,30))
Xnorm = X/sqrt(rowSums(X^2))
Ynorm = Y/sqrt(rowSums(Y^2))

Xriem = wrap.sphere(Xnorm)
Yriem = wrap.sphere(Ynorm)
pvals[i] = riem.test2wass(Xriem, Yriem, nperm=999)$p.value
print(paste0("iteration ", i,"/", ntest," complete.."))
}

emperr = round(sum((pvals <= 0.05))/ntest, 5)
print(paste0("* EMPIRICAL TYPE-1 ERROR=", emperr))

End(Not run)

riem.tsne

t-distributed Stochastic Neighbor Embedding

Description

Given N observations $X_1, X_2, ..., X_N \in M$, t-SNE mimics the pattern of probability distributions over pairs of manifold-valued objects on low-dimensional target embedding space by minimizing Kullback-Leibler divergence.

Usage

riem.tsne(riemobj, ndim = 2, geometry = c("intrinsic", "extrinsic"), ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>riemobj</td>
<td>a S3 "riemdata" class for N manifold-valued data.</td>
</tr>
<tr>
<td>ndim</td>
<td>an integer-valued target dimension.</td>
</tr>
<tr>
<td>geometry</td>
<td>(case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.</td>
</tr>
<tr>
<td>...</td>
<td>extra parameters for Rtsne algorithm, such as perplexity, momentum, and others.</td>
</tr>
</tbody>
</table>

Value

a named list containing

- **embed** an $(N \times ndim)$ matrix whose rows are embedded observations.
- **stress** discrepancy between embedded and original distances as a measure of error.

See Also

Rtsne
Examples

Example on Sphere: a dataset with three types
#
10 perturbed data points near (1,0,0) on S^2 in R^3
10 perturbed data points near (0,1,0) on S^2 in R^3
10 perturbed data points near (0,0,1) on S^2 in R^3

GENERATE DATA
mydata = list()
for (i in 1:20){
 tgt = c(1, stats::rnorm(2, sd=0.1))
 mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 21:40){
 tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1))
 mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 41:60){
 tgt = c(stats::rnorm(2, sd=0.1), 1)
 mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem = wrap.sphere(mydata)
mylabs = rep(c(1,2,3), each=20)

RUN THE ALGORITHM IN TWO GEOMETRIES
mypx = 5
embed2int = riem.tsne(myriem, ndim=2, geometry="intrinsic", perplexity=mypx)
embed2ext = riem.tsne(myriem, ndim=2, geometry="extrinsic", perplexity=mypx)

VISUALIZE
opar = par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
plot(embed2int$embed, main="intrinsic t-SNE", col=mylabs, pch=19)
plot(embed2ext$embed, main="extrinsic t-SNE", col=mylabs, pch=19)
par(opar)

riem.wasserstein Wasserstein Distance between Empirical Measures

Description

Given two empirical measures \(\mu, \nu\) consisting of \(M\) and \(N\) observations, \(p\)-Wasserstein distance for \(p \geq 1\) between two empirical measures is defined as

\[
W_p(\mu, \nu) = \left(\inf_{\gamma \in \Gamma(\mu, \nu)} \int_{M \times M} d(x, y)^p d\gamma(x, y) \right)^{1/p}
\]

where \(\Gamma(\mu, \nu)\) denotes the collection of all measures/couplings on \(M \times M\) whose marginals are \(\mu\) and \(\nu\) on the first and second factors, respectively.
Usage

riem.wasserstein(
 riemobj1,
 riemobj2,
 p = 2,
 geometry = c("intrinsic", "extrinsic"),
 ...
)

Arguments

riemobj1 a S3 "riemdata" class for \(M \) manifold-valued data, which are atoms of \(\mu \).
riemobj2 a S3 "riemdata" class for \(N \) manifold-valued data, which are atoms of \(\nu \).
p an exponent for Wasserstein distance \(\mathcal{W}_p \) (default: 2).
geometry (case-insensitive) name of geometry; either geodesic ("intrinsic") or embedded ("extrinsic") geometry.
weight1 a length-\(M \) weight vector for \(\mu \); if NULL (default), uniform weight is set.
weight2 a length-\(N \) weight vector for \(\nu \); if NULL (default), uniform weight is set.

Value

a named list containing

distance \(\sqrt{\mathcal{W}} \) distance between two empirical measures.
plan an \((M \times N)\) matrix whose rowSums and columnSums are \(\text{weight1}\) and \(\text{weight2}\) respectively.

Examples

#---
Example on Sphere : a dataset with two types
#
class 1 : 20 perturbed data points near (1,0,0) on \(S^2 \) in \(\mathbb{R}^3 \)
class 2 : 30 perturbed data points near (0,1,0) on \(S^2 \) in \(\mathbb{R}^3 \)
#---
GENERATE DATA
mydata1 = list()
mydata2 = list()
for (i in 1:20){
 tgt = c(1, stats::rnorm(2, sd=0.1))
 mydata1[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 1:30){
 tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1))
 mydata2[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem1 = wrap.sphere(mydata1)
myriem2 = wrap.sphere(mydata2)

COMPUTE p-WASSERSTEIN DISTANCES
dist1 = riem.wasserstein(myriem1, myriem2, p=1)
dist2 = riem.wasserstein(myriem1, myriem2, p=2)
dist5 = riem.wasserstein(myriem1, myriem2, p=5)

pm1 = paste0("p=1: dist=",round(dist1$distance,3))
pm2 = paste0("p=2: dist=",round(dist2$distance,3))
pm5 = paste0("p=5: dist=",round(dist5$distance,3))

VISUALIZE TRANSPORT PLAN AND DISTANCE
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
image(dist1$plan, axes=FALSE, main=pm1)
image(dist2$plan, axes=FALSE, main=pm2)
image(dist5$plan, axes=FALSE, main=pm5)
par(opar)

rmvnorm
Generate Random Samples from Multivariate Normal Distribution

Description

In \mathbb{R}^p, random samples are drawn

$$X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \Sigma)$$

where $\mu \in \mathbb{R}^p$ is a mean vector and $\Sigma \in \text{SPD}(p)$ is a positive definite covariance matrix.

Usage

```r
rmvnorm(n = 1, mu, sigma)
```

Arguments

- **n** the number of samples to be generated.
- **mu** mean vector.
- **sigma** covariance matrix.

Value

either (1) a length-p vector ($n = 1$) or (2) an $(n \times p)$ matrix where rows are random samples.
Examples

Generate Random Data and Compare with Empirical Covariances
#
In R^5 with zero mean and diagonal covariance,
generate 100 and 200 observations and compute MLE covariance.
#---

GENERATE DATA
mymu = rep(0,5)
mysig = diag(5)

MLE FOR COVARIANCE
smat1 = stats::cov(rmvnorm(n=100, mymu, mysig))
smat2 = stats::cov(rmvnorm(n=200, mymu, mysig))

VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
image(mysig[,5:1], axes=FALSE, main="true covariance")
image(smat1[,5:1], axes=FALSE, main="empirical cov with n=100")
image(smat2[,5:1], axes=FALSE, main="empirical cov with n=200")
par(opar)

sphere.convert

Convert between Cartesian Coordinates and Geographic Coordinates

Description

In geospatial data analysis, it is common to consider locations on the Earth as data. These locations, usually provided by latitude and longitude, are not directly applicable for spherical data analysis. We provide two functions - sphere.geo2xyz and sphere.xyz2geo - that convert geographic coordinates in longitude/latitude into a unit-norm vector on S^2, and vice versa. As a convention, latitude and longitude are represented as decimal degrees.

Usage

sphere.geo2xyz(lat, lon)
sphere.xyz2geo(xyz)

Arguments

lat latitude (in decimal degrees).
lon longitude (in decimal degrees).
xyz a unit-norm vector in S^2.
Value
transformed data.

Examples

```r
## EXAMPLE DATA WITH POPULATED US CITIES
data(cities)

## SELECT ALBUQUERQUE
g = cities$coord[1,]
x = cities$cartesian[1,]

## CHECK TWO INPUT TYPES AND THEIR CONVERSIONS
sphere.geo2xyz(g[1,], g[2,])
sphere.xyz2geo(x)
```

sphere.runif

Generate Uniform Samples on Sphere

Description
It generates \(n \) random samples from \(S^{p-1} \). For convenient usage of users, we provide a number of options in terms of the return type.

Usage

```r
sphere.runif(n, p, type = c("list", "matrix", "riemdata"))
```

Arguments

- **n** number of samples to be generated.
- **p** original dimension (of the ambient space).
- **type** return type:
 - "list" a length-\(n \) list of length-\(p \) vectors.
 - "matrix" a \((n \times p) \) where rows are unit vectors.
 - "riemdata" a S3 object. See `wrap.sphere` for more details (Default).

Value
an object from one of the above by type option.

References

sphere.utest

See Also

wrap.sphere

Examples

#---
Draw Samples on Sphere
#---
Multiple return types on S^4 in R^5
#---
dat.list = sphere.runif(n=10, p=5, type="list")
dat.matx = sphere.runif(n=10, p=5, type="matrix")
dat.riem = sphere.runif(n=10, p=5, type="riemdata")

sphere.utest Test of Uniformity on Sphere

Description

Given \(N \) observations \(\{X_1, X_2, ..., X_M\} \) on \(S^{p-1} \), it tests whether the data is distributed uniformly on the sphere.

Usage

sphere.utest(spobj, method = c("Rayleigh", "RayleighM"))

Arguments

spobj a S3 "riemdata" class for \(N \) Sphere-valued data.
method (case-insensitive) name of the test method containing
"Rayleigh" original Rayleigh statistic.
"RayleighM" modified Rayleigh statistic with better order of error.

Value

a (list) object of S3 class htest containing:

statistic a test statistic.
p.value \(p \)-value under \(H_0 \).
alternative alternative hypothesis.
method name of the test.
data.name name(s) of provided sample data.
References

See Also

wrap.sphere

Examples

#---
Compare Rayleigh's original and modified versions of the test
#---
Data Generation
myobj = sphere.runif(n=100, p=5, type="riemdata")

Compare 2 versions : Original vs Modified Rayleigh
sphere.ustest(myobj, method="rayleigh")
sphere.ustest(myobj, method="rayleighm")

###

spnorm

* Spherical Normal Distribution

Description

We provide tools for an isotropic spherical normal (SN) distributions on a \((p - 1)\)-sphere in \(\mathbb{R}^p\) for sampling, density evaluation, and maximum likelihood estimation of the parameters where the density is defined as

\[
 f_{SN}(x; \mu, \lambda) = \frac{1}{Z(\lambda)} \exp \left(-\frac{\lambda}{2} d^2(x, \mu) \right)
\]

for location and concentration parameters \(\mu\) and \(\lambda\) respectively and the normalizing constant \(Z(\lambda)\).

Usage

- `dspnorm(data, mu, lambda, log = FALSE)`
- `rspnorm(n, mu, lambda)`
- `mle.spnorm(data, method = c("Newton", "Halley", "Optimize", "DE"), ...)`
spnorm

Arguments

- `data`: data vectors in form of either an \((n \times p)\) matrix or a length-\(n\) list. See `wrap.sphere` for descriptions on supported input types.
- `mu`: a length-\(p\) unit-norm vector of location.
- `lambda`: a concentration parameter that is positive.
- `log`: a logical; `TRUE` to return log-density, `FALSE` for densities without logarithm applied.
- `n`: the number of samples to be generated.
- `method`: an algorithm name for concentration parameter estimation.
- `...`: extra parameters for computations, including
 - `maxiter`: maximum number of iterations to be run (default: 50).
 - `eps`: tolerance level for stopping criterion (default: 1e-5).

Value

dspsnorm gives a vector of evaluated densities given samples. `rspnorm` generates unit-norm vectors in \(\mathbb{R}^p\) wrapped in a list. `mle.spnorm` computes MLEs and returns a list containing estimates of location (\(mu\)) and concentration (\(lambda\)) parameters.

Examples

```r
# Example with Spherical Normal Distribution
#
# Given a fixed set of parameters, generate samples and acquire MLEs.
# Especially, we will see the evolution of estimation accuracy.
# DEFAULT PARAMETERS
true.mu = c(1,0,0,0,0)
true.lbd = 5

# GENERATE DATA N=1000
big.data = rspnorm(1000, true.mu, true.lbd)

# ITERATE FROM 50 TO 1000 by 10
idseq = seq(from=50, to=1000, by=10)
nseq = length(idseq)

hist.mu = rep(0, nseq)
hist.lbd = rep(0, nseq)

for (i in 1:nseq){
  small.data = big.data[1:idseq[i]] # data subsetting
  small.MLE = mle.spnorm(small.data) # compute MLE
  hist.mu[i] = acos(sum(small.MLE$mu*true.mu)) # difference in mu
  hist.lbd[i] = small.MLE$lambda
  ```
stiefel.optSA

Simulated Annealing on Stiefel Manifold

Description

Simulated Annealing is a black-box, derivative-free optimization algorithm that iterates via stochastic search in the neighborhood of current position. stiefel.optSA solves the following problem

$$\min_{X} f(X), \quad X \in St(p, k)$$

without any other auxiliary information such as gradient or hessian involved.

Usage

stiefel.optSA(func, p, k, ...)

Arguments

- **func**: a function to be minimized.
- **p**: dimension parameter as in $St(k, p)$.
- **k**: dimension parameter as in $St(k, p)$.
- **...**: extra parameters for SA algorithm including
 - **n.start**: number of runs; algorithm is executed n.start times (default: 5).
 - **stepsize**: size of random walk on each component (default: 0.1).
 - **maxiter**: maximum number of iterations for each run (default: 100).
 - **cooling**: triplet for cooling schedule. See the section for the usage.
 - **init.val**: if NULL, starts from a random point. Otherwise, a Stiefel matrix of size (p, k) should be provided for fixed starting point.
 - **print.progress**: a logical; if TRUE, it prints each iteration.
Value

- a named list containing:
 - **cost** minimized function value.
 - **solution** a \((p \times k)\) matrix that attains the cost.
 - **accfreq** frequency of acceptance moves.

Examples

```r
# Optimization for Eigen-Decomposition
# Given (5x5) covariance matrix S, eigendecomposition is indeed
# an optimization problem cast on the stiefel manifold. Here,
# we are trying to find top 3 eigenvalues and compare.

## PREPARE
set.seed(121) # set seed
A = cov(matrix(rnorm(100*5), ncol=5)) # define covariance
myfunc <- function(p){
  return(sum(-diag(t(p)%*%A%*%p)))
}

## SOLVE THE OPTIMIZATION PROBLEM
Aout = stiefel.optSA(myfunc, p=5, k=3, n.start=40, maxiter=200)

## COMPUTE EIGENVALUES
# 1. USE SOLUTIONS TO THE ABOVE OPTIMIZATION
abase = Aout$solution
eig3sol = sort(diag(t(abase)%*%A%*%abase), decreasing=TRUE)

# 2. USE BASIC 'EIGEN' FUNCTION
eig3dec = sort(eigen(A)$values, decreasing=TRUE)[1:3]

## VISUALIZE
opar <- par(no.readonly=TRUE)
yran = c(min(min(eig3sol),min(eig3dec))*0.95,
  max(max(eig3sol),max(eig3dec))*1.05)
plot(1:3, eig3sol, type="b", col="red", pch=19, ylim=yran,
  xlab="index", ylab="eigenvalue", main="compare top 3 eigenvalues")
lines(1:3, eig3dec, type="b", col="blue", pch=19)
legend(1, 1, legend=c('optimization','decomposition'), col=c('red','blue'),
  lty=rep(1,2), pch=19)
par(opar)
```

stiefel.runif

Generate Uniform Samples on Stiefel Manifold
Description

It generates \(n \) random samples from Stiefel manifold \(St(k, p) \).

Usage

\[
\text{stiefel.runif}(n, k, p, \text{type}=c("list", "array", "riemdata"))
\]

Arguments

- \(n \): number of samples to be generated.
- \(k \): dimension of the frame.
- \(p \): original dimension (of the ambient space).
- \(\text{type} \): return type;
 - "list" a length-\(n \) list of \((p \times k)\) basis of \(k \)-frames.
 - "array" a \((p \times k \times n)\) 3D array whose slices are \(k \)-frame basis.
 - "riemdata" a S3 object. See \text{wrap.stiefel} for more details.

Value

an object from one of the above by \(\text{type} \) option.

References

See Also

\text{wrap.stiefel}

Examples

#---
Draw Samples on Stiefel Manifold
#
Try Different Return Types with 3 Observations of 5-frames in R^10
#---
GENERATION
dat.list = stiefel.runif(n=3, k=5, p=10, \text{type}="list")
dat.arr3 = stiefel.runif(n=3, k=5, p=10, \text{type}="array")
dat.riem = stiefel.runif(n=3, k=5, p=10, \text{type}="riemdata")
stiefel.utest Test of Uniformity on Stiefel Manifold

Description
Given the data on Stiefel manifold $St(k,p)$, it tests whether the data is distributed uniformly.

Usage
stiefel.utest(stobj, method = c("Rayleigh", "RayleighM"))

Arguments
- stobj: a S3 "riemdata" class for N Stiefel-valued data.
- method: (case-insensitive) name of the test method containing
 "Rayleigh" original Rayleigh statistic.
 "RayleighM" modified Rayleigh statistic with better order of error.

Value
a (list) object of S3 class htest containing:

- statistic: a test statistic.
- p.value: p-value under H_0.
- alternative: alternative hypothesis.
- method: name of the test.
- data.name: name(s) of provided sample data.

References

See Also
wrap.stiefel
Examples

```r
# Compare Rayleigh's original and modified versions of the test
#
# Test 1. sample uniformly from St(2,4)
# Test 2. use perturbed principal components from 'iris' data in R^4
# which is concentrated around a point to reject H0.
#
## DATA GENERATION
# 1. uniform data
myobj1 = stiefel.runif(n=100, k=2, p=4)

# 2. perturbed principal components
data(iris)
irdat = list()
for (n in 1:100){
  tmpdata = iris[1:50,1:4] + matrix(rnorm(50*4,sd=0.5),ncol=4)
  irdat[[n]] = eigen(cov(tmpdata))$vectors[,1:2]
}
myobj2 = wrap.stiefel(irdat)

## TEST
# 1. uniform data
stiefel.utest(myobj1, method="Rayleigh")
stiefel.utest(myobj1, method="RayleighM")

# 2. concentrated data
stiefel.utest(myobj2, method="rayleigh")  # method names are
stiefel.utest(myobj2, method="raYleIghM")  # CASE - INSENSITIVE!
```

wrap.correlation
Prepare Data on Correlation Manifold

Description

The collection of correlation matrices is considered as a subset (and quotient) of the well-known SPD manifold. In our package, it is defined as

\[\mathcal{C}^p_{++} = \{ X \in \mathbb{R}^{p \times p} \mid X^T = X, \ \text{rank}(X) = p, \ \text{diag}(X) = 1 \} \]

where the rank condition means it is strictly positive definite. Please note that the geometry involving semi-definite correlation matrices is not the objective here.

Usage

```r
wrap.correlation(input)
```
Arguments

input correlation data matrices to be wrapped as riemdata class. Following inputs are considered,

array an \((p \times p \times n)\) array where each slice along 3rd dimension is a correlation matrix.

list a length-\(n\) list whose elements are \((p \times p)\) correlation matrices.

Value

a named riemdata S3 object containing

data a list of \((p \times p)\) correlation matrices.

size size of each correlation matrix.

name name of the manifold of interests, "correlation"

Examples

#---
Checker for Two Types of Inputs
#---
Data Generation
d1 = array(0,c(3,3,5))
d2 = list()
for (i in 1:5){
 dat = matrix(rnorm(10*3),ncol=3)
 d1[,,i] = stats::cor(dat)
 d2[[i]] = d1[,,i]
}

Run
test1 = wrap.correlation(d1)
test2 = wrap.correlation(d2)

wrap.euclidean

Prepare Data on Euclidean Space

Description

Euclidean space \(\mathbb{R}^p\) is the most common space for data analysis, which can be considered as a Riemannian manifold with flat metric. Since the space of matrices is isomorphic to Euclidean space after vectorization, we consider the inputs as \(p\)-dimensional vectors.

Usage

wrap.euclidean(input)
Arguments

input data vectors to be wrapped as riemdata class. Following inputs are considered,

matrix an \((n \times p)\) matrix of row observations.

list a length-\(n\) list whose elements are length-\(p\) vectors.

Value

a named riemdata S3 object containing

data a list of \((p \times 1)\) matrices in \(\mathbb{R}^p\).

size dimension of the ambient space.

name name of the manifold of interests, "euclidean"

Examples

```r
#-----------------------------
# Checker for Two Types of Inputs
#-----------------------------
# Generate 5 observations in \(\mathbb{R}^3\) in Matrix and List.
#-----------------------------
## DATA GENERATION
d1 = array(0,c(5,3))
d2 = list()
for (i in 1:5){
  single = stats::rnorm(3)
  d1[i,] = single
  d2[[i]] = single
}
## RUN
test1 = wrap.euclidean(d1)
test2 = wrap.euclidean(d2)
```

Description

Grassmann manifold \(Gr(k,p)\) is the set of \(k\)-planes, or \(k\)-dimensional subspaces in \(\mathbb{R}^p\), which means that for a given matrix \(Y \in \mathbb{R}^{p \times k}\), the column space \(\text{SPAN}(Y)\) is an element in Grassmann manifold. We use a convention that each element in \(Gr(k,p)\) is represented as an orthonormal basis (ONB) \(X \in \mathbb{R}^{p \times k}\) where

\[X^T X = I_k. \]

If not provided in such a form, this wrapper takes a QR decomposition of the given data to recover a corresponding ONB.
wrap.landmark

Usage

wrap.grassmann(input)

Arguments

input data matrices to be wrapped as riemdata class. Following inputs are considered,
array an \((p \times k \times n)\) array where each slice along 3rd dimension is a \(k\)-subspace
basis in dimension \(p\).
list a length-\(n\) list whose elements are \((p \times k)\) basis for \(k\)-subspace.

Value

a named riemdata S3 object containing

data a list of \(k\)-subspace basis matrices.
size size of each \(k\)-subspace basis matrix.
name name of the manifold of interests, "grassmann"

Examples

#--
Checker for Two Types of Inputs
#--
Generate 5 observations in Gr(2,4)
#--
Generation
d1 = array(0,c(4,2,5))
d2 = list()
for (i in 1:5){
d1[,,i] = matrix(rnorm(4*2), ncol=2)
d2[[i]] = d1[,,i]
}
Run
test1 = wrap.grassmann(d1)
test2 = wrap.grassmann(d2)

wrap.landmark Wrap Landmark Data on Shape Space

Description

One of the frameworks used in shape space is to represent the data as landmarks. Each shape is a
point set of \(k\) points in \(\mathbb{R}^p\) where each point is a labeled object. We consider general landmarks in
\(p = 2,3,\ldots\). Note that when \(p > 2\), it is stratified space but we assume singularities do not exist
or are omitted. The wrapper takes translation and scaling out from the data to make it preshape
(centered, unit-norm). Also, for convenience, orthogonal Procrustes analysis is applied with the
first observation being the reference so that all the other data are rotated to match the shape of the
first.
Usage

wrap.landmark(input)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>data matrices to be wrapped as riemdata class. Following inputs are considered,</td>
</tr>
<tr>
<td>array</td>
<td>a ((k \times p \times n)) array where each slice along 3rd dimension is a (k)-ad in (\mathbb{R}^p).</td>
</tr>
<tr>
<td>list</td>
<td>a length-(n) list whose elements are (k)-ads.</td>
</tr>
</tbody>
</table>

Value

- a named riemdata S3 object containing
 - data a list of preshapes in \(\mathbb{R}^p\).
 - size size of each preshape.
 - name name of the manifold of interests, "landmark"

References

Examples

```r
## USE 'GORILLA' DATA
data(gorilla)
riemobj = wrap.landmark(gorilla$male)
```

wrap.multinomial Prepare Data on Multinomial Manifold

Description

Multinomial manifold is referred to the data that is nonnegative and sums to 1. Also known as probability simplex or positive orthant, we denote \((p - 1)\) simplex in \(\mathbb{R}^p\) by

\[
\Delta^{p-1} = \{ x \in \mathbb{R}^p \mid \sum_{i=1}^{p} x_i = 1, x_i > 0 \}
\]

in that data are positive \(L_1\) unit-norm vectors. In wrap.multinomial, normalization is applied when each data point is not on the simplex, but if vectors contain values not in \((0, 1)\), it returns errors.
Usage

wrap.multinomial(input)

Arguments

input data vectors to be wrapped as riemdata class. Following inputs are considered,
matrix an \((n \times p)\) matrix of row observations.
list a length-\(n\) list whose elements are length-\(p\) vectors.

Value

a named riemdata S3 object containing

data a list of \((p \times 1)\) matrices in \(\Delta^{p-1}\).
size dimension of the ambient space.
name name of the manifold of interests, "multinomial"

Examples

#---
#
Checker for Two Types of Inputs
#---
DATA GENERATION
d1 = array(0,c(5,3))
d2 = list()
for (i in 1:5){
 single = abs(stats::rnorm(3))
d1[i,] = single
d2[[i]] = single
}
RUN
test1 = wrap.multinomial(d1)
test2 = wrap.multinomial(d2)

wrap.rotation Prepare Data on Rotation Group

Description

Rotation group, also known as special orthogonal group, is a Riemannian manifold

\[
SO(p) = \{Q \in \mathbb{R}^{p \times p} \mid Q^TQ = I, \det(Q) = 1\}
\]

where the name originates from an observation that when \(p = 2, 3\) these matrices are rotation of shapes/configurations.
Usage

wrap.rotation(input)

Arguments

input data matrices to be wrapped as riemdata class. Following inputs are considered,
array a \((p \times p \times n)\) array where each slice along 3rd dimension is a rotation matrix.
list a length-\(n\) list whose elements are \((p \times p)\) rotation matrices.

Value

a named riemdata S3 object containing

data a list of \((p \times p)\) rotation matrices.
size size of each rotation matrix.
name name of the manifold of interests, "rotation"

Examples

#---
Checker for Two Types of Inputs
#---
DATA GENERATION
d1 = array(0,c(3,3,5))
d2 = list()
for (i in 1:5){
 single = qr.Q(qr(matrix(rnorm(9),nrow=3)))
 d1[,,i] = single
 d2[[i]] = single
}
RUN
test1 = wrap.rotation(d1)
test2 = wrap.rotation(d2)

wrap.spd Prepare Data on Symmetric Positive-Definite (SPD) Manifold

Description

The collection of symmetric positive-definite matrices is a well-known example of matrix manifold. It is defined as

\[S_{++}^p = \{ X \in \mathbb{R}^{p \times p} \mid X^\top = X, \ \text{rank}(X) = p \} \]

where the rank condition means it is strictly positive definite. Please note that the geometry involving semi-definite matrices is considered in wrap.spd.
wrap.spdk

Usage

wrap.spd(input)

Arguments

input SPD data matrices to be wrapped as riemdata class. Following inputs are considered,

array an \((p \times p \times n)\) array where each slice along 3rd dimension is a SPD matrix.

list a length-\(n\) list whose elements are \((p \times p)\) SPD matrices.

Value

a named riemdata S3 object containing

data a list of \((p \times p)\) correlation matrices.

size size of each correlation matrix.

name name of the manifold of interests, "spd"

Examples

#---
Checker for Two Types of Inputs
#
Generate 5 observations; empirical covariance of normal observations.
#---
Data Generation
d1 = array(0,c(3,3,5))
d2 = list()
for (i in 1:5){
 dat = matrix(rnorm(10*3),ncol=3)
 d1[,i] = stats::cov(dat)
 d2[[i]] = d1[,i]
}

Run
test1 = wrap.spd(d1)
test2 = wrap.spd(d2)
Description

When \((p \times p)\) SPD matrices are of fixed-rank \(k < p\), they form a geometric structure represented by \((p \times k)\) matrices,

\[
SPD(k,p) = \{ X \in \mathbb{R}^{(p\times p)} | YY^T = X, \text{rank}(X) = k \}
\]

It’s key difference from \(S^p_{++}\) is that all matrices should be of fixed rank \(k\) where \(k\) is usually smaller than \(p\). Inputs are given as \((p \times p)\) matrices with specified \(k\) and \texttt{wrap.spdk} automatically decomposes input square matrices into rank-\(k\) representation matrices.

Usage

\texttt{wrap.spdk(input, k)}

Arguments

- \texttt{input}\n - data matrices to be wrapped as \texttt{riemdata} class. Following inputs are considered,
 - \texttt{array}\n - a \((p \times p \times n)\) array where each slice along 3rd dimension is a rank-\(k\) matrix.
 - \texttt{list}\n - a length-\(n\) list whose elements are \((p \times p)\) matrices of rank-\(k\).

- \texttt{k}\n - rank of the SPD matrices.

Value

- a named \texttt{riemdata S3} object containing
 - \texttt{data}\n - a list of \((p \times k)\) representation of the corresponding rank-\(k\) SPSD matrices.
 - \texttt{size}\n - size of each representation matrix.
 - \texttt{name}\n - name of the manifold of interests, "spdk"

References

Examples

```
#-----------------------------------------------#
# Checker for Two Types of Inputs
#-----------------------------------------------#
# Data Generation
d1 = array(0,c(10,10,3))
d2 = list()
for (i in 1:3){
  dat = matrix(rnorm(10*10),ncol=10)
d1[,i] = stats::cov(dat)
d2[[i]] = d1[,i]
}
```
wrap.sphere

Run
test1 = wrap.spdk(d1, k=2)
test2 = wrap.spdk(d2, k=2)

wrap.sphere Prepare Data on Sphere

Description

The unit hypersphere (sphere, for short) is one of the most fundamental curved space in studying geometry. Precisely, we denote \((p - 1)\) sphere in \(\mathbb{R}^p\) by

\[
S^{p-1} = \{ x \in \mathbb{R}^p \mid x^T x = \|x\|^2 = 1 \}
\]

where vectors are of unit norm. In `wrap.sphere`, normalization is applied when each data point is not on the unit sphere.

Usage

`wrap.sphere(input)`

Arguments

- **input**: data vectors to be wrapped as `riemdata` class. Following inputs are considered,
 - **matrix**: an \((n \times p)\) matrix of row observations of unit norm.
 - **list**: a length-\(n\) list whose elements are length-\(p\) vectors of unit norm.

Value

- a named `riemdata` `S3` object containing
 - **data**: a list of \((p \times 1)\) matrices in \(S^{p-1}\).
 - **size**: dimension of the ambient space.
 - **name**: name of the manifold of interests, "sphere"

Examples

```r
# Checker for Two Types of Inputs
#
# Generate 5 observations in S^2 embedded in R^3.
#---------------------------------------------
## DATA GENERATION
d1 = array(0, c(5,3))
d2 = list()
for (i in 1:5){
```
```r
single = stats::rnorm(3)
d1[1,] = single
d2[[1]] = single
```

```r
## RUN
test1 = wrap.sphere(d1)
test2 = wrap.sphere(d2)
```

wrap.stiefel
Prepare Data on (Compact) Stiefel Manifold

Description

Stiefel manifold \(St(k, p) \) is the set of \(k \)-frames in \(\mathbb{R}^p \), which is indeed a Riemannian manifold. For usage in Riemann package, each data point is represented as a matrix by the convention

\[
St(k, p) = \{ X \in \mathbb{R}^{p \times k} | X^\top X = I_k \}
\]

which means that columns are orthonormal. When the provided matrix is not an orthonormal basis as above, wrap.stiefel applies orthogonalization to extract valid basis information.

Usage

```r
wrap.stiefel(input)
```

Arguments

- `input`
 data matrices to be wrapped as riemdata class. Following inputs are considered,
 - **array** a \((p \times k \times n) \) array where each slice along 3rd dimension is a \(k \)-frame.
 - **list** a length-\(n \) list whose elements are \((p \times k) \) \(k \)-frames.

Value

- a named riemdata S3 object containing
 - **data** a list of \(k \)-frame orthonormal matrices.
 - **size** size of each \(k \)-frame basis matrix.
 - **name** name of the manifold of interests, "stiefel"
Examples

#---
Checker for Two Types of Inputs
#
Generate 5 observations in St(2,4)
#---
Data Generation by QR Decomposition
d1 = array(0,c(4,2,5))
d2 = list()
for (i in 1:5){
 d1[,,i] = qr.Q(qr(matrix(rnorm(4*2),ncol=2)))
 d2[i] = d1[,,i]
}

Run
test1 = wrap.stiefel(d1)
test2 = wrap.stiefel(d2)
Index

* **basic**
 - riem.interp, 29
 - riem.interps, 30
 - riem.pdist, 52
 - riem.pdist2, 53
 - riem.wasserstein, 72
* **clustering**
 - riem.clrq, 19
 - riem.hclust, 27
 - riem.kmeans, 33
 - riem.kmeans18B, 35
 - riem.kmeansspp, 37
 - riem.kmedoids, 39
 - riem.nnshift, 50
 - riem.sc05Z, 59
 - riem.scNJW, 60
 - riem.scSM, 62
 - riem.scUL, 64
* **curve**
 - riem.distlp, 23
 - riem.dtw, 24
* **datasets**
 - cities, 5
 - gorilla, 6
 - hands, 11
 - orbital, 15
 - passiflora, 16
* **data**
 - cities, 5
 - gorilla, 6
 - hands, 11
 - orbital, 15
 - passiflora, 16
* **distribution**
 - acg, 3
 - macg, 12
 - spnorm, 78
* **grassmann**
 - grassmann.optmacg, 7
 - grassmann.runif, 8
 - grassmann.uteest, 9
* **inference**
 - predict.m2skreg, 17
 - riem.fanova, 26
 - riem.m2skreg, 43
 - riem.m2skregCV, 45
 - riem.mean, 48
 - riem.median, 49
 - riem.test2bg14, 67
 - riem.test2wass, 69
* **learning**
 - riem.coreset18B, 21
 - riem.knn, 40
 - riem.rmml, 56
 - riem.seb, 65
* **sphere**
 - mixspnorm, 13
 - predict.mixspnorm, 18
 - sphere.convert, 75
 - sphere.runif, 76
 - sphere.uteest, 77
* **stiefel**
 - stiefel.optSA, 80
 - stiefel.runif, 81
 - stiefel.uteest, 83
* **utility**
 - rmvnorm, 74
* **visualization**
 - riem.isomap, 31
 - riem.kpca, 42
 - riem.mds, 46
 - riem.pga, 55
 - riem.sammon, 57
 - riem.tsne, 71
* **wrapper**
 - wrap.correlation, 84
 - wrap.euclidean, 85
 - wrap.grassmann, 86
wrap.stiefel, 82, 83, 94