Package ‘Rata’

October 24, 2019

Type Package
Title Automated Test Assembly
Version 0.0.2
Date 2019-10-22
Author Xiao Luo [aut, cre]
Maintainer Xiao Luo <xluo1986@gmail.com>
Description Automated test assembly of linear and adaptive tests using the mixed-integer programming. The full documentation and tutorials are at <https://github.com/xluo11/Rata>.
License GPL (>= 3)
Depends R (>= 3.6.0)
URL https://github.com/xluo11/Rata
BugReports https://github.com/xluo11/Rata/issues
Imports ggplot2, glpkAPI, lpSolveAPI, Rirt, reshape2, stats
Suggests testthat
RoxygenNote 6.1.1
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2019-10-24 05:10:02 UTC

R topics documented:

ata ... 2

Index 6
Automated Test Assembly (ATA)

Description
- `ata` creates a basic ATA model
- `ata_relative_objective` adds a relative objective to the model
- `ata_absolute_objective` adds an absolute objective to the model
- `ata_constraint` adds a constraint to the model
- `ata_item_use` limits the minimum and maximum usage for items
- `ata_item_enemy` adds an enemy-item constraint to the model
- `ata_item_fix` forces an item to be selected or not selected
- `ata_solve` solves the MIP model

Usage
```r
ata(pool, n_forms = 1, test_len = NULL, max_use = NULL, ..., 
ata_relative_objective(x, coef, mode = c("max", "min"), tol = NULL, 
    negative = FALSE, forms = NULL, collapse = FALSE, 
    internal_index = FALSE)
ata_absolute_objective(x, coef, target, equal_tol = FALSE, 
    tol_up = NULL, tol_down = NULL, forms = NULL, collapse = FALSE, 
    internal_index = FALSE)
ata_constraint(x, coef, min = NA, max = NA, level = NULL, 
    forms = NULL, collapse = FALSE, internal_index = FALSE)
ata_item_use(x, min = NA, max = NA, items = NULL)
ata_item_enemy(x, items)
ata_item_fix(x, items, min = NA, max = NA, forms)
ata_solve(x, solver = c("lpsolve", "glpk"), return_format = c("model", 
    "form", "simple"), silent = FALSE, time_limit = 10, 
    message = FALSE, ...)
```

S3 method for class 'ata'
- `print(x, ...)`
- `plot(x, ...)`
Arguments

- **pool**: the item pool(s), a list of ‘3pl’, ‘gpcm’, and ‘grm’ items
- **n_forms**: the number of forms to be assembled
- **test_len**: test length of each form
- **max_use**: maximum use of each item
- **...**: options, e.g. group, common_items, overlap_items
- **x**: an ATA object
- **coef**: the coefficients of the objective function
- **mode**: optimization direction: ‘max’ for maximization and ‘min’ for minimization
- **tol**: the tolerance parameter
- **negative**: TRUE when the objective function is expected to be negative
- **forms**: forms where objectives are added. NULL for all forms
- **collapse**: TRUE to collapse into one objective function
- **internal_index**: TRUE to use internal form indices
- **target**: the target values of the objective function
- **equal_tol**: TRUE to force upward and downward tolerance to be equal
- **tol_up**: the range of upward tolerance
- **tol_down**: the range of downward tolerance
- **min**: the lower bound of the constraint
- **max**: the upper bound of the constraint
- **level**: the level of a categorical variable to be constrained
- **items**: a vector of item indices, NULL for all items
- **solver**: use ‘lpsolve’ for lp_solve 5.5 or ‘glpk’ for GLPK
- **return_format**: the format of the results: use ‘form’ to organize results in a list of forms, ‘model’ to organize results in a list of models, use ‘simple’ to organize results in data.frame after removing item parameters.
- **silent**: TRUE to mute solution information
- **time_limit**: the time limit in seconds passed along to solvers
- **message**: TRUE to print messages from solvers

Details

The ATA model stores the definitions of a MIP model. When `ata_solve` is called, a real MIP object is created from the definitions.

- **ata_obj_relative**: when `mode='max'`, maximize \(y - \text{tol} \), subject to \(y \leq \text{sum}(x) \leq y + \text{tol} \); when `mode='min'`, minimize \(y + \text{tol} \), subject to \(y - \text{tol} \leq \text{sum}(x) \leq y \). When `negative` is TRUE, \(y < 0 \), \(\text{tol} > 0 \). \(\text{coef} \) can be a numeric vector that has the same length with the pool, or a variable name in the pool, or a numeric vector of theta points. When \(\text{tol} \) is NULL, it is optimized; when it’s FALSE, ignored; when it’s a number, fixed; when it’s a range, constrained with lower and upper bounds.
- **ata_obj_absolute** minimizes \(y_0 + y_1 \) subject to \(t - y_0 \leq \text{sum}(x) \leq t + y_1 \).
When `level` is `NA`, it is assumed that the constraint is on a quantitative item property; otherwise, a categorical item property. `coef` can be a variable name, a constant, or a numeric vector that has the same size as the pool.

`ata_solve` takes control options in ... For `lpSolve`, see `lpSolveAPI::lp.control.options`. For `glpk`, see `glpkAPI::glpkConstants`.

Once the model is solved, additional data are added to the model. `status` shows the status of the solution, `optimum` the optimal value of the objective function found in the solution, `obj_vars` the values of two critical variables in the objective function, `result` the assembly results in a binary matrix, and `items` the assembled items.

Value

`ata` returns a `ata` object

`ata_solve` returns a solved `ata` object

Examples

```r
## generate a pool of 100 items
library(Rirt)
n_items <- 100
pool <- with(model_3pl_gendata(1, n_items), data.frame(id=1:n_items, a=a, b=b, c=c))
pool$content <- sample(1:3, n_items, replace=TRUE)
pool$time <- round(rlnorm(n_items, log(60), .2))
pool$group <- sort(sample(1:round(n_items/3), n_items, replace=TRUE))
pool <- list('Var'3pl'Var' =pool)

## ex. 1: four 10-item forms, maximize b parameter
x <- ata(pool, 4, test_len=10, max_use=1)
x <- ata_relative_objective(x, "b", "max")
x <- ata_solve(x, time_limit=2)
with(x$items'$3pl', aggregate(b, by=list(form=form), mean))
with(x$items'$3pl', table(form))

## ex. 2: four 10-item forms, minimize b parameter
x <- ata(pool, 4, test_len=10, max_use=1)
x <- ata_relative_objective(x, "b", "min", negative=TRUE)
x <- ata_solve(x, time_limit=5)
with(x$items'$3pl', aggregate(b, by=list(form=form), mean))
with(x$items'$3pl', table(form))

## ex. 3: two 10-item forms, mean(b)=0, sd(b)=1
## content = (3, 3, 4), avg. time = 55--65 seconds
constr <- data.frame(name='content',level=1:3, min=c(3,3,4), max=c(3,3,4), stringsAsFactors=FALSE)
constr <- rbind(constr, c('time', NA, 55*10, 65*10))
x <- ata(pool, 2, test_len=10, max_use=1)
x <- ata_absolute_objective(x, pool$'3pl'\$b, target=0*10)
x <- ata_absolute_objective(x, (pool$'3pl'\$b-0)^2, target=1*10)
for(i in 1:nrow(constr))
  x <- with(constr, ata_constraint(x, name[i], min[i], max[i], level=level[i]))
x <- ata_solve(x)
```
with(x$items$'3pl', aggregate(b, by=list(form=form), mean))
with(x$items$'3pl', aggregate(b, by=list(form=form), sd))
with(x$items$'3pl', aggregate(time, by=list(form=form), mean))
with(x$items$'3pl', aggregate(content, by=list(form=form), function(x) freq(x, 1:3)$freq))

ex. 4: two 10-item forms, max TIF over (-1, 1), consider item sets
x <- ata(pool, 2, test_len=10, max_use=1, group="group")
x <- ata_relative_objective(x, seq(-1, 1, .5), 'max')
x <- ata_solve(x, time_limit=5)
plot(x)
Index

ata, 2
ata_absolute_objective (ata), 2
ata_constraint (ata), 2
ata_item_enemy (ata), 2
ata_item_fix (ata), 2
ata_item_use (ata), 2
ata_relative_objective (ata), 2
ata_solve (ata), 2

plot.ata (ata), 2
print.ata (ata), 2