Package ‘RaSEn’

August 19, 2021

Type Package
Title Random Subspace Ensemble Classification and Variable Screening
Version 2.2.0
Author Ye Tian [aut, cre] and Yang Feng [aut]
Maintainer Ye Tian <ye.t@columbia.edu>
Description We propose a general ensemble classification framework, RaSE algorithm, for the sparse classification problem. In RaSE algorithm, for each weak learner, some random subspaces are generated and the optimal one is chosen to train the model on the basis of some criterion. To be adapted to the problem, a novel criterion, ratio information criterion (RIC) is put up with based on Kullback-Leibler divergence. Besides minimizing RIC, multiple criteria can be applied, for instance, minimizing extended Bayesian information criterion (eBIC), minimizing training error, minimizing the validation error, minimizing the cross-validation error, minimizing leave-one-out error. There are various choices of base classifier, for instance, linear discriminant analysis, quadratic discriminant analysis, k-nearest neighbour, logistic regression, decision trees, random forest, support vector machines. RaSE algorithm can also be applied to do feature ranking, providing us the importance of each feature based on the selected percentage in multiple subspaces. RaSE framework can be extended to the general prediction framework, including both classification and regression. We can use the selected percentages of variables for variable screening. The latest version added the variable screening function for both regression and classification problems.

Imports MASS, caret, class, doParallel, e1071, foreach, nnet, randomForest, rpart, stats, ggplot2, gridExtra, formatR, FNN, ranger, KernelKnn, utils, ModelMetrics, glmnet
License GPL-2
Encoding UTF-8
LazyData TRUE
LazyDataCompression bzip2
RoxygenNote 7.1.0
Suggests knitr, rmarkdown
VignetteBuilder knitr
Depends R (>= 3.1.0)
NeedsCompilation no
Colon data set.

Description

Alon et al.'s Colon cancer dataset containing information on 62 samples for 2000 genes. The samples belong to tumor and normal colon tissues.

Usage

colon

Format

A list with the predictor matrix x and binary 0/1 response vector y.

Source

The link to this data set: http://genomics-pubs.princeton.edu/oncology/

References

predict.RaSE

Predict the outcome of new observations based on the estimated RaSE classifier.

Description

Predict the outcome of new observations based on the estimated RaSE classifier.

Usage

```r
## S3 method for class 'RaSE'
predict(object, newx, type = c("vote", "prob", "raw-vote", "raw-prob"), ...)
```

Arguments

- `object`: fitted 'RaSE' object using Rase.
- `newx`: a set of new observations. Each row of `newx` is a new observation.
- `type`: the type of prediction output. Can be 'vote', 'prob', 'raw-vote' or 'raw-prob'. Default = 'vote'.
 - vote: output the predicted class (by voting and cut-off) of new observations. Available for all base learner types.
 - prob: output the predicted probabilities (posterior probability of each observation to be class 1) of new observations. It is the average probability over all base learners.
 - raw-vote: output the predicted class of new observations for all base learners. It is an n by B1 matrix. n is the test sample size and B1 is the number of base learners used in RaSE. Available for all base learner types.
 - raw-prob: output the predicted probabilities (posterior probability of each observation to be class 1) of new observations for all base learners. It is an n by B1 matrix.
- `...`: additional arguments.

Value

depends on the parameter `type`. See the list above.

References

See Also

Rase.
Examples

```r
## Not run:
set.seed(0, kind = "L'Ecuyer-CMRG")
train.data <- RaModel(1, n = 100, p = 50)
test.data <- RaModel(1, n = 100, p = 50)
xtrain <- train.data$x
ytrain <- train.data$y
xtest <- test.data$x
ytest <- test.data$y

model.fit <- Rase(xtrain, ytrain, B1 = 100, B2 = 100, iteration = 0, base = 'lda',
cores = 2, criterion = 'ric', ranking = TRUE)
ypred <- predict(model.fit, xtest)

## End(Not run)
```

print.RaSE

Print a fitted RaSE object.

Description

Similar to the usual print methods, this function summarizes results. from a fitted 'RaSE' object.

Usage

```r
## S3 method for class 'RaSE'
print(x, ...)
```

Arguments

- `x` fitted 'RaSE' model object.
- `...` additional arguments.

Value

No value is returned.

See Also

Rase.
Examples

```r
set.seed(0, kind = "L'Ecuyer-CMRG")
train.data <- RaModel("classification", 1, n = 100, p = 50)
xtrain <- train.data$x
ytrain <- train.data$y

# test RaSE classifier with LDA base classifier
fit <- Rase(xtrain, ytrain, B1 = 50, B2 = 50, iteration = 0, cutoff = TRUE,
base = 'lda', cores = 2, criterion = 'ric', ranking = TRUE)

# print the summarized results
print(fit)
```

RaModel

Generate data \((x, y)\) from various models in two papers.

Description

RaModel generates data from 4 models described in Tian, Y. and Feng, Y., 2021(b) and 8 models described in Tian, Y. and Feng, Y., 2021(a).

Usage

```r
RaModel(model.type, model.no, n, p, p0 = 1/2, sparse = TRUE)
```

Arguments

- `model.type` indicator of the paper covering the model, which can be 'classification' (Tian, Y. and Feng, Y., 2021(b)) or 'screening' (Tian, Y. and Feng, Y., 2021(a)).
- `model.no` model number. It can be 1-4 when `model.type = 'classification'` and 1-8 when `model.type = 'screening'`, respectively.
- `n` sample size
- `p` data dimension
- `p0` marginal probability of class 0. Default = 0.5. Only used when `model.type = 'classification'` and `model.no = 1, 2, 3`.
- `sparse` a logistic object indicating model sparsity. Default = TRUE. Only used when `model.type = 'classification'` and `model.no = 1, 4`.

Value

- `x` \(n \times p\) matrix. \(n\) observations and \(p\) features.
- `y` \(n\) responses.
Note

When `model.type = 'classification'` and `sparse = TRUE`, models 1, 2, 4 require \(p \geq 5 \) and model 3 requires \(p \geq 50 \). When `model.type = 'classification'` and `sparse = FALSE`, models 1 and 4 require \(p \geq 50 \) and \(p \geq 30 \), respectively. When `model.type = 'screening'`, models 1, 4, 5 and 7 require \(p \geq 4 \). Models 2 and 8 require \(p \geq 5 \). Model 3 requires \(p \geq 22 \). Model 5 requires \(p \geq 2 \).

References

See Also

`Rase`, `RaScreen`.

Examples

```r
train.data <- RaModel("classification", 1, n = 100, p = 50)
xtrain <- train.data$x
ytrain <- train.data$y

## Not run:
train.data <- RaModel("screening", 2, n = 100, p = 50)
xtrain <- train.data$x
ytrain <- train.data$y

## End(Not run)
```

RaPlot

Visualize the feature ranking results of a fitted RaSE object.

Description

This function plots the feature ranking results from a fitted 'RaSE' object via ggplot2. In the figure, x-axis represents the feature number and y-axis represents the selected percentage of each feature in B1 subspaces.

Usage

```r
RaPlot(
  object,  
  main = NULL,  
  xlab = "feature",  
  ylab = "selected percentage",  
  ...  
)
```
RaRank

Arguments

object
fitted 'RaSE' model object.

main
title of the plot. Default = NULL, which makes the title following the orm 'RaSE-base' with subscript i (rounds of iterations), where base represents the type of base classifier. i is omitted when it is zero.

xlab
the label of x-axis. Default = 'feature'.

ylab
the label of y-axis. Default = 'selected percentage'.

Value

a 'ggplot' object.

References

See Also

Rase.

Examples

set.seed(0, kind = "L'Ecuyer-CMRG")
train.data <- RaModel("classification", 1, n = 100, p = 50)
xtrain <- train.data$x
ytrain <- train.data$y

fit RaSE classifier with QDA base classifier
fit <- Rase(xtrain, ytrain, B1 = 50, B2 = 50, iteration = 1, base = 'qda', cores = 2, criterion = 'ric')

plot the selected percentage of each feature appearing in B1 subspaces
RaPlot(fit)

RaRank

Rank the features by selected percentages provided by the output from RaScreen.

Description

Rank the features by selected percentages provided by the output from RaScreen.

Usage

RaRank(object, selected.num = "all positive", iteration = object$iteration)
Arguments

object | output from RaScreen.
selected.num | the number of selected variables. User can either choose from the following popular options or input an positive integer no larger than the dimension.

• 'all positive': the number of variables with positive selected percentage.
• 'D': floor(D), where D is the maximum of random subspace size.
• '1.5D': floor(1.5D).
• '2D': floor(2D).
• '3D': floor(3D).
• 'n/logn': floor(n/logn), where n is the sample size.
• '1.5n/logn': floor(1.5n/logn).
• '2n/logn': floor(2n/logn).
• '3n/logn': floor(3n/logn).
• 'n-1': the sample size n - 1.
• 'p': the dimension p.

iteration | indicates results from which iteration to use. It should be an positive integer. Default = the maximal iteration round used by the output from RaScreen.

Value

Selected variables (indexes).

References

Examples

```r
## Not run:
set.seed(0, kind = "L'Ecuyer-CMRG")
train.data <- RaModel("screening", 1, n = 100, p = 100)
xtrain <- train.data$x
ytrain <- train.data$y

# test RaSE screening with linear regression model and BIC
fit <- RaScreen(xtrain, ytrain, B1 = 100, B2 = 50, iteration = 0, model = "lm",
cores = 2, criterion = "bic")

# Select floor(n/logn) variables
RaRank(fit, selected.num = "n/logn")
```

End(Not run)
RaScreen

Variable screening via RaSE.

Description

RaSE is a general framework for variable screening. In RaSE screening, to select each of the B_1 subspaces, B_2 random subspaces are generated and the optimal one is chosen according to some criterion. Then the selected proportions (equivalently, percentages) of variables in the B_1 subspaces are used as importance measure to rank these variables.

Usage

```r
RaScreen(
  xtrain, ytrain,
  xval = NULL, yval = NULL,
  B1 = 200, B2 = NULL,
  D = NULL, dist = NULL,
  model = NULL, criterion = NULL,
  k = 5, cores = 1,
  seed = NULL, iteration = 0,
  cv = 5, scale = FALSE,
  C0 = 0.1, kl.k = NULL,
  classification = NULL,
  ...
)
```

Arguments

- `xtrain`
 n * p observation matrix. n observations, p features.
- `ytrain`
 n 0/1 observations.
- `xval`
 observation matrix for validation. Default = NULL. Useful only when criterion = 'validation'.
- `yval`
 0/1 observation for validation. Default = NULL. Useful only when criterion = 'validation'.
- `B1`
 the number of weak learners. Default = 200.
- `B2`
 the number of subspace candidates generated for each weak learner. Default = NULL, which will set $B_2 = 20 \times \text{floor}(p/D)$.

D the maximal subspace size when generating random subspaces. Default = NULL. It means that $D = \min(\sqrt{n_0}, \sqrt{n_1}, p)$ when model = 'qda', and $D = \min(\sqrt{n}, p)$ otherwise.

dist the distribution for features when generating random subspaces. Default = NULL, which represents the hierarchical uniform distribution. First generate an integer d from 1, ..., D uniformly, then uniformly generate a subset with cardinality d.

model the model to use. Default = 'lda' when classification = TRUE and 'lm' when classification = FALSE.

• lm: linear regression. Only available for regression.
• lda: linear discriminant analysis. lda in MASS package. Only available for classification.
• qda: quadratic discriminant analysis. qda in MASS package. Only available for classification.
• knn: k-nearest neighbor. knn, knn.cv in class package, knn3 in caret package and knnreg in caret package.
• logistic: logistic regression. glmnet in glmnet package. Only available for classification.
• tree: decision tree. rpart in rpart package. Only available for classification.
• svm: support vector machine. If kernel is not identified by user, it will use RBF kernel. svm in e1071 package.
• randomforest: random forest. randomForest in randomForest package and ranger in ranger package.
• kernelknn: k-nearest neighbor with different kernels. It relies on function KernelKnn in KernelKnn package. Arguments method and weights_function are required. Different choices of multiple arguments are available. See documentation of function KernelKnn for details.

criterion the criterion to choose the best subspace. Default = 'ric' when model = 'lda', 'qda'; default = 'bic' when model = 'lm' or 'logistic'; default = 'loo' when model = 'knn'; default = 'cv' and set cv = 5 when model = 'tree', 'svm', 'randomforest'.

• ric: minimizing ratio information criterion (RIC) with parametric estimation (Tian, Y. and Feng, Y., 2020). Available for binary classification and model = 'lda', 'qda', or 'logistic'.
• nric: minimizing ratio information criterion (RIC) with non-parametric estimation (Tian, Y. and Feng, Y., 2020;). Available for binary classification and model = 'lda', 'qda', or 'logistic'.
• training: minimizing training error/MSE. Not available when model = 'knn'.
• loo: minimizing leave-one-out error/MSE. Only available when model = 'knn'.
• validation: minimizing validation error/MSE based on the validation data.
• cv: minimizing k-fold cross-validation error/MSE. k equals to the value of cv. Default = 5.
• aic: minimizing Akaike information criterion (Akaike, H., 1973). Available when base = 'lm' or 'logistic'.
AIC = -2 * log-likelihood + |S| * 2.
- **bic**: minimizing Bayesian information criterion (Schwarz, G., 1978). Available when `model = 'lm'` or 'logistic'.
 \[\text{BIC} = -2 \times \text{log-likelihood} + |S| \times \log(n) \]
- **ebic**: minimizing extended Bayesian information criterion (Chen, J. and Chen, Z., 2008; 2012). \(\text{gam} \) value is needed. When \(\text{gam} = 0 \), it represents \(\text{BIC} \). Available when `model = 'lm'` or 'logistic'.
 \[\text{eBIC} = -2 \times \text{log-likelihood} + |S| \times \log(n) + 2 \times |S| \times \text{gam} \times \log(p) \]

\(k \) the number of nearest neighbors considered when `model = 'knn'` or 'kernel'. Only useful when `model = 'knn'` or 'kernel'. \(k \) is required to be a positive integer. Default = 5.

cores
the number of cores used for parallel computing. Default = 1.

seed
the random seed assigned at the start of the algorithm, which can be a real number or NULL. Default = NULL, in which case no random seed will be set.

iteration
the number of iterations. Default = 0.

cv
the number of cross-validations used. Default = 5. Only useful when `criterion = 'cv'`.

scale
whether to normalize the data. Logistic, default = FALSE.

C0
a positive constant used when `iteration > 1`. See Tian, Y. and Feng, Y., 2021 for details. Default = 0.1.

k1.k
the number of nearest neighbors used to estimate RIC in a non-parametric way. Default = NULL, which means that \(k0 = \text{floor}(\sqrt{n0}) \) and \(k1 = \text{floor}(\sqrt{n1}) \). See Tian, Y. and Feng, Y., 2020 for details. Only available when `criterion = 'nric'`.

classification
the indicator of the problem type, which can be TRUE, FALSE or NULL. Default = NULL, which will automatically set `classification = TRUE` if the number of unique response value \(\leq 10 \). Otherwise, it will be set as FALSE.

... additional arguments.

Value
A list including the following items.

- **model**
 the model used in RaSE screening.

- **criterion**
 the criterion to choose the best subspace for each weak learner.

- **B1**
 the number of selected subspaces.

- **B2**
 the number of subspace candidates generated for each of B1 subspaces.

- **n**
 the sample size.

- **p**
 the dimension of data.

- **D**
 the maximal subspace size when generating random subspaces.

- **iteration**
 the number of iterations.

- **selected.perc**
 A list of length (\(\text{iteration}+1 \)) recording the selected percentages of each feature in B1 subspaces. When it is of length 1, the result will be automatically transformed to a vector.

- **scale**
 a list of scaling parameters, including the scaling center and the scale parameter for each feature. Equals to NULL when the data is not scaled by RaScreen.
References

See Also

Rase, RaRank.

Examples

```r
set.seed(0, kind = "L'Ecuyer-CMRG")
train.data <- RaModel("screening", 1, n = 100, p = 100)
xtrain <- train.data$x
ytrain <- train.data$y

# test RaSE screening with linear regression model and BIC
fit <- RaScreen(xtrain, ytrain, B1 = 100, B2 = 50, iteration = 0, model = "lm",
cores = 2, criterion = "bic")

# Select D variables
RaRank(fit, selected.num = "D")
```

```
## Not run:
# test RaSE screening with knn model and 5-fold cross-validation MSE
fit <- RaScreen(xtrain, ytrain, B1 = 100, B2 = 50, iteration = 0, model = "knn",
cores = 2, criterion = "cv", cv = 5)

# Select n/logn variables
RaRank(fit, selected.num = "n/logn")
```

```
# test RaSE screening with SVM and 5-fold cross-validation MSE
fit <- RaScreen(xtrain, ytrain, B1 = 100, B2 = 50, iteration = 0, model = "svm",
cores = 2, criterion = "cv", cv = 5)

# Select n/logn variables
RaRank(fit, selected.num = "n/logn")
```

```
# test RaSE screening with logistic regression model and eBIC (gam = 0.5). Set iteration number = 1
train.data <- RaModel("screening", 6, n = 100, p = 100)
xtrain <- train.data$x
```
ytrain <- train.data$y

fit <- RaScreen(xtrain, ytrain, B1 = 100, B2 = 100, iteration = 1, model = 'logistic', cores = 2, criterion = 'ebic', gam = 0.5)

Select n/logn variables from the selected percentage after one iteration round
RaRank(fit, selected.num = "n/logn", iteration = 1)

End(Not run)

Rase

Construct the random subspace ensemble classifier.

Description

RaSE is a general ensemble classification framework to solve the sparse classification problem. In RaSE algorithm, for each of the B1 weak learners, B2 random subspaces are generated and the optimal one is chosen to train the model on the basis of some criterion.

Usage

```r
Rase(
xtrain,
ytrain,
xval = NULL,
yval = NULL,
B1 = 200,
B2 = 500,
D = NULL,
dist = NULL,
base = c("lda", "qda", "knn", "logistic", "tree", "svm", "randomforest", "gamma", "NULL"),
criterion = NULL,
ranking = TRUE,
k = c(3, 5, 7, 9, 11),
cores = 1,
seed = NULL,
iteration = 0,
cutoff = TRUE,
cv = 5,
weights = NULL,
scale = FALSE,
kl.k = NULL,
lower.limits = NULL,
upper.limits = NULL,
weights = NULL,
"
```

Arguments

- **xtrain**: n * p observation matrix. n observations, p features.
- **ytrain**: observation matrix for validation. Default = NULL. Useful only when criterion = 'validation'.
- **xval**: observation matrix for validation. Default = NULL. Useful only when criterion = 'validation'.
- **yval**: 0/1 observation for validation. Default = NULL. Useful only when criterion = 'validation'.
- **B1**: the number of weak learners. Default = 200.
- **B2**: the number of subspace candidates generated for each weak learner. Default = 500.
- **D**: the maximal subspace size when generating random subspaces. Default = NULL, which is \(\min(\sqrt{n_0}, \sqrt{n_1}, p) \) when base = 'qda' and is \(\min(\sqrt{n}, p) \) otherwise.
- **dist**: the distribution for features when generating random subspaces. Default = NULL, which represents the uniform distribution. First generate an integer \(d \) from 1, ..., \(D \) uniformly, then uniformly generate a subset with cardinality \(d \).
- **base**: the type of base classifier. Default = 'lda'.
 - 'lda': linear discriminant analysis. \(\text{lda} \) in \text{MASS} \text{package}.
 - 'qda': quadratic discriminant analysis. \(\text{qda} \) in \text{MASS} \text{package}.
 - 'knn': k-nearest neighbor. \(\text{knn}, \text{knn.cv} \) in \text{class} \text{package} and \(\text{knn3} \) in \text{caret} \text{package}.
 - 'logistic': logistic regression. \(\text{glm} \) in \text{stats} \text{package} and \(\text{glmnet} \) in \text{glmnet} \text{package}.
 - 'tree': decision tree. \(\text{rpart} \) in \text{rpart} \text{package}.
 - 'svm': support vector machine. \(\text{svm} \) in \text{e1071} \text{package}.
 - 'randomforest': random forest. \(\text{randomForest} \) in \text{randomForest} \text{package}.
 - 'gamma': Bayesian classifier for multivariate gamma distribution with independent marginals.
- **criterion**: the criterion to choose the best subspace for each weak learner. Default = 'ric' when base = 'lda', 'qda', 'gamma'; default = 'ebic' and set \(\text{gam} = 0 \) when base = 'logistic'; default = 'loo' when base = 'knn'; default = 'training' when base = 'tree', 'svm', 'randomforest'.
 - 'ric': minimizing ratio information criterion with parametric estimation (Tian, Y. and Feng, Y., 2021(b)). Available when base = 'lda', 'qda', 'gamma' or 'logistic'.
 - 'nric': minimizing ratio information criterion with non-parametric estimation (Tian, Y. and Feng, Y., 2021(b)). Available when base = 'lda', 'qda', 'gamma' or 'logistic'.
 - 'training': minimizing training error. Not available when base = 'knn'.
 - 'loo': minimizing leave-one-out error. Only available when base = 'knn'.
 - 'validation': minimizing validation error based on the validation data. Available for all base classifiers.
 - 'auc': minimizing negative area under the ROC curve (AUC). Currently it is estimated on training data via function \(\text{auc} \) from package \text{ModelMetrics}. It is available for all classifier choices.
• cv: minimizing k-fold cross-validation error. k equals to the value of cv. Default = 5. Not available when base = 'gamma'.
• aic: minimizing Akaike information criterion (Akaike, H., 1973). Available when base = 'lda' or 'logistic'.
\[\text{AIC} = -2 \times \text{log-likelihood} + |S| \times 2. \]
• bic: minimizing Bayesian information criterion (Schwarz, G., 1978). Available when base = 'lda' or 'logistic'.
\[\text{BIC} = -2 \times \text{log-likelihood} + |S| \times \log(n). \]
• ebic: minimizing extended Bayesian information criterion (Chen, J. and Chen, Z., 2008; 2012). Need to assign value for gam. When gam = 0, it denotes the classical BIC. Available when base = 'lda' or 'logistic'.
\[\text{EBIC} = -2 \times \text{log-likelihood} + |S| \times \log(n) + 2 \times |S| \times \text{gam} \times \log(p). \]
ranking: whether the function outputs the selected percentage of each feature in B1 subspaces. Logistic, default = TRUE.
k: the number of nearest neighbors considered when base = 'knn'. Only useful when base = 'knn'. Default = (3, 5, 7, 9, 11).
cores: the number of cores used for parallel computing. Default = 1.
seed: the random seed assigned at the start of the algorithm, which can be a real number or NULL. Default = NULL, in which case no random seed will be set.
iteration: the number of iterations. Default = 0.
cutoff: whether to use the empirically optimal threshold. Logistic, default = TRUE. If it is FALSE, the threshold will be set as 0.5.
cv: the number of cross-validations used. Default = 5. Only useful when criterion = 'cv'.
scale: whether to normalize the data. Logistic, default = FALSE.
C0: a positive constant used when iteration > 1. See Tian, Y. and Feng, Y., 2021(b) for details.
k1.k: the number of nearest neighbors used to estimate RIC in a non-parametric way. Default = NULL, which means that \(k_0 = \text{floor} (\sqrt{n_0}) \) and \(k_1 = \text{floor} (\sqrt{n_1}) \). See Tian, Y. and Feng, Y., 2021(b) for details. Only available when criterion = 'nric'.
lower.limits: the vector of lower limits for each coefficient in logistic regression. Should be a vector of length equal to the number of variables (the column number of xtrain). Each of these must be non-positive. Default = NULL, meaning that lower limits are -\(\infty \) for all coefficients. Only available when base = 'logistic'. When it’s activated, function glmnet will be used to fit logistic regression models, in which case the minimum subspace size is required to be larger than 1. The default subspace size distribution will be changed to uniform distribution on (2, ..., D).
upper.limits: the vector of upper limits for each coefficient in logistic regression. Should be a vector of length equal to the number of variables (the column number of xtrain). Each of these must be non-negative. Default = NULL, meaning that upper limits are \(\infty \) for all coefficients. Only available when base = 'logistic'. When it’s activated, function glmnet will be used to fit logistic regression models, in which case the minimum subspace size is required to be larger than 1.
The default subspace size distribution will be changed to uniform distribution on \((2, ..., D)\).

weights observation weights. Should be a vector of length equal to training sample size (the length of \(y_{train}\)). It will be normalized inside the algorithm. Each component of weights must be non-negative. Default is \(\text{NULL}\), representing equal weight for each observation. Only available when \(\text{base} = \text{\textquoteleft logistic\textquoteright}\). When it’s activated, function \(\text{glmnet}\) will be used to fit logistic regression models, in which case the minimum subspace size is required to be larger than 1. The default subspace size distribution will be changed to uniform distribution on \((2, ..., D)\).

... additional arguments.

Value

An object with S3 class \('\text{RaSE}'\).

marginal the marginal probability for each class.
base the type of base classifier.
criterion the criterion to choose the best subspace for each weak learner.
B1 the number of weak learners.
B2 the number of subspace candidates generated for each weak learner.
D the maximal subspace size when generating random subspaces.
iteration the number of iterations.
fit.list sequence of B1 fitted base classifiers.
cutoff the empirically optimal threshold.
subspace sequence of subspaces corresponding to B1 weak learners.
ranking the selected percentage of each feature in B1 subspaces.
scale a list of scaling parameters, including the scaling center and the scale parameter for each feature. Equals to \(\text{NULL}\) when the data is not scaled in RaSE model fitting.

Author(s)

Ye Tian (maintainer, \(<\text{ye.t@columbia.edu}>\)) and Yang Feng. The authors thank Yu Cao (Exeter Finance) and his team for many helpful suggestions and discussions.

References

See Also

predict.RaSE,RaModel,print.RaSE,RaPlot,RaScreen.

Examples

```r
set.seed(0, kind = "L'Ecuyer-CMRG")
train.data <- RaModel("classification", 1, n = 100, p = 50)
test.data <- RaModel("classification", 1, n = 100, p = 50)
xtrain <- train.data$x
ytrain <- train.data$y
xtest <- test.data$x
tytest <- test.data$y

# test RaSE classifier with LDA base classifier
fit <- Rase(xtrain, ytrain, B1 = 100, B2 = 50, iteration = 0, base = 'lda',
cores = 2, criterion = 'ric')
mean(predict(fit, xtest) != ytest)

## Not run:
# test RaSE classifier with LDA base classifier and 1 iteration round
fit <- Rase(xtrain, ytrain, B1 = 100, B2 = 50, iteration = 1, base = 'lda',
cores = 2, criterion = 'ric')
mean(predict(fit, xtest) != ytest)

# test RaSE classifier with QDA base classifier and 1 iteration round
fit <- Rase(xtrain, ytrain, B1 = 100, B2 = 50, iteration = 1, base = 'qda',
cores = 2, criterion = 'ric')
mean(predict(fit, xtest) != ytest)

# test RaSE classifier with knn base classifier
fit <- Rase(xtrain, ytrain, B1 = 100, B2 = 50, iteration = 0, base = 'knn',
cores = 2, criterion = 'loo')
mean(predict(fit, xtest) != ytest)

# test RaSE classifier with logistic regression base classifier
fit <- Rase(xtrain, ytrain, B1 = 100, B2 = 50, iteration = 0, base = 'logistic',
cores = 2, criterion = 'ebic', gam = 0)
mean(predict(fit, xtest) != ytest)

# test RaSE classifier with svm base classifier
fit <- Rase(xtrain, ytrain, B1 = 100, B2 = 50, iteration = 0, base = 'svm',
cores = 2, criterion = 'training')
mean(predict(fit, xtest) != ytest)

# test RaSE classifier with random forest base classifier
```
fit <- Rase(xtrain, ytrain, B1 = 20, B2 = 10, iteration = 0, base = 'randomforest',
cores = 2, criterion = 'cv', cv = 3)
mean(predict(fit, xtest) != ytest)

End(Not run)

rat Affymetrix rat genome 230 2.0 array data set.

Description
Affymetrix rat genome 230 2.0 array annotation data (chip rat2302). For this data set, 120
twelve-week old male rats were selected for tissue harvesting from the eyes and for microarray
analysis. The expression of gene TRIM32 is set as the response and the 18975 probes that are expressed in
the eye tissue are considered as the predictors.

Usage
rat

Format
A list with the predictor matrix x and the response vector y.

Source
The link to this data set: https://bioconductor.org/packages/release/data/annotation/
html/rat2302.db.html

References
A.M., DiBona, G.F., Huang, J., Casavant, T.L. and Sheffield, V.C., 2006. Regulation of gene expres-
sion in the mammalian eye and its relevance to eye disease. Proceedings of the National Academy
of Sciences, 103(39), pp.14429-14434.
Tian, Y. and Feng, Y., 2021. RaSE: A Variable Screening Framework via Random Subspace En-
Index

∗ datasets
 colon, 2
 rat, 18

auc, 14

colon, 2

glm, 14
glmnet, 10, 14–16

KernelKnn, 10
knn, 10, 14
knn.cv, 10, 14
knn3, 10, 14
knnreg, 10

lda, 10, 14

predict.RaSE, 3, 17
print.RaSE, 4, 17

qda, 10, 14

RaModel, 5, 17
randomForest, 10, 14
ranger, 10
RaPlot, 6, 17
RaRank, 7, 12
RaScreen, 6, 9, 17
Rase, 3, 4, 6, 7, 12, 13
rat, 18
rpart, 10, 14

svm, 10, 14