Package ‘RVA’

February 13, 2021

Title RNAseq Visualization Automation
Version 0.0.4
Description Automate downstream visualization & pathway analysis in RNAseq analysis. 'RVA' is a collection of functions that efficiently visualize RNAseq differential expression analysis result from summary statistics tables. It also utilize the Fisher's exact test to evaluate gene set or pathway enrichment in a convenient and efficient manner.

Maintainer Xingpeng Li <xingpeng.li@pfizer.com>

URL https://github.com/THERMOSTATS/RVA
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Suggests knitr, rmarkdown
VignetteBuilder knitr

biocViews

Imports GSVAdata (>= 1.22.0), clusterProfiler (>= 3.14.3), data.table (>= 1.12.8), edgeR (>= 3.28.1), org.Hs.eg.db (>= 3.10.0), ComplexHeatmap (>= 2.2.0), GSEABase (>= 1.48.0), circlize (>= 0.4.10), dplyr (>= 1.0.0), ggplot2 (>= 3.3.2), ggpubr (>= 0.4.0), grid (>= 3.6.1), gridExtra (>= 2.3), haven (>= 2.3.1), msigdbr (>= 7.1.1), plotly (>= 4.9.2.1), purrr (>= 0.3.4), rWikiPathways (>= 1.6.1), stringr (>= 1.4.0), tibble, tidyr (>= 1.1.0), XML, rlang

Depends R (>= 2.10)
NeedsCompilation no
Author Xingpeng Li [aut, cre] (<https://orcid.org/0000-0002-1331-1225>)
Repository CRAN
Date/Publication 2021-02-13 06:10:08 UTC
R topics documented:

c2BroadSets .. 3
caI.pathway.scores .. 3
calc.cfb ... 4
count_table ... 5
dlPathwaysDB .. 5
get.cpm.colors .. 6
get.cutoff.df .. 6
get.cutoff.ggplot ... 7
make.cutoff.plotly ... 7
multiPlot ... 8
nullreturn .. 8
plot_cutoff .. 9
plot_cutoff_single ... 11
plot_gene .. 12
plot_heatmap.cfb .. 13
plotHeatmap.cpm .. 14
plotHeatmap.expr .. 14
plot_pathway ... 16
plot_qq ... 18
plot_volcano .. 19
prettyGraphs .. 21
produce.cutoff.message 22
produce.cutoff.warning 23
reformat.ensembl .. 23
sample_annotation .. 24
sample_count_cpm .. 24
Sample_disease_gene_set 25
Sample_summary_statistics_table 25
Sample_summary_statistics_table1 26
secondCutoffErr ... 26
transform.geneid ... 27
validate.annot ... 28
validate.baseline ... 29
validate.col.types .. 29
validate.comp.names ... 30
validate.data .. 30
validate.data.annot .. 31
validate.FC ... 31
validate.flag ... 32
validate.genes.present 32
validate.geneset .. 33
validate.numeric .. 34
validate.pathways.db .. 35
validate.pval.range .. 35
validate.pvalflag ... 36
validate.pvals .. 36
c2BroadSets

validate.single.table.isnotlist ... 37
validate.stats ... 37
validate.stats.cols ... 38
wpA2020 ... 38

Index

This is data to be included in package

description
This is data to be included in package

Usage
c2BroadSets

Format
GeneSetCollection

Genesetcollection GeneSetCollection from BroadCollection

cal.pathway.scores calculate pathway scores

description
Calculate pathway scores

Usage
cal.pathway.scores(
 data,
 pathway.db,
 gene.id.type,
 FCflag,
 FDRflag,
 FC.cutoff,
 FDR.cutoff,
 OUT.Directional = NULL,
 IS.list = FALSE,
 customized.pathways,
 ...
)

Arguments

- **data**: A summary statistics table (data.frame) or data.list generated by DE analysis software like limma or DEseq2.
- **pathway.db**: Pathway database used.
- **gene.id.type**: Gene.id.type.
- **FCflag**: The column name (character) of fold change information, assuming the FC is log2 transformed. Default = “logFC”.
- **FDRflag**: The column name (character) of adjusted p value or FDR. Default = “adj.P.Val”.
- **FC.cutoff**: The fold change cutoff (numeric) selected to subset summary statistics table. Default = 1.5.
- **FDR.cutoff**: The FDR cutoff selected (numeric) to subset summary statistics table. Default = 0.05.
- **OUT.Directional**: Logical, whether output directional or non-directional pathway analysis result, default: NULL.
- **IS.list**: Logical, whether the input is a list, default: NULL.
- **customized.pathways**: The customized pathways in the format of two column dataframe to be used in analysis.
- ...: Pass over parameters.

Value

Returns a dataframe.

References

Xingpeng Li & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.
Arguments

data

Dataframe with subject id, annotation flag, gene id and cpm value (from count tables) columns.

annot

A long-format dataframe with any pertinent treatment data about the samples. The only required column is one titled the sample.id value with values matching the column names of sample IDs in data. Additional columns can contain information such as treatment compounds, dates of sample collection, or dosage quantities.

baseline.flag

A character vector of column names. These columns in annot contain the values to compare across.

baseline.val

A character vector of values. This vector must be the same length as baseline.flag, and the value at each index must represent a value from the column given by the corresponding index in baseline.flag.

count_table

This is data to be included in package

dlPathwaysDB

DL Pathways DB

Description

Download gene database for enrichment.

Usage

dlPathwaysDB(pathway.db, customized.pathways = NULL, ...)

Usage

count_table
get.cutoff.df

Arguments

pathway.db The database to be used for enrichment analysis. Can be one of the following, "rWikiPathways", "KEGG", "REACTOME", "Hallmark", "rWikiPathways_aug_2020"
customized.pathways the user provided pathway added for analysis.

Value

Returns a dataframe.

References

Xingpeng Li & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

get.cpm.colors Get CPM Colors

Description

This function creates the color gradient for the cpm data.

Usage

get.cpm.colors(data)

Arguments

data The CPM dataset.

get.cutoff.df Create ggplot object for number of differentially expressed genes with different FDR and fold change cutoff.

Description

This function processes dataframe from plot_cutoff_single function and produces a ggplot object which depicts the number of differentially expressed genes with different FDR and fold change cutoff.

Usage

get.cutoff.df(datin, pvalues, FCs, FCflag = "logFC", FDRflag = "adj.P.Val")
get.cutoff.ggplot

Arguments

datin Dataframe from plot_cutoff_single.
pvalues A set of p-values for FDR cutoff to be checked.
FCs A set of fold change cutoff to be checked.
FCflag The column name of the log2FC in the summary statistics table.
FDRflag The column name of the False Discovery Rate (FDR) in the summary statistics table.

get.cutoff.ggplot Create ggplot object for number of differentially expressed genes with different FDR and fold change cutoff.

Description

This function processes dataframe from plot_cutoff_single function and produces a ggplot object which depicts the number of differentially expressed genes with different FDR and fold change cutoff.

Usage

get.cutoff.ggplot(df, FCflag, FDRflag)

Arguments

df Dataframe from plot_cutoff_single.
FCflag The column name of the log2FC in the summary statistics table.
FDRflag The column name of the False Discovery Rate (FDR) in the summary statistics table.

make.cutoff.plotly

Create plotly object for number of DE genes at different cutoff combinations

Description

This function processes summary statistics table generated by differential expression analysis like limma or DESeq2 to produce an interactive visual object which depicts the number of differentially expressed genes with different FDR and fold change cutoff.

Usage

make.cutoff.plotly(df)

Arguments

df Summary statistics table from limma or DEseq2, where each row is a gene.
multiPlot

Description

Multi plot is for directional and non-directional plots

Usage

```r
multiPlot(allID, backup.d.sig, nd.res, ...)
```

Arguments

- `allID`: A vector of all pathway ID’s from directional and non directional enriched datasets.
- `backup.d.sig`: A dataframe type of object with directional pathways data prior to any cutoff’s being applied.
- `nd.res`: A dataframe type of object with non directional pathways data prior to any cutoff’s being applied.
- `...`: pass on variables

Details

Multi plot is for directional and non-directional plots, when one of the plots doesn’t contain observations.

Value

Returns ggplot.

References

Xingpeng Li & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

nullreturn

Description

The function takes in a boolean value and a numeric value, which it uses to decide what to output.

Usage

```r
nullreturn(IS.list, type = 1)
```
plot_cutoff

Arguments

IS.list: Indicator of whether the data frame being input is list or not.
type: If type = 1 (default) return directional null plot. If type = 2 return non directional null plot.

Details

nullreturn is a function that returns NULL for single df inputs that don’t hold true for threshold values. It returns an empty dataframe for list inputs which don’t satisfy the cutoff’s

Value

The function returns either returns a data frame or the value NULL.

References

Xingpeng Li & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

plot_cutoff

Check number of DE genes at different cutoff combinations

Description

This function processes summary statistics table generated by differential expression analysis like limma or DESeq2 to evaluate the number of differentially expressed genes with different FDR and fold change cutoff.

Usage

plot_cutoff(
 data = data,
 comp.names = NULL,
 FCflag = "logFC",
 FDRflag = "adj.P.Val",
 FCmin = 1.2,
 FCmax = 2,
 FCstep = 0.1,
 p.min = 0,
 p.max = 0.2,
 p.step = 0.01,
 plot.save.to = NULL,
 gen.3d.plot = TRUE,
 gen.plot = TRUE
)
plot_cutoff

Arguments

data Summary statistics table or a list of summary statistics tables from limma or DEseq2, where each row is a gene.
comp.names A character vector that contains the comparison names which correspond to the same order as data.
FCflag The column name of the log2FC in the summary statistics table. Default = "logFC".
FDRflag The column name of the False Discovery Rate (FDR) in the summary statistics table. Default = "adj.P.Val".
FCmin The minimum starting fold change cutoff to be checked, so the minimum fold change cutoff to be evaluated will be FCmin + FCstep, FCmin default = 1.
FCmax The maximum fold change cutoff to be checked, default = 2.
FCstep The step from the minimum to maximum fold change cutoff, one step increase at a time, default = 0.01.
p.min The minimum starting FDR cutoff to be checked, so the minimum fold change cutoff to be evaluated will be p.min + p.step, p.min default = 0.
p.max The maximum FDR cutoff to be checked, default = 0.2.
p.step The step from the minimum to maximum fold change cutoff, one step increase at a time, default = 0.005.
plot.save.to The address where to save the plot from simplified cutoff combination with FDR of 0.01, 0.05, 0.1, and 0.2.
gen.3d.plot Whether generate a 3d plotly object to visualize the result, only applys to single dataframe input, default = F.
gen.plot Whether generate a plot to visualize the result, default = T.

Details

The function takes the summary statistics and returns a list which contains 3 objects: a table which describes the number of DE genes with different cutoff combinations of FDR and fold change, a ggplot object which depicts a simplified version of cutoff selection combination, and a plotly 3d visualization object which depicts a high resolution of cutoff combinations. The default range of the fold change is from 1 to 2, and p value is from 0 to 0.2, with the step of 0.01 for FC and 0.005 for FDR.

Value

If the input data is a data list, then a multi-facet ggplot plot object which contains each of the summary statistics table will be returned; otherwise, if the input data is a data frame, then the function will return a list which contains 3 elements:
df.sub A dataframe, which contains the number of genes(3rd column) with FDR (1st column), Fold Change (2nd column)
plot3d A plotly object to show the 3d illustration of all possible cutoff selections and the number of DE genes in the 3d surface
gp A ggplot object to show the simplified cutoff combination result
plot_cutoff_single

References

Xingpeng Li & Olya Besedina, RVA - RNAseq Visualization Automation tool.

Examples

plot_cutoff(Sample_summary_statistics_table)

plot_cutoff(data = list(Sample_summary_statistics_table, Sample_summary_statistics_table1),
 comp.names = c("A", "B"))

plot_cutoff_single

Create plotly object for number of DE genes at different cutoff combinations

Description

This function processes summary statistics table generated by differential expression analysis like limma or DESeq2 and produces a table which contains gene counts for each of the p-value and FC combination

Usage

plot_cutoff_single(datin, FCflag, FDRflag, FCs, pvalues)

Arguments

datin Summary statistics table from limma or DEseq2, where each row is a gene.
FCflag The column name of the log2FC in the summary statistics table.
FDRflag The column name of the False Discovery Rate (FDR) in the summary statistics table.
FCs A set of fold change cutoff to be checked.
pvalues A set of p-values for FDR cutoff to be checked.
plot_gene
Plot gene expression

Description

This is the function to process the gene count table to show gene expression variations over time or across groups.

Usage

```r
plot_gene(
  data = ~dat,
  anno = ~meta,
  gene.names = c("AAAS", "A2ML1", "AADACL3"),
  ct.table.id.type = "ENSEMBL",
  gene.id.type = "SYMBOL",
  treatment = "Treatment",
  sample.id = "sample_id",
  time = "day",
  log.option = TRUE,
  plot.save.to = NULL,
  input.type = "count"
)
```

Arguments

- `data`: Count table in the format of dataframe with gene id as row.names.
- `anno`: Annotation table that provides design information.
- `gene.names`: Genes to be visualized, in the format of character vector.
- `ct.table.id.type`: The gene id format in data should be one of: ACCNUM, ALIAS, ENSEMBL, ENSEMBLPROT, ENSEMBLTRANS, ENTREZID, ENZYME, EVIDENCE, EVIDENCEALL, GENENAME, GO, GOALL, IPI, MAP, OMIM, ONTOLOGY, ONTOLOGYALL, PATH, PFAM, PMID, PROSITE, REFSQ, SYMBOL, UCSCKG, UNIGENE, UNIPROT.
- `gene.id.type`: The gene id format of gene.names, should be one of: ACCNUM, ALIAS, ENSEMBL, ENSEMBLPROT, ENSEMBLTRANS, ENTREZID, ENZYME, EVIDENCE, EVIDENCEALL, GENENAME, GO, GOALL, IPI, MAP, OMIM, ONTOLOGY, ONTOLOGYALL, PATH, PFAM, PMID, PROSITE, REFSQ, SYMBOL, UCSCKG, UNIGENE, UNIPROT.
- `treatment`: The column name to specify treatment groups.
- `sample.id`: The column name to specify sample IDs.
- `time`: The column name to specify different time points.
- `log.option`: Logical option, whether to log2 transform the CPM as y-axis. Default = True.
plot_heatmap.cfb

plot.save.to The address to save the plot from simplified cutoff combination with FDR of 0.01, 0.05, 0.1, and 0.2.

input.type One of count or cpm indicating what the input data type is. If count, the CPM of the input data will be calculated using edgeR::cpm(). Default = count.

Details

The function takes the gene counts and returns a ggplot that shows gene expression variation over time or group.

Value

The function returns a ggplot object.

References

Xingpeng Li, Tatiana Gelaf Romer & Aliyah Olaniyan, RVA - RNAseq Visualization Automation tool.

Examples

plot_gene(data = count_table, anno = sample_annotation)

plot_heatmap.cfb Plot a CFB Heatmap

Description

An alias for plot_heatmap.expr(annot, cpm, fill = "CFB", ...).

Usage

plot_heatmap.cfb(cpm, annot, title = "RVA CFB Heatmap", ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpm</td>
<td>cpm data</td>
</tr>
<tr>
<td>annot</td>
<td>A long-format dataframe with any pertinent treatment data about the samples. The only required column is one titled the sample.id value with values matching the column names of sample IDs in data. Additional columns can contain information such as treatment compounds, dates of sample collection, or dosage quantities.</td>
</tr>
<tr>
<td>title</td>
<td>A title for the heatmap. Default = "RVA CFB Heatmap".</td>
</tr>
<tr>
<td>...</td>
<td>pass over parameters</td>
</tr>
</tbody>
</table>
plot_heatmap.cpm
Plot a CPM Heatmap

Description

An alias for `plot_heatmap.expr(annot, cpm, fill = "CPM", ...)`.

Usage

```r
plot_heatmap.cpm(cpm, annot, title = "RVA CPM Heatmap", ...)
```

Arguments

- **cpm**: cpm data
- **annot**: A long-format dataframe with any pertinent treatment data about the samples. The only required column is one titled the `sample.id` value with values matching the column names of sample IDs in `data`. Additional columns can contain information such as treatment compounds, dates of sample collection, or dosage quantities.
- **title**: A title for the heatmap. Default = "RVA Heatmap".
- **...**: pass over parameters

plot_heatmap.expr
Plot Heatmap From Raw CPM

Description

Create a heatmap with either CFB or CPM averaged across individual samples.

Usage

```r
plot_heatmap.expr(
  data = ~count,
  annot = ~meta,
  sample.id = "sample_id",
  annot.flags = c("day", "Treatment", "tissue"),
  ct.table.id.type = "ENSEMBL",
  gene.id.type = "SYMBOL",
  gene.names = NULL,
  gene.count = 10,
  title = "RVA Heatmap",
  fill = "CFB",
  baseline.flag = "day",
  baseline.val = "0",
  plot.save.to = NULL,
  input.type = "count"
)
```
Arguments

data A wide-format dataframe with geneid rownames, sample column names, and fill data matching input.type.

annot A long-format dataframe with any pertinent treatment data about the samples. The only required column is one titled the sample.id value with values matching the column names of sample IDs in data. Additional columns can contain information such as treatment compounds, dates of sample collection, or dosage quantities.

sample.id The column name to specify sample ID.

annot.flags A vector of column names corresponding to column names in annot which will be used to define the x-axis for the heatmap. Default = c("day","dose").

c.t.table.id.type The gene id format in data should be one of: ACCNUM, ALIAS, ENSEMBL, ENSEMBLPROT, ENSEMBLTRANS, ENTREZID, ENZYME, EVIDENCE, EVIDENCEALL, GENENAME, GO, GOALL, IPI, MAP, OMIM, ONTOLOGY, ONTOLOGYALL, PATH, PFAM, PMID, PROSITE, REFSEQ, SYMBOL, UCSCKG, UNIGENE, UNIPROT.

gene.id.type The gene id format of gene.names, should be one of: ACCNUM, ALIAS, ENSEMBL, ENSEMBLPROT, ENSEMBLTRANS, ENTREZID, ENZYME, EVIDENCE, EVIDENCEALL, GENENAME, GO, GOALL, IPI, MAP, OMIM, ONTOLOGY, ONTOLOGYALL, PATH, PFAM, PMID, PROSITE, REFSEQ, SYMBOL, UCSCKG, UNIGENE, UNIPROT.

gene.names A character vector or list of ensembl IDs for which to display gene information. If NULL, all genes will be included. Default = NULL.

gene.count The number of genes to include, where genes are selected based on ranking by values in fill. Default = 10.

title A title for the heatmap. Default = "RVA Heatmap".

fill One of c("CPM","CFB") to fill the heatmap cells with. Default = "CFB".

baseline.flag A character vector of column names. If fill = "CFB", these columns in annot contain the values to compare across. Ignored if fill = "CPM". Default = "time-point".

baseline.val A character vector of values. This vector must be the same length as baseline.flag, and the value at each index must represent a value from the column given by the corresponding index in baseline.flag. The samples corresponding to these values will be used as a baseline when calculating CFB. Ignored if fill = "CPM". Default = "Week 0".

plot.save.to The address to save the heatmap plot.

input.type One of count or cpm indicating what the input data type is. If count, the CPM of the input data will be calculated using edgeR::cpm(). Default = count.

Details
The function takes raw CPM data and returns both a list containing a data frame with values based on the fill parameter and a heatmap plot.
plot_pathway

Value

The function returns a list with 2 items:

- `df.sub`: A data frame of change from baselines values (fill = CFB in this example) for each gene id that is divided by a combination of treatment group and time point
- `gp`: A Heatmap object from ComplexHeatmap which can be plotted

References

Xingpeng Li, Tatiana Gelaf Romer & Aliyah Olaniyan, RVA - RNAseq Visualization Automation tool.

Examples

```r
plot <- plot_heatmap.expr(data = count_table[1:20,], annot = sample_annotation[1:20,])
```

plot_pathway

Pathway analysis and visualization

Description

This is the function to do pathway enrichment analysis (and visualization) with rWikipathways (also KEGG, REACTOME & Hallmark) from a summary statistics table generated by differential expression analysis like limma or DESeq2.

Usage

```r
plot_pathway(
  data = ~df,
  comp.names = NULL,
  gene.id.type = "ENSEMBL",
  FC.cutoff = 1.2,
  FDR.cutoff = 0.05,
  FCflag = "logFC",
  FDRflag = "adj.P.Val",
  Fisher.cutoff = 0.1,
  Fisher.up.cutoff = 0.1,
  Fisher.down.cutoff = 0.1,
  plot.save.to = NULL,
  pathway.db = "rWikiPathways",
  customized.pathways = NULL,
  ...
)
```
Arguments

- **data**: A summary statistics table (data.frame) or data.list generated by DE analysis software like limma or DEseq2, where rownames are gene id.
- **comp.names**: A character vector containing the comparison names corresponding to the same order of the data.list. Default = NULL.
- **gene.id.type**: The gene id format in data should be one of: ACCNUM, ALIAS, ENSEMBL, ENSEMBLPROT, ENSEMBLTRANS, ENTREZID, ENZYME, EVIDENCE, EVIDENCEALL, GENENAME, GO, GOALL, IPI, MAP, OMIM, ONTOLOGY, ONTOLOGYALL, PATH, PFAM, PMID, PROSITE, REFSEQ, SYMBOL, UCSCKG, UNIGENE, UNIPROT.
- **FC.cutoff**: The fold change cutoff (numeric) selected to subset summary statistics table. Default = 1.5.
- **FDR.cutoff**: The FDR cutoff selected (numeric) to subset summary statistics table. Default = 0.05.
- **FCflag**: The column name (character) of fold change information, assuming the FC is log2 transformed. Default = "logFC".
- **FDRflag**: The column name (character) of adjusted p value or FDR. Default = "adj.P.Val".
- **Fisher.cutoff**: The FDR cutoff selected (numeric) for the pathway enrichment analysis' Fisher's exact test with all determined Differentially Expressed (DE) genes by FC.cutoff and FDR.cutoff.
- **Fisher.up.cutoff**: The FDR cutoff selected (numeric) for the pathway enrichment analysis' Fisher's exact test with the upregulated gene set.
- **Fisher.down.cutoff**: The FDR cutoff selected (numeric) for the pathway enrichment analysis' Fisher's exact test with the downregulated gene set.
- **plot.save.to**: The address to save the plot from simplified cutoff combination with FDR of 0.01, 0.05, 0.1, and 0.2.
- **pathway.db**: The database to be used for enrichment analysis. Can be one of the following, "rWikiPathways", "KEGG", "REACTOME", "Hallmark", "rWikiPathways_aug_2020".
- **customized.pathways**: the customized pathways in the format of two column dataframe (column name as "gs_name" and "entrez_gene") to be used in analysis.
- **... pass on variables**

Details

The function takes the summary statistics table and use user selected parameter based on check.cutoff to do pathway enrichment analysis.

Value

The function returns a list of 5 objects:

1. result table from directional pathway enrichment analysis
plot_qq

result table from non-directional pathway enrichment analysis
plot from directional pathway enrichment analysis
plot from non-directional pathway enrichment analysis
plot combining both directional and non-directional plot

References

Xingpeng Li & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

Examples

result <- plot_pathway(data = Sample_summary_statistics_table,
gene.id.type = "ENSEMBL",
FC.cutoff = 1.5,
p.cutoff = 0.05,
pathway.db = "rWikiPathways_aug_2020"
)

plot_qq
Plot qqplot

Description

This function generates a QQ-plot object with confidence interval from summary statistics table generated by differential expression analysis like limma or DESeq2.

Usage

plot_qq(
data = data,
comp.names = NULL,
p.value.flag = "P.Value",
ci = 0.95,
plot.save.to = NULL
)

Arguments

data Summary statistics table or a list that contains multiple summary statistics tables from limma or DEseq2, where each row is a gene.
comp.names A character vector that contains the comparison names which correspond to the same order as data. No default.
p.value.flag The column name of P-VALUE (NOT FDR, NO multiplicity adjusted p-value) in the summary statistics table. Default = "P.Value".
ci Confidence interval. Default = 0.95
plot.save.to The file name and the address where to save the qq-plot "~/address_to_folder/qqplot.png". Default = NULL.
Details

The function produces the qqplot to evaluate the result from differential expression analysis. The output is a ggplot object.

Value

The function return a ggplot object of qqplot

References

Xingpeng Li & Tatiana Gelaf Romer & Olya Besedina, RVA - RNAseq Visualization Automation tool.

Examples

```r
plot_qq(data = Sample_summary_statistics_table)
plot_qq(data = list(Sample_summary_statistics_table, Sample_summary_statistics_table1),
       comp.names = c("A", "B"))
```

Description

This function processes the summary statistics table generated by differential expression analysis like limma or DESeq2 to show on the volcano plot with the highlight gene set option (like disease related genes from Disease vs Healthy comparison).

Usage

```r
plot_volcano(
  data = data,
  comp.names = NULL,
  geneset = NULL,
  geneset.FCflag = "logFC",
  highlight.1 = NULL,
  highlight.2 = NULL,
  upcolor = "#FF0000",
  downcolor = "#0000FF",
  plot.save.to = NULL,
  xlim = c(-4, 4),
  ylim = c(0, 12),
  FCflag = "logFC",
  FDRflag = "adj.P.Val",
  highlight.FC.cutoff = 1.5,
  highlight.FDR.cutoff = 0.05,
)```
```r
title = "Volcano plot",
xlab = "log2 Fold Change",
ylab = "log10(FDR)"
)
```

**Arguments**

- `data` Summary statistics table or a list contain multiple summary statistics tables from limma or DEseq2, where each row is a gene.
- `comp.names` A character vector that contains the comparison names which correspond to the same order as data. Required if data is list. No default.
- `geneset` Summary statistic table that contains the genes which needed to be highlighted, the gene name format (in row names) needs to be consistent with the main summary statistics table). For example, this summary statistics table could be the output summary statistics table from the Disease vs Healthy comparison (Only contains the subsetted significant genes to be highlighted).
- `geneset.FCflag` The column name of fold change in geneset, Default = "logFC".
- `highlight.1` Genes to be highlighted, in the format of a vector consists of gene names. The gene name format needs to be consistent to the main summary statistics table.
- `highlight.2` Genes to be highlighted, in the format of a vector consists of gene names. The gene name format needs to be consistent to the main summary statistics table.
- `upcolor` The color of the gene names in highlight.1 or the positive fold change gene in geneset, default = "#FDE725FF" (viridis color palette).
- `downcolor` The color of the gene names in highlight.2 or the negative fold change gene in geneset, default = "#440154FF" (viridis color palette).
- `plot.save.to` The file name and address where to save the volcano plot, e.g. "~/address_to_folder/volcano_plot.png".
- `xlim` Range of x axis. Default = c(-3,3).
- `ylim` Range of y axis. Default = c(0,6).
- `FCflag` Column name of log2FC in the summary statistics table. Default = "logFC".
- `FDRflag` Column name of FDR in the summary statistics table. Default = "adj.P.Val".
- `highlight.FC.cutoff` Fold change cutoff line want to be shown on the plot. Default = 1.5.
- `highlight.FDR.cutoff` FDR cutoff shades want to be shown on the plot. Default = 0.05.
- `plot.title` The plot title. Default "Volcano plot".
- `xlab` The label for x-axis. Default "log2 Fold Change".
- `ylab` The label for y-axis. Default "log10(FDR)".

**Details**

The function takes the summary statistics table and returns a ggplot, with the option to highlight genes, e.g. disease signature genes, the genes which are up-regulated and down-regulated in diseased subjects.
prettyGraphs

Value

The function return a volcano plot as a ggplot object.

References

Xingpeng Li & Tatiana Gelaf Romer & Olya Besedina, RVA - RNAseq Visualization Automation tool.

Examples

```r
plot_volcano(data = Sample_summary_statistics_table,
 geneset = Sample_disease_gene_set)

plot_volcano(data = list(Sample_summary_statistics_table, Sample_summary_statistics_table1),
 comp.names = c("A", "B"),
 geneset = Sample_disease_gene_set)
```

prettyGraphs

Pretty Graphs

Description

Special cases where list input and at least one treatment has signal but others don’t.

Usage

```r
prettyGraphs(vizdf, ...)
```

Arguments

- **vizdf**: A dataframes of enriched pathways.
- ...: pass on variables

Details

Pretty Graphs is a function specifically meant to be in cases where one of the input treatments meet cutoff, but one or more of the other treatments don’t meet the cutoff values. This is important so that ggplot doesn’t throw any errors.

Value

Returns a dataframe.

References

Xingpeng Li & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.
produce.cutoff.message

Create a message about fold change and pvalues used to produce the plot.

Description

This function processes summary statistics table generated by differential expression analysis like limma or DESeq2 and produces a message about pvalues and fold change used.

Usage

produce.cutoff.message(
  data,
  FCmin,
  FCmax,
  FCstep,
  FDRflag,
  p.min,
  p.max,
  p.step
)

Arguments

data Summary statistics table from limma or DESeq2, where each row is a gene.
FCmin The minimum starting fold change cutoff to be checked, so the minimum fold change cutoff to be evaluated will be FCmin + FCstep, FCmin default = 1.
FCmax The maximum fold change cutoff to be checked, default = 2.
FCstep The step from the minimum to maximum fold change cutoff, one step increase at a time, default = 0.01.
FDRflag The column name of the False Discovery Rate (FDR) in the summary statistics table.
p.min The minimum starting FDR cutoff to be checked, so the minimum fold change cutoff to be evaluated will be p.min + p.step, p.min default = 0.
p.max The maximum FDR cutoff to be checked, default = 0.2.
p.step The step from the minimum to maximum fold change cutoff, one step increase at a time, default = 0.005.
produce.cutoff.warning

Create a warning about pvalue or FDR minimum value

Description
This function processes summary statistics table generated by differential expression analysis like limma or DESeq2 and produces a warning about pvalue or FDR minimum value.

Usage
produce.cutoff.warning(data, FDRflag)

Arguments
- data: Summary statistics table from limma or DEseq2, where each row is a gene.
- FDRflag: The column name of the False Discovery Rate (FDR) in the summary statistics table.

reformat.ensembl
Reformat Ensembl GeneIDs

Description
This is the function to exclude the version number from the input ensembl type gene ids.

Usage
reformat.ensembl(logcpm, ct.table.id.type)

Arguments
- logcpm: The input count table transformed into log counts per million.
- ct.table.id.type: The gene id format in logcpm should be one of: ACCNUM, ALIAS, ENSEMBL, ENSEMBLPROT, ENSEMBLTRANS, ENTREZID, ENZYME, EVIDENCE, EVIDENCEALL, GENENAME, GO, GOALL, IPI, MAP, OMIM, ONTOLOGY, ONTOLOGYALL, PATH, PFAM, PMID, PROSITE, REFSEQ, SYMBOL, UCSCKG, UNIGENE, UNIPROT.
<table>
<thead>
<tr>
<th>sample_annotation</th>
<th>This is data to be included in package</th>
</tr>
</thead>
</table>

**Description**

This is data to be included in package

**Usage**

```r
sample_annotation
```

**Format**

Sample annotation document

- `sample_id` sample name
- `tissue` tissue for comparison
- `subject_id` subject id
- `day` time points ...

<table>
<thead>
<tr>
<th>sample_count_cpm</th>
<th>This is data to be included in package</th>
</tr>
</thead>
</table>

**Description**

This is data to be included in package

**Usage**

```r
sample_count_cpm
```

**Format**

An example cpm table where row names are gene ID, each column is a sample

```r
counttable count cpm table ...
```
Sample_disease_gene_set

*Rationale*

This is data to be included in package

**Description**

This is data to be included in package

**Usage**

Sample_disease_gene_set

**Format**

An example disease gene set from summary statistics table as dataframe, row names are gene ID the summary statistics can be calculated from disease vs healthy, which is this example.

- **logFC** log2 fold change from comparison
- **AveExpr** Average expression for this gene
- **P.Value** p value
- **adj.P.Val** adjusted p value or FDR ...

Sample_summary_statistics_table

*Rationale*

This is data to be included in package

**Description**

This is data to be included in package

**Usage**

Sample_summary_statistics_table

**Format**

An example summary statistics table as dataframe, row names are gene ID

- **logFC** log2 fold change from comparison
- **AveExpr** Average expression for this gene
- **P.Value** p value
- **adj.P.Val** adjusted p value or FDR ...
Sample_summary_statistics_table1

This is data to be included in package

Description

This is data to be included in package

Usage

Sample_summary_statistics_table1

Format

Second example summary statistics table as dataframe, row names are gene ID

- logFC  log2 fold change from comparison
- AveExpr  Average expression for this gene
- P.Value  p value
- adj.P.Val  adjusted p value or FDR ...

secondCutoffErr  Second Cutoff Error

Description

The function takes in a list of dataframe, comp names and a specified type, to output a dataframe styled for ggplot.

Usage

secondCutoffErr(df, comp.names, TypeQ = 1)

Arguments

df  A list of dataframes.
comp.names  a character vector contain the comparison names corresponding to the same order to the dat.list. default = NULL.
TypeQ  If type = 1(default) return directional null plot. If type = 2 return non directional null plot.

Details

secondCutoffErr is a function specifically meant to be used for list inputs. It is used for cases where after applying filter to the data, one of the comparison ID gets left out, this adversely effects the ggplot
**transform.geneid**

**Value**

Returns a dataframe.

**References**

Xingpeng Li & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

---

**transform.geneid**

*Transform GeneIDs*

---

**Description**

This is the function to transform the input gene id type to another gene id type.

This is the function to transform the input gene id type to another gene id type.

**Usage**

```r
S3 method for class 'geneid'
transform(gene.names, from = ~gene.id.type, to = ~ct.table.id.type)

S3 method for class 'geneid'
transform(gene.names, from = ~gene.id.type, to = ~ct.table.id.type)
```

**Arguments**

- `gene.names`  
  Genes, in the format of character vector, to be transformed.

- `from`  
  The gene id format of gene.names, should be one of: ACCNUM, ALIAS, ENSEMBL, ENSEMBLPROT, ENSEMBLTRANS, ENTREZID, ENZYME, EVIDENCE, EVIDENCEALL, GENENAME, GO, GOALL, IPI, MAP, OMIM, ONTOLOGY, ONTOLOGYALL, PATH, PFAM, PMID, PROSITE, REFSEQ, SYMBOL, UCSCKG, UNIGENE, UNIPROT.

- `to`  
  The new gene id format should be one of: ACCNUM, ALIAS, ENSEMBL, ENSEMBLPROT, ENSEMBLTRANS, ENTREZID, ENZYME, EVIDENCE, EVIDENCEALL, GENENAME, GO, GOALL, IPI, MAP, OMIM, ONTOLOGY, ONTOLOGYALL, PATH, PFAM, PMID, PROSITE, REFSEQ, SYMBOL, UCSCKG, UNIGENE, UNIPROT.
**validate.annot**

| validate.annot | Validate Annotation Table |

**Description**

Ensure that an annotation has all of the required columns.

**Usage**

```r
validate.annot(
 data,
 annot,
 annot.flags,
 sample.id,
 fill = "CPM",
 baseline.flag = NULL,
 baseline.val = NULL
)
```

**Arguments**

- **data** The input count data.
- **annot** The annotation dataframe.
- **annot.flags** The vector of annotation flags passed by the user.
- **sample.id** Sample id label to check if in annot.
- **fill** The fill value indicated by the user, "count" or "CPM".
- **baseline.flag** The baseline.flag passed by the user.
- **baseline.val** The baseline value passed by the user.

**Details**

The function will check the following:

- The annot.flags values are columns in annot
- If fill = "cfb": validate the baseline.flag and baseline.val parameters.
- sample.id is a column in annot.

**References**

Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.
**validate.baseline**  
**Validate Baseline Values**

**Description**
Ensures that user-input baseline.val and baseline.flag parameters are valid with respect to the annot dataframe.

**Usage**
```
validate.baseline(annot, baseline.val, baseline.flag)
```

**Arguments**
- `annot`  The annotation dataframe.
- `baseline.val`  The baseline value passed by the user.
- `baseline.flag`  The baseline.flag passed by the user.

**Details**
Specifically, validates that baseline.flag value(s) are columns in annot, and that baseline.val value(s) occur at least once in their respective baseline.flag columns.

**References**
Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

---

**validate.col.types**  
**Check Summary Statistics Required Column Types**

**Description**
FCflag and FDRflag must be numeric.

**Usage**
```
validate.col.types(datin, name = 1, flags)
```

**Arguments**
- `datin`  the summary statistics file.
- `name`  summary statistics file position indicator
- `flags`  FCflag or FDRflag to be checked
validate.comp.names  Validate Comp Names

Description
This function ensures that when a list of data frames are used as input the the number of comp
names are the same as the number of data frames.

Usage
validate.comp.names(comp.names, data)

Arguments
comp.names  a character vector contain the comparison names corresponding to the same or-
der to the dat.list. default = NULL.
data summary statistics table (data.frame) from limma or DEseq2, where rownames are gene id.

References
Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation

tool.

validate.data  Validate Data Input

Description
Ensures that the data input has the required formatting.

Usage
validate.data(data)

Arguments
data  The wide-format data frame with input data.

Details
Specifically, checks if data has rownaems and that all other columns can be coerced to numeric.
validate.data.annot

**Validate Data in the Context of Annotation**

**Description**

Ensures that the annotation file matches the data file with respect to sample IDs. Throws warnings if there are discrepancies.

**Usage**

validate.data.annot(data, annot, sample.id)

**Arguments**

- **data**: input data
- **annot**: annotation file
- **sample.id**: sample id in the input

**References**

Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

---

validate.FC

**Validate Foldchange**

**Description**

This function ensures the fold change minimum, maximum, and step are valid.

**Usage**

validate.FC(FCmin, FCmax, FCstep)

**Arguments**

- **FCmin**: The minimum starting fold change cutoff to be checked, so the minimum fold change cutoff to be evaluated will be FCmin + FCstep, FCmin default = 1.
- **FCmax**: The maximum fold change cutoff to be checked, default = 2.
- **FCstep**: The step from the minimum to maximum fold change cutoff, one step increase at a time, default = 0.01.
validate.genes.present

Details

Specifically it checks that the FCmax is greater than the FCmin, that at least 1 FCstep can fit within the FCmax and FCmin, that FCmax and FCmin values are non-negative, and that FCstep is positive.

References

Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

validate.flag

Validates Flag Value Is Valid

Description

Ensures that the value is one of Options and throws an error otherwise.

Usage

validate.flag(value, name, Options)

Arguments

value The user-input value for the parameter
name The name of the parameter to be displayed in the error
Options A vector of valid values for value

References

Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

validate.genes.present

Validates genes present

Description

Checks how many of the gene id’s in the dataset are there in the geneset.

Usage

validate.genes.present(data.genes, geneset)
validate.geneset

Arguments

data.genes   The gene id’s.
genesiset    a summary statistic table contain the genes want to be highlighted, the gene name format (in row names) needs to be consistent to the main summary statistics table. For example, this summary statistics table could be the output summary statistics table from Disease vs Healthy comparison (Only contain the subsetted significant genes want to be highlighted).

References

Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

validate.geneset     Validate Geneset

Description

This function ensures that the input geneset to check.cutoff is formatted properly and in a usable form.

Usage

validate.geneset(data, geneset, highlight.1, highlight.2)

Arguments

data   summary statistics table or a list contain multiple summary statistics tables from limma or DEseq2, where each row is a gene.
genesiset    a summary statistic table contain the genes want to be highlighted, the gene name format (in row names) needs to be consistent to the main summary statistics table. For example, this summary statistics table could be the output summary statistics table from Disease vs Healthy comparison (Only contain the subsetted significant genes want to be highlighted).
highlight.1 genes want to be highlighted, in the format of a vector consists of gene names. The gene name format needs to be consistent to the main summary statistics table.
highlight.2 genes want to be highlighted, in the format of a vector consists of gene names. The gene name format needs to be consistent to the main summary statistics table.

Details

The function ensures that only a dataframe or vectors are supplied, that at least one or the other is supplied, and that their formatting is correct if supplied. It also checks if any of the genes overlap with the genes in the datanames.
validate.numeric

Value
A character value indicating if the geneset was passed as a dataframe (df) or two vectors (vec), if a list is input the number of returned values equal the length of the list.

References
Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

validate.numeric Validate Numeric Column

Description
Ensures that a column in a dataframe which must be numeric is numeric and throws an error otherwise.

Usage
validate.numeric(datin, col, name = 1)

Arguments
datin The data in question.
col The column to validate as numeric.
name the position of dataset

Details
This specifically checks if any of the values in the column can be coerced as numeric.

References
Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.
validate.pathways.db   Validate Pathways DB

Description
To ensure selected db name is correct.

Usage
validate.pathways.db(pathway.db, customized.pathways)

Arguments
pathway.db  The database to be used for enrichment analysis. Can be one of the following, "rWikiPathways", "KEGG", "REACTOME", "Hallmark", "rWikiPathways_aug_2020"
customized.pathways  the customized pathways in the format of two column dataframe (column name as "gs_name" and "entrez_gene") to be used in analysis

References
Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

validate.pval.range   Validate P-value Range

Description
Error-handling for invalid p-value.

Usage
validate.pval.range(pval, name)

Arguments
pval  The pvalue
name  The name of the value to include in the error.

References
Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.
validate.pvalflag  

validate pval flag

Description
To ensure p value flags are the same across datasets.

Usage
validate.pvalflag(data, value)

Arguments
- data: A list of summary statistics table (data.frame) from limma or DEseq2, where rownames are gene id.
- value: P value flag.

References
Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

validate.pvals

Validate Pvalues

Description
This function ensures the fold change minimum, maximum, and step are valid.

Usage
validate.pvals(p.min, p.max, p.step)

Arguments
- p.min: The minimum starting FDR cutoff to be checked, so the minimum fold change cutoff to be evaluated will be p.min + p.step, p.min default = 0.
- p.max: The maximum FDR cutoff to be checked, default = 0.2.
- p.step: The step from the minimum to maximum fold change cutoff, one step increase at a time, default = 0.005.

Details
Specifically it checks that the pvalues are between 0-1, and that at least 1 p.step fits within the p.min and p.max bounds and is positive.
validate.single.table.isnotlist

Validate Single Table is not list

Description
Makes sure the summary table being input is of the right class and format.

Usage
validate.single.table.isnotlist(data)

Arguments
data  summary statistics table (data.frame) from limma or DEseq2, where rownames are gene id.

References
Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

validate.stats  Validate Summary Statistics File

Description
Check for required column names and types.

Usage
validate.stats(datin, name = 1, ...)

Arguments
datin  the summary statistics file.
name  summary statistics file position indicator
...  pass on variables

References
Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.
validate.stats.cols  

**Check Summary Statistics Required Columns**

**Description**

Required columns are FCflag and FDRflag

**Usage**

validate.stats.cols(datin, name = 1, req.cols)

**Arguments**

- **datin**: the summary statistics file.
- **name**: summary statistics file position indicator
- **req.cols**: required column names of FCflag and FDRflag pass on from validate.stats

**References**

Xingpeng Li, Tatiana Gelaf Romer & Siddhartha Pachhai RVA - RNAseq Visualization Automation tool.

---

**wpA2020**  

*This is data to be included in package*

**Description**

This is data to be included in package

**Usage**

wpA2020

**Format**

Rwikipathway data downloaded version 2020

- **name**: pathway name
- **version**: version
- **wpid**: pathway id
- **org**: host name ...
Index

* datasets
  c2BroadSets, 3
  count_table, 5
  sample_annotation, 24
  sample_count_cpm, 24
  Sample_disease_gene_set, 25
  Sample_summary_statistics_table, 25
  Sample_summary_statistics_table1, 26
  wpA2020, 38
  c2BroadSets, 3
  cal.pathway.scores, 3
  calc.cfb, 4
  count_table, 5
  dlPathwaysDB, 5
  edgeR::cpm(), 13, 15
  get.cpm.colors, 6
  get.cutoff.df, 6
  get.cutoff.ggplot, 7
  make.cutoff.plotly, 7
  multiPlot, 8
  nullreturn, 8
  plot_cutoff, 9
  plot_cutoff_single, 11
  plot_gene, 12
  plot_heatmap.cfb, 13
  plot_heatmap.cpm, 14
  plot_heatmap.expr, 14
  plot_pathway, 16
  plot_qq, 18
  plot_volcano, 19
  prettyGraphs, 21
  produce.cutoff.message, 22
  produce.cutoff.warning, 23
  reformat.ensembl, 23
  sample_annotation, 24
  sample_count_cpm, 24
  Sample_disease_gene_set, 25
  Sample_summary_statistics_table, 25
  Sample_summary_statistics_table1, 26
  secondCutoffErr, 26
  transform.geneid, 27
  validate.annot, 28
  validate.baseline, 29
  validate.col.types, 29
  validate.comp.names, 30
  validate.data, 30
  validate.data.annot, 31
  validate.FC, 31
  validate.flag, 32
  validate.genes.present, 32
  validate.geneset, 33
  validate.numeric, 34
  validate.pathways.db, 35
  validate.pval.range, 35
  validate.pvalflag, 36
  validate.pvals, 36
  validate.single.table.isnotlist, 37
  validate.stats, 37
  validate.stats.cols, 38
  wpA2020, 38