Package ‘RatingScaleReduction’

January 21, 2021

Type Package
Title Rating Scale Reduction Procedure
Version 1.4
Date 2021-01-21
Author Waldemar W. Koczkodaj, Feng Li, Alicja Wolny-Dominiak
Maintainer Alicja Wolny-Dominiak <alicja.wolny-dominiak@ue.katowice.pl>
Depends pROC, ggplot2
Description Describes a new procedure of reducing items in a rating scale called Rating Scale Reduction (RSR). The new stop criterion in RSR procedure is added (stop global max). The function order is replaced by sort.list.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2021-01-21 09:30:02 UTC

R topics documented:

RatingScaleReduction-package .. 2
CheckAttr4Inclusion ... 2
diffExamples ... 4
grayExamples ... 5
rsr ... 6
startAuc ... 8
totalAuc ... 9

Index 11
RatingScaleReduction-package

Rating Scale Reduction Procedure

Description

This package describes a procedure of reducing items in a rating scale. It was published in the reference included in this description. The method was proposed by Waldemar W. Koczkodaj and published by a sizable collaboration coordinated by him.

Author(s)

Waldemar W. Koczkodaj, Feng Li, Alicja Wolny-Dominiak
Maintainer: Alicja Wolny-Dominiak

References

1. W.W. Koczkodaj, T. Kakiashvili, A. Szymanska, J. Montero-Marin, R. Araya, J. Garcia-Campayo, K. Rutkowski, D. Strzalka, How to reduce the number of rating scale items without predictability loss? Scientometrics, 909(2):581-593(open access), 2017
 https://link.springer.com/article/10.1007/s11192-017-2283-4

 https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-77

CheckAttr4Inclusion

Check the next attribute for possible inclusion into AUC

Description

The attribute checked for AUC before it is added to the running total. The running total is used with the class (decision attribute) to compute AUC. The next attribute is added to the sequence of attributes having the MAX total AUC.
Usage

CheckAttr4Inclusion(attribute, D, plotCheck=FALSE, method=c("delong", "bootstrap", "venkatraman", "sensitivity", "specificity"), boot.n, alternative = c("two.sided", "less", "greater"))

Arguments

attribute a matrix or data.frame containing attributes
D the decision vector
plotCheck If TRUE the plot with two ROC curves is created
method the method to use as in the function roc.test{pROC}
boot.n bootstrap replication number
alternative the alternative hypothesis

Value

test the result of the roc.test as in the function roc.test from the package pROC

Author(s)

Waldemar W. Koczkodaj, Feng Li, Alicja Wolny-Dominiak

References

2. W.W. Koczkodaj, T. Kakiashvili, A. Szymanska, J. Montero-Marin, R. Araya, J. Garcia-Campayo, K. Rutkowski, D. Strzalka, How to reduce the number of rating scale items without predictability loss? Scientometrics,909(2):581-593(open access), 2017
https://link.springer.com/article/10.1007/s11192-017-2283-4

Examples

#creating the matrix of attributes and the decision vector
#must be as.numeric()
data(aSAH)
attach(aSAH)
is.numeric(aSAH)

attribute <- data.frame(as.numeric(gender), as.numeric(age), as.numeric(wfns), as.numeric(s100b), as.numeric(ndka))
colnames(attribute) <- c("a1", "a2", "a3", "a4", "a5")
decision <- as.numeric(outcome)

#delong test, two-side alternative hypothesis
CheckAttr4Inclusion(attribute, decision, method=c("delong"), alternative=c("two.side"))

#bootstrap, two-side alternative hiphotesis
#CheckAttr4Inclusion(attribute, decision, method=c("bootstrap"), boot.n=500)

diffExamples The number of different (unique) examples in a dataset

Description

Datasets often contain replications. In particular, one example may be replicated n times, where n is the total number of examples, so that there are no other examples. Such situation would deviate computations and should be early detected. Ideally, no example should be replicated but if the rate is small, we can progress to computing AUC.

Usage

```r
diffExamples(attribute)
```

Arguments

- **attribute** a matrix or data.frame containing attributes

Value

- **total.examples** a number of examples in a data
- **diff.examples** a number of different examples in a data
- **dup.exapmles** a number of duplicate examples in a data

Author(s)

Waldemar W. Koczkodaj, Feng Li, Alicja Wolny-Dominiak

Examples

```r
#creating the matrix of attributes and the decision vector  
#must be as.numeric()  
data(aSAH)  
attach(aSAH)  
is.numeric(aSAH)

attribute <- data.frame(as.numeric(gender),  
as.numeric(age), as.numeric(wfns), as.numeric(s100b), as.numeric(ndka))  
colnames(attribute) <- c("a1", "a2", "a3", "a4", "a5")

#show the number of different examples  
diffExamples(attribute)
```
grayExamples Examples belonging to both classes

Description
A subset of data with examples having identical values on all attributes (excluding the class attribute also called the decision attribute which is different and has two permitted values: positive and negative)

Usage
grayExamples(attribute, D)

Arguments
attribute a matrix or data.frame containing attributes
D the decision vector

Value
1 a list of pairs of identical examples on all attributes

Author(s)
Waldemar W. Koczkodaj, Alicja Wolny-Dominiak

Examples

#generate data
a=c(); attribute=c()
for (i in 1:3){
a <-sample(c(1,2,3), 100, replace=TRUE)
attribute <-cbind(attribute, a)
attribute=data.frame(attribute)
}
colnames(attribute)=c("a1", "a2", "a3")
names(attribute)

decision=sample(c(0,1), 100, replace=TRUE)

#check examples
grayExamples(attribute, decision)
Description

This package implements a rather sophisticated method published in (Koczkodaj et al., 2017) In essence, it is a stepwise method for maximizing the area under the area (AUC) of receiver operating characteristic (ROC). In this description, data mining terminology will be used:

- examples (observations in statistics),
- variables in statistics,
- class or decision attribute (decision variable may be used in statistics).

The implemented algorithm (when reduced to its minimum) comes to using a loop for all attributes (with the class excluded) to compute AUC. Subsequently, attributes are sorted in the descending order by AUC. The attribute with the largest AUC is added to a subset of all attributes (evidently, it cannot be empty since it is supposed to be the minimum subset S of all attributes with the maximum AUC). We keep adding the next in line (according to AUC) attribute to the subset S checking AUC. If it decreases, we stop the procedure. The above procedure can be described by the following algorithm.

Algorithm:

1. compute AUC of all attributes excluding class
2. sort attributes by their AUC in the ascending order
3. select the attribute with the largest AUC to subset S
4. select the next attribute A with the largest AUC to subset S
5. if the AUC of the subset S is larger than AUC of the former AUC then go to 3

There are a lot of checking (e.g., if the dataset is not empty or full of replications) involved.

Usage

```r
rsr(attribute, D, plotRSR = FALSE, method = c('Stop1Max', 'StopGlobalMax'))
```

Arguments

- `attribute` a matrix or data.frame containing attributes
- `D` the decision vector
- `plotRSR` If TRUE the ROC curve is plotted
- `method` the Stop reduction criteria: First Max of AUC or Global Max of AUC, default: 'Stop1Max'
Value

- rsr.auc: total AUC of attributes
- rsr.label: attribute labels
- summary: a summary table

Author(s)

Waldemar W. Koczkodaj, Alicja Wolny-Dominiak

References

 https://link.springer.com/article/10.1007/s11192-017-2283-4

 https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-77

Examples

```r
#creating the matrix of attributes and the decision vector
#must be as.numeric()
data(aSAH)
attach(aSAH)
is.numeric(aSAH)

attribute <- data.frame(as.numeric(gender),
                        as.numeric(age), as.numeric(wfns), as.numeric(s100b), as.numeric(ndka))
colnames(attribute) <- c("a1", "a2", "a3", "a4", "a5")
decision <- as.numeric(outcome)

#rating scale reduction procedure
rsred <- rsr(attribute, decision, plotRSR=TRUE)
rsred
```
startAuc

Description
Compute AUC of every single attribute

Usage

```
startAuc(attribute, D)
```

Arguments

- `attribute`: a matrix or data.frame containing attributes
- `D`: the decision vector

Value

- `auc`: AUC of a single attribute
- `item`: attribute labels
- `summary`: a summary table

Author(s)

Waldemar W. Koczkodaj, Alicja Wolny-Dominiak

References

1. W.W. Koczkodaj, T. Kakiashvili, A. Szymanska, J. Montero-Marin, R. Araya, J. Garcia-Campayo, K. Rutkowski, D. Strzalka, How to reduce the number of rating scale items without predictability loss? Scientometrics, 909(2):581-593(open access), 2017
 https://link.springer.com/article/10.1007/s11192-017-2283-4

 https://bmcbiinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-77

Examples

```
#creating the matrix of attributes and the decision vector
#must be as.numeric()
data(aSAH)
attach(aSAH)
is.numeric(aSAH)

attribute <- data.frame(as.numeric(gender),
```
as.numeric(age), as.numeric(wfns), as.numeric(s100b), as.numeric(ndka))
colnames(attribute) <-c("a1", "a2", "a3", "a4", "a5")
decision <-as.numeric(outcome)

#compute AUC of all attributes
start <-startAuc(attribute, decision)
start$summary

totalAuc

AUC of the running total of attributes

Description

AUC values are computed for all individual attributes. We sort them in an ascending order. We begin with the attribute having the largest AUC and add to it the second, third,... attribute until AUC of the total of them decreases.

Usage

totalAuc(attribute, D, plotT = FALSE)

Arguments

attribute a matrix or data.frame containing attributes
D the decision vector
plotT If TRUE the plot is created: x - labels of attributes, y - total AUC in ascending order

Value

ordered.attribute ordered attribute matrix
total.auc total AUC
item ordered attribute labels
summary a summary table

Author(s)

Waldemar W. Koczkodaj, Alicja Wolny-Domiak
References

1. W.W. Koczkodaj, T. Kakiashvili, A. Szymanska, J. Montero-Marin, R. Araya, J. Garcia-Campayo, K. Rutkowski, D. Strzalka, How to reduce the number of rating scale items without predictability loss? Scientometrics, 909(2):581-593 (open access), 2017
 https://link.springer.com/article/10.1007/s11192-017-2283-4

 https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-77

Examples

#creating the matrix of attributes and the decision vector
#must be as.numeric()
data(aSAH)
attach(aSAH)
is.numeric(aSAH)

attribute <- data.frame(as.numeric(gender),
 as.numeric(age), as.numeric(wfns), as.numeric(s100b), as.numeric(ndka))
colnames(attribute) <- c("a1", "a2", "a3", "a4", "a5")
decision <- as.numeric(outcome)

#arrange start AUC in an ascending order and compute total AUC according to
#Rating Scale Reduction procedure

tot <- totalAuc(attribute, decision, plotT=TRUE)
tot$summary
Index

CheckAttr4Inclusion, 2

diffExamples, 4

grayExamples, 5

RatingScaleReduction
 (RatingScaleReduction-package), 2

RatingScaleReduction-package, 2

rsr, 6

startAuc, 8

totalAuc, 9