1 Introduction

The R Commander (Fox, 2005, 2017) provides a graphical user interface (“GUI”) to the open-source R statistical computing environment (R Core Team, 2020). This manual is a brief, basic introduction to the R Commander; for more extensive documentation, see Fox (2017), which has a website at <socserv.mcmaster.ca/jfox/Books/RCommander/> or <tinyurl.com/RcmdrBook>.

R is a command-driven system, and new users often find learning R challenging. This is particularly true of those who are new to statistical methods, such as students in basic-statistics courses. By providing a point-and-click interface to R, the R Commander allows these users to focus on statistical methods rather than on remembering and formulating R commands. Moreover, by rendering the generated commands visible to users, the R Commander has the potential for easing the transition to writing R commands, at least for some users. The R Commander, however, accesses only a small fraction of the capabilities of R and the literally thousands of R packages contributed by users to the Comprehensive R Archive Network (CRAN). The R Commander is itself extensible through plug-in packages, and many such plug-ins are now available on CRAN (see Section 6.4 of this document).

This document directly describes the use of the R Commander under the Windows version of R. There are small differences in the appearance and use of the R Commander under macOS and on Linux and Unix systems. Information about installing the R Commander on these platforms is available by following the link to the installation notes at the R Commander web page <socserv.socsci.mcmaster.ca/jfox/Misc/Rcmdr/index.html> or at <tinyurl.com/Rcmdr>.

I use the following typographical conventions in this document: Names of software, such as Windows, R, the Rcmdr package, and the R Commander, are set in boldface type. The names of GUI elements such as menus, menu items, windows, and dialog boxes, are set in italic type. Variable names, names of data sets, and R commands are set in a typewriter font.

2 Starting the R Commander

Once R is running, simply loading the Rcmdr package by typing the command `library(Rcmdr)` into the R Console starts the R Commander graphical user interface. To function optimally under Windows, the R Commander prefers the single-document interface (“SDI”) to R [1]. After loading the package, R Console and R Commander windows should appear more or less as in Figures 1 and 2 [2]. These and other screen

---

*[The Windows version of R is normally run from a multiple-document interface (“MDI”), which contains the R Console window, Graphical Device windows created during the session, and other windows related to the R process. In contrast, under the single-document interface (“SDI”), the R Console and Graphical Device windows are not contained within a master window. There are several ways to run R in SDI mode — for example, by selecting the SDI when R is installed, by editing the Rconsole file in R’s etc subdirectory, or by adding --sd1 to the Target field in the Shortcut tab of the R desktop icon’s Properties. You should be able to use the R Commander with the MDI, but it will not appear within the master R window and arranging the screen will be inconvenient.]

*[Most of the “screen-shots” in this document were produced with an earlier version of R and the R Commander. Screen images were only updated when their appearance or content has changed.]
The R Commander and R Console windows float freely on the desktop. You will normally use the R Commander’s menus and dialog boxes to read, manipulate, and analyze data, and you can safely minimize the R Console window.

- R commands generated by the R Commander GUI appear in the R Script tab in the upper pane of the main R Commander window. You can also type R commands directly into the script pane, the main purpose of the R Commander, however, is to avoid having to type commands. The second tab in the upper pane (labelled R Markdown) also accumulates the commands produced by the R Commander and can be used to generate printed reports; the R Markdown tab is described in Section 6.1.

- Printed output appears by default in the second pane (labelled Output).

- The lower, gray pane (labelled Messages) displays error messages, warnings, and some other information (“notes”), such as the start-up message in Figure 2.

- When you create graphs, these will appear in a separate Graphics Device window.

3 Notice that the R Commander requires some packages in addition to several of the “recommended” packages that are normally distributed with R. The Rcmdr package, the required packages, and many other contributed packages are available for download from the Comprehensive R Archive Network (CRAN) at <https://cran.r-project.org/>.

If these packages are not installed, the R Commander will offer to install them from the internet or from local files (e.g., on a CD/ROM or USB flash drive). If you install the Rcmdr package via the Windows “R GUI,” not all of the packages on which the Rcmdr package depends will be installed. You can install the Rcmdr package and all of the packages on which it depends via the install.packages function, setting the argument dependencies = TRUE, but because of recursive dependencies, that will install more packages than are strictly necessary for the R Commander to function.

Thanks to Dirk Eddelbuettel, Debian Linux users need only issue the command $ apt-get install r-cran-rcmdr to install the Rcmdr package along with all of the packages that it requires. In any event, building and installing the Rcmdr package on Linux systems is typically straightforward. The task is a little more complicated under macOS, since the tcltk package on which the Rcmdr depends requires that X-Windows be installed — see the R Commander installation notes.

4 You can also type commands at the > (greater-than) prompt in the R Console, but output generated by these commands will not appear in the R Commander Output pane and error and warning messages will normally not be visible.
Figure 2: The *R Commander* window at start-up.
There are several menus along the top of the *R Commander* window:

**File** Menu items for loading and saving script files; for saving output and the R workspace; and for exiting.

**Edit** Menu items (*Cut, Copy, Paste*, etc.) for editing text in the various panes and tabs. Right-clicking in one of these panes or tabs also brings up an edit “context” menu.

**Data** Submenus containing menu items for reading and manipulating data.

**Statistics** Submenus containing menu items for a variety of statistical analyses.

**Graphs** Menu items for creating various statistical graphs.

**Models** Menu items and submenus for obtaining numerical summaries, confidence intervals, hypothesis tests, diagnostics, and graphs for a statistical model, and for adding diagnostic quantities, such as residuals, to the data set.

**Distributions** Submenus to obtain cumulative probabilities, probability densities or masses, quantiles, and graphs of standard statistical distributions (to be used, for example, as a substitute for statistical tables), and to generate samples from these distributions.

**Tools** Menu items for loading R packages unrelated to the Rcmdr package (e.g., to access data saved in another package); for loading Rcmdr plug-in packages (see Fox, 2017, Fox, 2007, Fox and Sá Carvalho, 2012 and Section 6.4 below); for setting most R Commander options and for saving options so that they will be applied in subsequent sessions; and for installing optional auxiliary software (see Section 6.1).

**Help** Menu items to obtain information about the R Commander (including this manual) and associated software. As well, each R Commander dialog box has a Help button (see below).

The complete menu “tree” for the R Commander (version 2.8-0) is shown below. Most menu items lead to dialog boxes, as illustrated later in this manual, and, as is conventional, such menu items are followed by . . . . Menu items are inactive (“grayed out”) if they are inapplicable to the current context. For example, if a data set contains no factors (categorical variables), the menu items for contingency tables will be inactive.

---

5Some menu items may not be displayed in certain circumstances. For example, the knitr menu items in the File menu will be displayed only if the knitr tab is activated, and the Install auxiliary software item in the Tools menu is activated only if the optional LATEX or Pandoc software are missing. The menus also include dividers, which are not shown here.
Borrar el último bloque de instrucciones Markdown
Borrar el título del último bloque de instrucciones Markdown
Borrar el último bloque de instrucciones knitr
Cortar
Copiar
Pegar
Borrar
Encontrar
Seleccionar todo
Deshacer
Rehacer
Limpiar ventana

Datos
Nuevo conjunto de datos...
Cargar conjunto de datos...
Fusionar conjuntos de datos...
Importar datos
- desde archivo de texto, portapapeles o URL...
- desde datos SPSS...
- desde un archivo SAS exportado...
- desde un archivo SAS b7dat...
- desde datos Minitab...
- desde datos STATA...
- desde un archivo de Excel...
Conjunto de datos en paquetes
- Lista de conjuntos de datos en paquetes
- Leer conjunto de datos desde paquete adjunto...
Conjunto de datos activo
Visualizar datos...
Seleccionar conjunto de datos activo...
Actualizar conjunto de datos activo
Ayuda sobre el conjunto de datos activo (si es posible)
Variables del conjunto de datos activo
Establecer nombres de casos...
Filtrar el conjunto de datos activo...
Ordenar el conjunto de datos activo...
Agregar variables del conjunto de datos activo...
Seleccionar fila(s) del conjunto de datos activo...
Borrar fila(s) del conjunto de datos activo...
Apilar variables del conjunto de datos activo...
Eliminar los casos con valores omitidos...
Reorganizar el conjunto de datos de formato largo a ancho...
Reorganizar el conjunto de datos de formato ancho a largo...
Convert all character variables to factors...
Guardar el conjunto de datos activos...
Exportar el conjunto de datos activo...
Modificar variables del conjunto de datos activo
Recodificar variables...
Calcular una nueva variable...
Añadir números de observaciones al conjunto de datos
Tipificar variables...
Convertir variable numérica en factor...
Convertir variables de caracteres en factores...
Segmentar variable numérica...
Reordenar niveles de factor...
- Descartar niveles sin uso...
- Definir contrastes de un factor...
- Renombrar variables...
- Eliminar variables del conjunto de datos...

Estadísticos
- Resúmenes
  - Conjunto de datos activo
  - Resúmenes numéricos...
  - Distribución de frecuencias...
  - Número de observaciones ausentes
  - Tabla de estadísticas...
  - Matriz de correlaciones...
  - Test de correlación...
  - Test de normalidad...
  - Transformación para normalizar...
- Tablas de contingencia
  - Tabla de doble entrada...
  - Tabla de entradas múltiples...
  - Introducir y analizar una tabla de doble entrada...
- Medias
  - Test t para una muestra...
  - Test t para muestras independientes...
  - Test t para datos relacionados...
  - ANOVA de un factor...
  - ANOVA de múltiples factores...
  - ANOVA/ANCOVA de un factor con medidas repetidas...
  - ANOVA/ANCOVA de dos factores con medidas repetidas...
- Proporciones
  - Test de proporciones para una muestra...
  - Test de proporciones para dos muestras...
- Varianzas
  - Test F para dos varianzas...
  - Test de Bartlett...
  - Test de Levene...
- Test no paramétricos
  - Test de Wilcoxon para dos muestras...
  - Test de Wilcoxon para una muestra...
  - Test de Wilcoxon para muestras pareadas...
  - Test de Kruskal-Wallis...
  - Test de suma de rangos de Friedman...
- Análisis dimensional
  - Fiabilidad de escala...
  - Análisis de componentes principales...
  - Análisis factorial...
  - Análisis confirmatorio factorial...
  - Análisis de agrupación
    - Agrupación por k-medias...
    - Agrupación jerárquica...
    - Resumir la agrupación jerárquica...
    - Agregar la agrupación jerárquica al conjunto de datos...
- Ajuste de modelos
  - Regresión lineal...
  - Modelo lineal...
Gráficas
- Gama de colores...
- Gráfica secuencial...
- Diagrama de puntos...
- Histograma...
- Plot discrete numeric variable......
- Estimar densidad...
- Gráfica de tallos y hojas...
- Diagrama de caja...
- Gráfica de comparación de cuantiles...
- Diagrama de caja de simetría...
- Diagrama de dispersión...
- Matriz de diagramas de dispersión...
- Gráfica lineal...
- Gráfica XY...
- Gráfica de las medias...
- Diagrama de puntos...
- Gráfica de barras...
- Gráfica de sectores...
- Gráficos 3D
- Diagrama de dispersión en 3D...
- Identificar observaciones con el ratón
- Guardar gráfico en archivo
- Guardar gráfico en archivo
- como mapa de bits...
- como PDF/Postscript/EPS...
- Gráfica 3D RGL...

Modelos
- Selecciona el modelo activo...
- Resumir el modelo
- Comparar coeficientes del modelo...
- Añadir las estadísticas de las observaciones a los datos...
- Criterio de Información de Akaike (AIC)
- Criterio de Información Bayesiano (BIC)
- Selección de modelo paso a paso...
- Selección de modelo...
- Confidence intervals......
- Intervalo de confianza bootstrap...
- Intervalo de confianza método delta...
- Test de hipótesis
- Tabla ANOVA...
- Comparar dos modelos...
- Hipótesis lineal...
- Diagnósticos numéricos
- Factor de inflación de varianza
- Test de Breusch-Pagan para heteroscedasticidad...
- Test de Durbin-Watson para autocorrelación...
- Test RESET de no linealidad...
- Test de valores atípicos de Bonferroni
Response transformation
- Gráficas
  - Gráficas básicas de diagnóstico
    - Gráfica de comparación de cuantiles de los residuos...
    - Gráfica de componentes+residuos...
    - 3D component+residual plot...
    - Gráfica de variables agregadas...
    - Gráfica 3D de variable agregada...
    - Gráfica de influencia...
    - Gráfica de índice de influencia...
    - Gráfica de los efectos...
    - Gráfica de efectos del predictor...
  - Distribuciones
    - Establecer la semilla del generador de números aleatorios...
    - Distribuciones continuas
      - Distribución normal
        - Cuantiles normales...
        - Probabilidades normales acumuladas...
        - Gráfica de la distribución normal...
        - Muestra de una distribución normal...
        - Distribución t
          - Cuantiles t...
          - Probabilidades t acumuladas...
          - Gráfica de la distribución t...
          - Muestra de una distribución t...
        - Distribución Chi-cuadrado
          - Cuantiles Chi-cuadrado...
          - Probabilidades Chi-cuadrado acumuladas...
          - Gráfica de la distribución Chi-cuadrado...
          - Muestra de una distribución Chi-cuadrado...
        - Distribución F
          - Cuantiles F...
          - Probabilidades F acumuladas...
          - Gráfica de la distribución F...
          - Muestra de una distribución F...
        - Distribución exponencial
          - Cuantiles exponenciales...
          - Probabilidades exponenciales acumuladas...
          - Gráfica de la distribución exponencial...
          - Muestra de una distribución exponencial...
        - Distribución uniforme
          - Cuantiles uniformes...
          - Probabilidades uniformes acumuladas...
          - Gráfica de la distribución uniforme...
          - Muestra de una distribución uniforme...
        - Distribución beta
          - Cuantiles beta...
          - Probabilidades beta acumuladas...
          - Gráfica de la distribución beta...
          - Muestra de una distribución beta...
        - Distribución de Cauchy
          - Cuantiles de Cauchy...
          - Probabilidades de Cauchy acumuladas...
          - Gráfica de la distribución de Cauchy...
- Muestra de una distribución de Cauchy...
- Distribución logística
  - Cuantiles logísticos...
  - Probabilidades logísticas acumuladas...
  - Gráfica de la distribución logística...
- Muestra de una distribución logística...
- Distribución lognormal
  - Cuantiles lognormal...
  - Probabilidades lognormal acumuladas...
  - Gráfica de la distribución lognormal...
- Muestra de una distribución lognormal...
- Distribución gamma
  - Cuantiles gamma...
  - Probabilidades gamma acumuladas...
  - Gráfica de la distribución gamma...
- Muestra de una distribución gamma...
- Distribución Weibull
  - Cuantiles Weibull...
  - Probabilidades Weibull acumuladas...
  - Gráfica de la distribución Weibull...
- Muestra de una distribución Weibull...
- Distribución Gumbel
  - Cuantiles Gumbel...
  - Probabilidades Gumbel acumuladas...
  - Gráfica de la distribución Gumbel...
- Muestra de una distribución Gumbel...
- Distribuciones discretas
  - Distribución binomial
    - Cuantiles binomiales...
    - Probabilidades binomiales acumuladas...
    - Probabilidades binomiales...
    - Gráfica de la distribución binomial...
    - Muestra de una distribución binomial...
  - Distribución de Poisson
    - Cuantiles de Poisson...
    - Probabilidades de Poisson acumuladas...
    - Probabilidades de Poisson...
    - Gráfica de la distribución de Poisson...
    - Muestra de una distribución de Poisson...
  - Distribución geométrica
    - Cuantiles geométricos...
    - Probabilidades geométricas acumuladas...
    - Probabilidades geométricas...
    - Gráfica de la distribución geométrica...
    - Muestra de una distribución geométrica...
  - Distribución hipergeométrica
    - Cuantiles hipergeométricos...
    - Probabilidades hipergeométricas acumuladas...
    - Probabilidades hipergeométricas...
    - Gráfica de la distribución hipergeométrica...
    - Muestra de una distribución hipergeométrica...
  - Distribución binomial negativa
    - Cuantiles binomiales negativos...
    - Probabilidades binomiales negativas acumuladas...
The \textit{R Commander} interface includes a few elements in addition to menus and dialogs:

- Below the menus is a “toolbar” with a row of buttons.
  - The left-most (flat) button shows the name of the active data set. Initially there is no active data set. If you press this button, you will be able to choose among data sets currently in memory (if there is more than one). Most of the menus and dialogs in the \textit{R Commander} reference the active data set. (The \textit{File}, \textit{Edit}, and \textit{Distributions} menus are exceptions.)
  
  - Two buttons allow you to open the \textit{R Commander} data editor to modify the active data set or a viewer to examine it. The data-set viewer can remain open while other operations are performed, and the view is refreshed if the data set is modified, for example by adding a variable.

  - A flat button indicates the name of the active statistical model — a linear model (such as a linear-regression model), a generalized linear model, a multinomial logit model, an ordinal regression model, or a linear or generalized linear mixed-effects model. Initially there is no active model. If there is more than one model in memory associated with the active data set, you can choose among the models by pressing the button. The \textit{R Commander} synchronizes models and the data sets to which they are fit.

- Immediately below the toolbar is a pane containing the \textit{R Script} tab, a large scrollable text window. As mentioned, commands generated by the \textit{R Commander} are copied into this window. You can edit the text in the \textit{Script} tab or even type your own \textit{R} commands into the window. Pressing the \textit{Submit} button, which is at the right below the \textit{Script} tab (or, alternatively, the key combination Ctrl-r for “run,” or Ctrl-Tab), causes the line containing the cursor to be submitted (or resubmitted) for execution. If several lines are selected (e.g., by left-clicking and dragging the mouse over them), then pressing \textit{Submit} will cause all of them to be executed. Commands entered into the \textit{R Script} tab can...
extend over more than one line, but all lines must be submitted simultaneously. The key combination
Ctrl-a selects all of the text in the Script tab, and Ctrl-s brings up a dialog box to save the contents
of the tab. The R Markdown tab is described in Section 6.1.

• Below the R Script and R Markdown tabs is a pane containing a large scrollable and editable text
window for Output. Commands echoed to the Output pane appear in red, the resulting output in dark
blue (as in the standard Windows R Console).

• At the bottom is a small gray pane for Messages. Error messages are displayed in red text, warnings
in green, and other messages in dark blue. Errors and warnings also provide an audible cue by ringing
a bell.

As mentioned, once you have loaded the Rcmdr package, you can minimize the R Console. The R Com-
mander window can also be resized or maximized in the normal manner. If you resize the R Commander,
the width of subsequent R output is automatically adjusted to fit the Output pane.

The R Commander is highly configurable: I have described the default configuration here. Changes to
the configuration can be made via the Tools → Options... menu, or — more extensively — by setting R
Commander options in R[10]. See Help → Commander help for details.

3 Data Input

Most of the procedures in the R Commander assume that there is an active data set[11]. If there are several
data sets in memory, you can choose among them, but only one is active. When the R Commander starts
up, there is no active data set.

The R Commander provides several ways to get data into R:

• Using the R Commander data editor, you can enter data directly via Data → New data set....
  This is a reasonable choice only for a very small data set.

• You can import data from a plain-text (“ascii”) file or the clipboard, over the internet from a URL,
  from another statistical package (Minitab, SPSS, SAS, or Stata), or from an Excel spreadsheet.

• You can read a data set that is included in an R package, either typing the name of the data set (if
  you know it), or selecting the data set in a dialog box.

3.1 Reading Data From a Text File

For example, consider the data file Nations.txt[12]. The first few lines of the file are as follows:

TFR contraception infant.mortality GDP region
Afghanistan 6.90 NA 154 2848 Asia
Albania 2.60 NA 32 863 Europe
Algeria 3.81 52 44 1531 Africa
American-Samoa NA NA 11 NA Oceania
Andorra NA NA NA NA Europe
Angola 6.69 NA 124 355 Africa
Argentina 2.62 NA 124 355 Africa

[10] A menu item that terminates in ellipses (i.e., three dots, ...) leads to a dialog box; this is a standard GUI convention. In
this document, → represents selecting a menu item or submenu from a menu.

[11] Procedures selected under via the Distributions menu are exceptions, as is Enter and analyze two-way table... under the
Statistics → Contingency tables menu.

[12] This file resides in the etc subdirectory of the Rcmdr package. The data are for 1998 and are from the United Nations.
The first line of the file contains variable names: TFR (the total fertility rate, expressed as number of children per woman), contraception (the rate of contraceptive use among married women, in percent), infant.mortality (the infant-mortality rate per 1000 live births), GDP (gross domestic product per capita, in U.S. dollars), and region.

Subsequent lines contain the data values themselves, one line per country. The data values are separated by “white space” — one or more blanks or tabs. Although it is helpful to make the data values line up vertically, it is not necessary to do so. Notice that the data lines begin with the country names. Because I want these to be the “row names” for the data set, there is no corresponding variable name: That is, there are five variable names but six data values on each line, the first of which is alphabetic. When this happens, the R read.table command will interpret the first value on each line as the row name.

Some of the data values are missing. In R, it is most convenient to use NA (representing “not available”) to encode missing data, as I have done here.

The variables TFR, contraception, infant.mortality, and GDP are numeric (quantitative) variables; in contrast, region contains region names. When the data are read, R will treat region as a “factor” — that is, as a categorical variable. In most contexts, the R Commander distinguishes between numerical variables and factors, and will try to prevent you from doing unreasonable things, such as computing the mean of a factor.

To read the Nations.txt data file into R, select Data → Import data → from text file, clipboard, or URL... from the R Commander menus. This operation brings up a Read Text Data dialog, as shown in Figure 3. The default name of the data set is Dataset. I have changed the name to Nations.

Valid R names begin with an upper- or lower-case letter (or a period, .) and consist entirely of letters, periods, underscores (_), and numerals (i.e., 0–9); in particular, do not include any embedded blanks in a

\[13\]

Character variables, whose values are character strings, and logical variables, whose values are TRUE or FALSE are treated as factors by the R Commander.
Figure 4: Open-file dialog for reading a text data file.
data-set name. R is case-sensitive, and so, for example, nations, Nations, and NATIONS are distinguished, and could be used to represent different data sets.

Clicking the OK button in the Read Text Data dialog brings up an Open file dialog, shown in Figure 4. Here I navigated to and selected the file Nations.txt. Clicking the Open button in the dialog causes the data file to be read. Once the data file is read, it becomes the active data set in the R Commander. As a consequence, in Figure 5 the name of the data set appears in the data set button near the top left of the R Commander window. The command to read the Nations data set (the R read.table command) appears in the R Script tab and Output pane. As well, when the data set is read and becomes the active data set, a note appears in the Messages pane.

I next clicked the View data set button to bring up the data viewer window, also shown in Figure 5.

The read.table command creates an R “data frame,” which is an object containing a rectangular cases-by-variables data set: The rows of the data set represent cases or observations and the columns represent variables. Data sets in the R Commander are R data frames.
3.2 Entering Data Directly

You can enter data directly into the R Commander basic spreadsheet-like data editor. A simple alternative, which I in fact prefer, is to save the data in a plain-text file (be careful, if you create the data file with a word processor, to save it as a plain-text or “ascii” file), typically with file type .txt, and then to read the file as in the preceding section, via Data → Import data → from text file, clipboard, or URL... . If your data are already in a spreadsheet program, such as Excel, you can simply export the data to a comma-separated-values text file (.csv file), and read the file into the R Commander, being careful to specify the field separator as a comma. Recall that you can also read an Excel spreadsheet directly.

As an example of direct data input, I use a very small data set from Problem 2.44 in Moore (2000):

1. Select Data → New data set... from the R Commander menus. Optionally enter a name for the data set, such as Problem2.44, in the resulting dialog box, and click the OK button. (Remember that R names cannot include embedded blanks.) This will bring up a Data Editor window with an empty data set.

2. Enter the data from the problem into the first two columns of the data editor. Add a column by clicking the Add column button in the data editor toolbar, or by selecting Add column from the Edit menu. Similarly, add rows to the data set by clicking the Add row button repeatedly or via the Edit menu. You can also add a row by pressing the Enter key or add a column by pressing the Tab key when the cursor is in a cell in the data table.

3. You can move from one cell to another by using the arrow keys on your keyboard or by pointing with the mouse and left-clicking. Originally, the variables are named var1 and var2, and the data values are all NA (i.e., missing). When you type a new variable name, row name, or data value into a cell of the data editor, the new value replaces what was previously there. If you double-click in a cell, then the cell becomes NA. When you are finished entering the data, the data-editor window should look like Figure 6.

4. In this example, both variables are numeric. If you type any non-numeric values in a column in the data editor (other than the missing value NA), then the column will define a factor (categorical variable) in the new data set.

5. Select File → Exit and save from the Data Editor menus or click the OK button. The data set that you entered is now the active data set in the R Commander.
3.3 Reading Data from a Package

Many R packages include data. Data sets in packages can be listed in a pop-up window via Data → Data in packages → List data sets in packages, and can be read into the R Commander via Data → Data in packages → Read data set from an attached package. The resulting dialog box is shown in Figure 7. If you know the name of a data set in a package then you can enter its name directly; otherwise double-clicking on the name of a package displays its data sets in the right list box; and double-clicking on a data set name copies the name to the data-set entry field in the dialog. Pressing a letter key in the Data set list box will scroll to the next data set whose name begins with that letter. You can access additional R packages that are installed in your package library by Tools → Load packages.

4 Creating Numerical Summaries and Graphs

Once there is an active data set, you can use the R Commander menus to produce a variety of numerical summaries and graphs. I will describe just a few basic examples here. A good GUI should be largely self-explanatory. If you prefer a more extensive introduction to the R Commander, see Fox (2017).

In the initial examples below, I assume that the active data set is the Nations data set, read from a text file in the previous section. If you typed in the five-observation data set from Moore (2000), or read in the Prestige data set from the car package — operations that were also described in the previous section — then one of these is the active data set. Recall that you can change the active data set by clicking on the flat button with the active data set’s name near the top left of the R Commander window, choosing from among a list of data sets currently resident in memory.

Selecting Statistics → Summaries → Active data set produces the results shown in Figure 8. For each numerical variable in the data set (TFR, contraception, infant.mortality, and GDP), R reports the minimum and maximum values, the first and third quartiles, the median, and the mean, along with the number of missing values. For the categorical variable region, I get the number of observations at each “level” of the factor. Had the data set included more than ten variables, the R Commander would have asked me whether I really want to proceed — potentially protecting me from producing unwanted voluminous output. This menu item is unusual in that it directly invokes an R command rather than leading to a dialog box, as is more typical of R Commander menus.

For example, selecting Statistics → Summaries → Numerical summaries... brings up the dialog box in Figure 9. Only numerical variables appear in the variable list in this dialog; the factor region is excluded.

---

14 Not all data in packages are data frames but only data frames are suitable for use in the R Commander. If you attempt to read data that are not in a data frame, the R Commander will try to change them into a data frame, printing a warning message if it’s successful and an error message if it’s not.

15 The example shows data sets, including Prestige, residing in the car package; these data sets currently reside in the carData package, which is loaded along with the car package when the R Commander starts up.

16 In general in the R Commander, when it is necessary to copy an item from a list box to another location in a dialog, a double-click is required.
Figure 8: Getting variable summaries for the active data set.

Figure 9: The Data tab in the Numerical Summaries dialog box.
because it is not sensible to compute numerical summaries like the mean and standard deviation for a factor.

I selected the variable `infant.mortality` by left-clicking on it. The `Numerical Summaries` dialog box has two tabs: `Data` and `Statistics`. Click on the `Statistics` tab to select it, as shown in Figure 10. In this case, I'll take all of the default statistics selections. Clicking OK, produces the following output (in the `Output` pane):

```r
> numSummary(Nations[, "infant.mortality"], statistics=c("mean", "sd", "IQR", + "quantiles"), quantiles=c(0,.25,.5,.75,1))
  mean   sd  IQR 0% 25% 50% 75% 100% n NA
43.47761 38.75604 54 2 12 30 66 169 201 6
```

By default, the R command that is executed prints out the mean, standard deviation (sd), and interquartile range (IQR) of the variable, along with quantiles (percentiles) corresponding to the minimum, the first quartile, the median, the third quartile, and the maximum; n is the number of valid observations, and NA the number of missing values.

As is typical of R Commander dialogs, the `Numerical Summaries` dialog box in Figure 9 includes Help, Reset, OK, Cancel, and Apply buttons. The Help button leads to a help page (which appears in your web browser) either for the dialog itself or (as here) for an R function that the dialog invokes. The Reset button, which is present in most R Commander dialogs, resets the dialog to its original state; otherwise, the dialog retains selections from a previous invocation. Dialog state is also reset when the active data set changes. As demonstrated, the OK button closes the dialog and generates an R command. The Apply button also generates a command, but then reopens the dialog in its current state, facilitating the application of several similar operations. If you make an error in a dialog box — for example, clicking OK without choosing a variable in the Numerical Summaries dialog — an error message will typically appear and the dialog box will reopen.

The Numerical Summaries dialog box also makes provision for computing summaries within groups defined by the levels of a factor. Clicking on the Summarize by groups... button in the Data tab brings up the Groups dialog, as shown in Figure 11. Because there is only one factor in the Nations data set, only the variable `region` appears in the variable list, and it is pre-selected; clicking OK changes the Summarize by groups... button to Summarize by region (see Figure 12). In this case, I have selected two numerical variables to summarize, GDP and `infant.mortality`. Clicking OK produces the following results in the Output pane:

---

17To select a single variable in a variable-list box, simply left-click on its name. In some contexts, you will have to (or want to) select more than one variable. In these cases, the usual Windows conventions apply: Left-clicking on a variable selects it and de-selects any variables that have previously been selected; Shift-left-click extends the selection; and Ctrl-left-click toggles the selection for an individual variable.

18The order of the buttons varies according to the operating system, and is different, for example, in macOS than in Windows.
Figure 11: Selecting a grouping variable in the Groups dialog box.

Figure 12: The Numerical Summaries dialog box after the grouping variable region has been chosen and with two numeric variables selected.
> numSummary(Nations[,c("GDP", "infant.mortality")], groups=Nations$region, 
+ statistics=c("mean", "sd", "IQR", "quantiles"), quantiles=c(0,.25,.5,.75,1))

Variable: GDP

<table>
<thead>
<tr>
<th>Region</th>
<th>mean</th>
<th>sd</th>
<th>IQR</th>
<th>0%</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
<th>n</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>1196.000</td>
<td>2089.614</td>
<td>795.50</td>
<td>36</td>
<td>209.00</td>
<td>389.5</td>
<td>1004.50</td>
<td>54</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Americas</td>
<td>5398.000</td>
<td>6083.311</td>
<td>5268.50</td>
<td>386</td>
<td>1749.25</td>
<td>2765.5</td>
<td>7017.75</td>
<td>26037</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>Asia</td>
<td>4505.051</td>
<td>6277.738</td>
<td>6062.50</td>
<td>122</td>
<td>345.00</td>
<td>1079.0</td>
<td>6407.50</td>
<td>22898</td>
<td>39</td>
<td>2</td>
</tr>
<tr>
<td>Europe</td>
<td>13698.909</td>
<td>13165.412</td>
<td>24582.25</td>
<td>271</td>
<td>1643.75</td>
<td>9222.5</td>
<td>26226.00</td>
<td>42416</td>
<td>44</td>
<td>1</td>
</tr>
<tr>
<td>Oceania</td>
<td>8732.600</td>
<td>11328.708</td>
<td>16409.25</td>
<td>654</td>
<td>1102.75</td>
<td>2348.5</td>
<td>17512.00</td>
<td>41718</td>
<td>20</td>
<td>5</td>
</tr>
</tbody>
</table>

Several other R Commander dialogs allow you to select a grouping variable in this manner.

Making graphs with the R Commander is also straightforward. For example, selecting Graphs \(\rightarrow\) Histogram... from the R Commander menus produces the Histogram dialog box in Figure 13. There are Data and Options tabs in this dialog. I’ll take all the default options (the Options tab isn’t shown), and clicking on infant.mortality followed by OK, opens a Graphics Device window with the histogram shown in Figure 14. If you make several graphs in a session, then only the most recent normally appears in the Graphics Device window.\(^{19}\)

5 Statistical Models

Several kinds of statistical models can be fit in the R Commander using menu items under Statistics \(\rightarrow\) Fit models: linear models (by both Linear regression and Linear model), generalized linear models, multinomial logit models, ordinal regression models such as the proportional-odds model [the latter two from Venables and Ripley’s nnet and MASS packages, respectively (Venables and Ripley, 2002)], and linear and generalized linear models [using the lme4 package (Bates et al., 2015)]. Although the resulting

\(^{19}\)On Windows, you can recall previous graphs using the Page Up and Page Down keys on your keyboard if you first turn on the graph history feature of the Windows R graphics device, via History \(\rightarrow\) Recording. In macOS, the left and right arrows may be used to scroll through graphs. Dynamic three-dimensional graphs, created, for example, by Graphs \(\rightarrow\) 3D graph \(\rightarrow\) 3D scatterplot... appear in a special RGL device window.
Figure 14: A graphics window containing the histogram for infant mortality in the Nations data set.
dialog boxes differ in certain details (for example, the generalized linear model dialog makes provision for selecting a distributional family and corresponding link function), they share a common general structure, as illustrated in the Linear Model dialog in Figure 15. Before selecting Statistics → Fit models → Linear Model, I made Prestige the active data set by clicking on the active data set button and selecting Prestige from the resulting list. Recall that the Prestige data were read from the car package in Section 3.3.

- Double-clicking on a variable in the variable-list box copies it to the model formula — to the left-hand side of the formula, if it is empty, otherwise to the right-hand side (with a preceding + sign if the context requires it). Factors (categorical variables — here, type) are parenthetically labelled as such in the variable list. Entering a factor into the right-hand side of a statistical model formula generates dummy-variable regressors.

- The top row of buttons in the toolbar above the formula can be used to enter operators and parentheses into the right-hand side of the formula.

- The bottom row of buttons in the toolbar can be conveniently used to enter regression-spline and polynomial terms into the model formula, with the degrees of freedom for splines and the degree of polynomials controlled by the spin-boxes to the right of the buttons (defaulting to 5 df and degree 2, respectively).

- You can also type directly into the formula fields, and indeed may have to do so, for example, to put a term such as log(income) into the formula, as I’ve done here. Some information on R model formulas may be obtained by pressing the Model formula help button in the linear-model dialog.

- The name of the model, here LinearModel.1, is automatically generated, but you can substitute any valid R name.

- You can type an R expression into the box labelled Subset expression; if supplied, this is passed to the subset argument of the lm function, and is used to fit the model to a subset of the observations in the data set. One form of subset expression is a logical expression that evaluates to TRUE or FALSE for...
each observation, such as \texttt{type != "prof"} (which would select all non-professional occupations from the \texttt{Prestige} data set).

- In version 2.8-0 of the \texttt{R Commander} (or later), there's also a text box into which you can type the names or numbers of cases (rows) to be omitted from the fitted model. (This box isn't shown in Figure 15)

- Optionally selecting a weight variable in the \texttt{Weights} drop-down list produces a weighted-least-squares (WLS) regression.

Clicking the \texttt{OK} button generates the following command and output, and makes \texttt{LinearModel.1} the active model, with its name displayed in the \texttt{Model} button:

```r
> LinearModel.1 <- lm(prestige ~ (education + log(income))*type, 
+ data=Prestige)
> summary(LinearModel.1)
```

\texttt{Call:}
\texttt{lm(formula = prestige ~ (education + log(income)) * type, data = Prestige)}

\texttt{Residuals:}
\begin{tabular}{cccc}
  Min & 1Q & Median & 3Q & Max \\
\end{tabular}

\texttt{Coefficients:}
\begin{tabular}{cccccc}
  & Estimate & Std. Error & t value & Pr(>|t|) \\
(Intercept) & -120.0459 & 20.1576 & -5.955 & 5.07e-08 *** \\
education & 2.3357 & 0.9277 & 2.518 & 0.01360 * \\
log(income) & 15.9825 & 2.6059 & 6.133 & 2.32e-08 *** \\
type[T.prof] & 85.1601 & 31.1810 & 2.731 & 0.00761 ** \\
type[T.wc] & 30.2412 & 37.9788 & 0.796 & 0.42800 \\
education:type[T.prof] & 0.6974 & 1.2895 & 0.541 & 0.58998 \\
education:type[T.wc] & 3.6400 & 1.7589 & 2.069 & 0.04140 * \\
log(income):type[T.wc] & -8.1556 & 4.4029 & -1.852 & 0.06730 . \\
\end{tabular}

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.409 on 89 degrees of freedom
(4 observations deleted due to missingness)
Multiple R-squared: 0.871, Adjusted R-squared: 0.8595
F-statistic: 75.15 on 8 and 89 DF, \( p \)-value: < 2.2e-16

Operations on the active model may be selected from the \texttt{Models} menu. For example, \texttt{Models -> Hypothesis tests -> Anova table...}, followed by selecting the default "Type-II" tests, produces the following output:

```r
> Anova(LinearModel.1, type="II")
Anova Table (Type II tests)
```

\texttt{Response: prestige}
\begin{tabular}{lcccc}
  & Sum Sq & Df & F value & Pr(>F) \\
education & 1209.3 & 1 & 29.4446 & 4.912e-07 *** \\
log(income) & 1690.8 & 1 & 41.1670 & 6.589e-09 *** \\
type & 469.1 & 2 & 5.7103 & 0.004642 ** \\
\end{tabular}

23
### 6 Odds and Ends

#### 6.1 Producing Reports

In its default configuration, the **R Commander** includes an **R Markdown** tab in the upper pane, which accumulates the commands generated during the session in an **R Markdown** document. Figure 16 shows the **R Markdown** tab for the current session, which I’ve scrolled to the top of the generated document. As its name implies, **R Markdown** is a simple markup language, which includes blocks of **R** commands, and can be used to generate HTML (i.e., web) pages or other types of documents. For more information about **R Markdown**, select Help → Using R Markdown from the **R Commander** menu.

Each set of commands generated by the **R Commander** produces a block of **R** commands in the **R Markdown** document. These blocks are delimited by ```{r} at the start of each block and by ``` (three back-ticks) at the end of the block. Even if you are unfamiliar with **R** commands, you can see the relationship between commands and resulting output in the **Output** pane.

The **R Markdown** tab is editable, and so you can modify and add to the text in the tab. It is generally safe to type whatever explanatory text you wish between blocks of **R** code (see below). In general, however, unless you know what you’re doing, you should not modify **R** code blocks in the **R Markdown** document or add your own code blocks. You can, however, remove entire blocks of code, as long as subsequent blocks don’t depend on them — and you will likely want to remove command blocks that produce unwanted output.

Command blocks that produce errors are removed automatically. You can remove the most recent command block by selecting Remove last Markdown Command Block from the **Edit** menu, or by right-clicking in the **R Markdown** tab and selecting Remove last Markdown Command Block from the context menu. The first

---

**Signif. codes:** 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

---

22 The **R Commander** can also optionally create a **knitr** **LaTeX** document and compile it into a PDF file. This option requires a **LaTeX** installation, and is activated by setting the **Rcmdr** option use.knitr to **TRUE**. see Help → Commander help and Tools → Options.

23 This and some other items in the Help menu require an active internet connection.

24 Commands that require direct user interaction, such as interactive point identification in a graph, are suppressed in the **R Markdown** document. As well, commands that generate errors are removed from the document.
code block (which begins ```{r echo=FALSE}) sets some options for the software from the **knitr** package (Xie, 2013) that is used to process the **R Markdown** text, and this block should not normally be modified.

With some lines elided (indicated by . . .), here is the **R Markdown** document produced for the current session:

```{r echo=FALSE}
# include this code chunk as-is to set options
knitr::opts_chunk$set(comment=NA, prompt=TRUE)
library(Rcmdr)
library(car)
library(RcmdrMisc)
```

```{r echo=FALSE}
# include this code chunk as-is to enable 3D graphs
library(rgl)
knitr::knit_hooks$set(webgl = hook_webgl)
```

```{r}
Nations <- read.table("C:/R/R-3.3.2/library/Rcmdr/etc/Nations.txt",
  header=TRUE, sep="\", na.strings="NA", dec="\", strip.white=TRUE)
```

```{r}
data(Prestige, package="car")
```

Let us regress occupational prestige on the education and income levels of the occupations, transforming income to linearize its relationship to prestige:

```{r}
### Linear Model: LinearModel.1: prestige ~ (education + log(income))*type
LinearModel.1 <- lm(prestige ~ (education + log(income))*type,
  data=Prestige)
summary(LinearModel.1)
```

```{r}
### Analysis of Variance: LinearModel.1
Anova(LinearModel.1, type="II")
```
It is probably unnecessary to explain that you would normally replace “Replace with Main Title” with the title of the report that you want to create. Perhaps less obviously, you can type arbitrary explanatory text before the first command block, in between R code blocks — that is, between the terminating ``` of one block and starting ``` of the next — and after the last command block. You can take advantage of the simple markup provided by R Markdown; for example, text enclosed in asterisks (e.g., *this is important*) will be set in italic type. To illustrate, I added the text “Let us regress occupational prestige ... ” immediately before the R command block performing the regression.

The R Markdown document also includes automatically generated section headings for some R command blocks. These are preceded by three hashmarks (###), which indicate a level-3 heading. When the R Markdown documented is converted into a report (see immediately below), the headers appear not only in the text but in an automatically generated index. You can edit these headings to customize them, and you can also add your own headings, using, for example, # for a level-1 heading and ## for a level-2 heading.

Once you have finished editing the R Markdown document, you can generate a report from it in the form of an HTML document (web page), Word document, rich text file, or PDF file by pressing the Generate report button below the R Markdown tab. An HTML report should open in your web browser, and a PDF report in your PDF viewer. Word and rich text files must be opened manually, but can easily be edited further. The R Markdown document can be saved via the File menu.

You can also, and more conveniently, open a separate and larger editor window to edit the R Markdown document (see Figure 17). Select Edit R Markdown document from the R Commander Edit menu; right-click in the R Markdown tab and select Edit R Markdown document from the context menu; or press the key-combination Control-E when the cursor is in the R Markdown tab. The editor supports the usual Edit-menu and right-click context-menu commands, and also allows you to compile the R Markdown document into an HTML report. Clicking the OK button in the editor saves your edits to the R Markdown tab, and clicking Cancel discards your edits. Below the menu in the editor, there is a largely self-explanatory toolbar with various buttons; if you hover the mouse over a button, a “tool-tip” will display.

You can open the R Markdown editor window at the beginning of a session and leave it open while you work. Commands generated by the R Commander will be entered both into the R Markdown tab and the editor, and you’ll be able to write text in the editor as you go. See the editor help for more information.

6.2 Saving and Printing Output

You can also save text output directly from the File menu in the R Commander; likewise you can save or print a graph from the File menu in an R Graphics Device window. If you prefer not to use the R Markdown tab, you can collect the text output and graphs that you want to keep in a word-processor document. In this manner, you can intersperse R output with your typed notes and explanations. This procedure, however, has the disadvantage that it is not directly reproducible, while an R Markdown document can subsequently be executed to reproduce your analysis, possibly with modifications.

Open a word processor such as Word, OpenOffice Writer, or even Windows WordPad. To copy text from the Output pane, block the text with the mouse, select Copy from the Edit menu (or press the key combination Ctrl-c, or right-click in the pane and select Copy from the context menu), and then paste the text into the word-processor document via Edit → Paste (or Ctrl-v or right-click Paste), as you would for any Windows application. One point worth mentioning is that you should use a monospaced (“typewriter”) font, such as Courier New, for text output from R; otherwise the output will not line up neatly.

Likewise, to copy a graph, select File → Copy to the clipboard → as a Metafile from the R Graphics Device menus; then paste the graph into the word-processor document via Edit → Paste (or Ctrl-v or right-click Paste). Alternatively, you can use Ctrl-w to copy the graph from the R Graphics Device, or right-click on the graph to bring up a context menu, from which you can select Copy as metafile. At the

---

25To generate Word or rich text file documents you must install Pandoc; to generate PDF files, you’ll additionally need LATEX. To install this optional auxiliary software, use the Tools menu.

26As you will see when you examine these menus, you can save graphs in a variety of formats, and to files as well as to the clipboard. The procedure suggested here is straightforward, however, and generally results in high-quality graphs. Once again, this description applies to Windows systems.
Figure 17: The **R Markdown** document editor. (Note: This image of the editor was created in an earlier version of the **R Commander**, which didn’t automatically generate level-3 section headings for commands.)
end of your R session, you can save or print the document that you have created, providing an annotated record of your work.

Alternative routes to saving text and graphical output may be found respectively under the R Commander File and Graphs → Save graph to file menus. Saving the R Commander Script tab, via File → Save script, allows you to reproduce your work on a future occasion.

6.3 Entering Commands in the Script Tab

The R Script tab provides a simple facility for editing, entering, and executing commands. Commands generated by the R Commander appear in the Script tab, and you can type and edit commands in the tab more or less as in any editor. The R Commander does not provide a true “console” for R, however, and the Script tab has some limitations. For example, all lines of a multiline command must be submitted simultaneously for execution. For serious R programming, it is preferable to use the script editors provided by the Windows and macOS versions of R, or — even better — a programming editor or interactive development environment, such as RStudio <www.rstudio.com>.27

6.4 Using R Commander Plug-ins

R Commander plug-ins are R packages that add to the capabilities of the R Commander. Many such plug-ins are currently available on CRAN, and may be downloaded and installed in the normal manner. Plug-ins typically add menus or menu items and associated dialog boxes to the R Commander. They may also modify or remove existing menu items or dialogs. A properly programmed R Commander plug-in can be loaded either directly, in which case the R Commander loads along with the plug-in, or from the R Commander via Tools → Load Rcmdr plug-in(s).... In the latter event, the R Commander will restart to activate the plug-in. It is possible to use several plug-ins simultaneously, but plug-ins may also conflict with each other. For example, one plug-in may remove a menu to which another plug-in tries to add a menu item.

6.5 Terminating the R Session

There are several ways to terminate your session. For example, you can select File → Exit → From Commander and R from the R Commander menus. You will be asked to confirm, and then asked whether you want to save the contents of the R Script, Output, and R Markdown windows. Likewise, you can select File → Exit from the R Console; in this case, you will be asked whether you want to save the R workspace (i.e., the data that R keeps in memory); you would normally answer No: Saving the R workspace will likely create problems in subsequent sessions.

References


27The R Commander will run under RStudio, in which case by default R Commander output and messages are directed to the R console within RStudio.

