Package ‘RTIGER’

April 27, 2021

Type Package

Title HMM-Based Model for Genotyping and Cross-Over Identification

Version 0.99.0

Description Our method integrates information from all sequenced samples, thus avoiding loss of alleles due to low coverage. Moreover, it increases the statistical power to uncover sequencing or alignment errors.

Depends R (>= 3.6), GenomicRanges, GenomeInfoDb

License GPL (>= 2)

Encoding UTF-8

LazyData true

LazyDataCompression gzip

Imports methods, e1071, reshape2, ggplot2, TailRank, JuliaCall, IRanges, qpdf, grDevices, graphics, stats, utils

RoxygenNote 7.1.1

VignetteBuilder knitr

Suggests knitr, rmarkdown, markdown, Gviz, rtracklayer

biocViews GenomeAnnotation, HiddenMarkovModel, Sequencing

NeedsCompilation no

Author Rafael Campos-Martin [cre] (https://orcid.org/0000-0002-1395-8571), Sophia Schmickler [aut], Manish Goel [ctb], Korbinian Schneeberger [aut], Achim Tresch [aut]

Maintainer Rafael Campos-Martin <rafael.mpi@gmail.com>

Repository CRAN

Date/Publication 2021-04-27 08:00:02 UTC
R topics documented:

- ATseqlengths . 2
- calcCOnumber . 2
- dev . 3
- fit . 3
- generateObject . 4
- myDat . 5
- plotCOs . 6
- RTIGER . 6
- RTIGER-class . 8
- setupJulia . 8
- sourceJulia . 9

Index

10

ATseqlengths

The autosome chromosome lengths for Arabidopsis Thaliana.

Description

The autosome chromosome lengths for Arabidopsis Thaliana.

Author(s)

Rafael Campos-Martin

calcCOnumber

Obtain number of Cross-Over events per sample and chromosome.

Description

Obtain number of Cross-Over events per sample and chromosome.

Usage

calcCOnumber(object)

Arguments

object a RViterbi object.

Value

Matrix m x n. M number of samples and N chromosomes.

@return a matrix with n chromosomes and m samples (n x m) and the number of CO events.
Examples

data("fittedExample")
co.num = calcCOnumber(myDat)

Function to developers. It runs one EM step

Description

Function to developers. It runs one EM step

Usage

dev(psi, rigidity = NULL, nstates = 3, transition = NULL, start = NULL)

Arguments

psi list of psi probabilities.
rigidity Rigidity value.
nstates Number of states.
transition transition matrix
start initial probabilities

Value

List with updates probabilities

Call Julia code to fit the values

Description

Call Julia code to fit the values

Usage

fit(rtigerobj, max.iter , eps,
trace, all = TRUE, random = FALSE,
specific = FALSE, nsamples = 20,
post.processing = TRUE)
Arguments

- `rtigerobj` an RTIGER object.
- `max.iter` maximum number of iterations to accomplish by the EM.
- `eps` difference threshold to halt the EM.
- `trace` logical value whether to trace the changes in the parameters along the iterations.
- `all` logical value whether to use all data to fit the model.
- `random` if all FALSE use random samples.
- `specific` if all FALSE use specific samples.
- `nsamples` if random TRUE, how many samples to use.
- `post.processing` logical value, whether to run post.processing process.

Value

RTIGER object

Examples

```r
## Not run:
data("fittedExample")
sourceJulia()
myfit = fit(myDat, max.iter = 2, eps=0.01,
    trace = TRUE, all = TRUE,
    random = FALSE, specific = FALSE,
    nsamples = 20, post.processing = TRUE)
## End(Not run)
```

generateObject

Load data

Description

Load data

Usage

generateObject(experimentDesign = NULL,nstates = 3, rigidity=NULL,
 seqlengths = NULL, verbose = TRUE)
Arguments

- **experimentDesign**: a data frame that contains minimum a column with the files direction (name of the column files) and another with a shorter name to be used inside the function.
- **nstates**: the number of states to be fitted in the model. A standard setting would use 3 states (Homozygous1, Heterozygous, and Homozygous2).
- **rigidity**: an integer number specifying the rigidity parameter to be used.
- **seqlengths**: a named vector with the chromosome lengths of the organism that the user is working with.
- **verbose**: logical value. Whether to print info messages.

Value

RTIGER object

Examples

```r
data("ATseqlengths")
path = system.file("extdata", package = "RTIGER")
files = list.files(path, full.names = TRUE)
nam = sapply(list.files(path), function(x) unlist(strsplit(x, split = "."))[1])
expDesign = data.frame(files = files, name = nam)
names(ATseqlengths) = paste0("Chr", 1:5)
myres = generateObject(experimentDesign = expDesign, seqlengths = ATseqlengths,
    rigidity = 10)
```

Description

A fitted example using three own samples of Arabidopsis. More information in publication:

Author(s)

Rafael Campos-Martin
plotCOs

Obtain number of Cross-Over events per sample and chromosome.

Description

Obtain number of Cross-Over events per sample and chromosome.

Usage

plotCOs(object, file = NULL)

Arguments

object
a RViterbi object.
file
file where to save the plot for CO numbers

Value

a plot

Examples

data("fittedExample")
co.num = calcCOnumber(myDat)

RTIGER

Load, Fit, and plot

Description

Load, Fit, and plot

Usage

RTIGER(expDesign, rigidity=NULL, outputdir=NULL, nstates = 3, seqlengths = NULL, eps=0.01, max.iter=50, trace = FALSE, tiles = 4e5, all = TRUE, random = FALSE, specific = FALSE, nsamples = 20, post.processing = TRUE, save.results = FALSE, verbose = TRUE)
Arguments

expDesign a data Frame that contains minimum a column with the files direction (name of the column files) and another with a shorter name to be used inside the function.

rigidity an integer number specifying the rigidity parameter to be used.

outputdir a character string that specifies the directory in which to save the results form the function.

nstates the number of states to be fitted in the model. A standard setting would use 3 states (Homozygous1, Heterozygous, and Homozygous2).

seqlengths a named vector with the chromosome lengths of the organism that the user is working with.

eps the threshold of the difference between the parameters value between the previous and actual iteration to stop the EM algorithm.

max.iter maximum number of iterations of the EM algorithm before to stop in case that eps has not been achieved.

trace logical value. Whether or not to keep track of the parameters for the HMM along the iterations. Default FALSE

tiles length of the tiles by which the genome will be segmented in order to compute the ratio of COs in the complete dataset.

all logical value. Whether to use the complete data set to fit the rHMM. Default TRUE.

random Logical value. Choose randomly a subset of the complete dataset to fit the rHMM. Default FALSE

specific Logical value to specify which samples to take.

nsamples if random TRUE, how many samples should be taken randomly.

post-processing Logical value. Whether to run an extra step that fine maps the segment borders. Default TRUE

save.results Logical value, whether to generate and save the plots and igv files.

verbose Logical, whether to print info to console.

Value

Matrix m x n. M number of samples and N chromosomes.

RTIGER object

Examples

```r
# Not run:
data("ATseqlengths")
sourceJulia()
path = system.file("extdata", package = "RTIGER")
files = list.files(path, full.names = TRUE)
nam = sapply(list.files(path), function(x) unlist(strsplit(x, split = "[.]")[1]))
expDesign = data.frame(files = files, name = nam)
```
setupJulia

```r
names(ATseqlengths) = paste0("Chr", 1:5)
myres = RTIGER(expDesign = expDesign,
               outputdir = "/home/campos/Documents/outputjulia/",
               seqlengths = ATseqlengths,
               rigidity = 4,
               max.iter = 2,
               trace = FALSE,
               save.results = FALSE)

## End(Not run)
```

RTIGER-class

This class is a generic container for RTIGER analysis

Description

This class is a generic container for RTIGER analysis

Slots

- **matobs** Nested lists. the first level is a list of samples. For each sample there are 5 matrices that contain the allele counts for each position.
- **params** a list with the parameters after training.
- **info** List with phenotypic data of the samples.
- **Viterbi** List of chromosomes with the viterbi path per sample.
- **Probabilities** Computed probabilities for the EM algorithm.
- **num.iter** Number of iterations needed to stop the EM algorithm.

setupJulia

Installs the needed packages in JULIA to run the EM algorithm for rHMM.

Description

Installs the needed packages in JULIA to run the EM algorithm for rHMM.

Usage

```r
setupJulia(JULIA_HOME = NULL)
```

Arguments

- **JULIA_HOME** the file folder which contains julia binary, if not set, JuliaCall will look at the global option JULIA_HOME, if the global option is not set, JuliaCall will then look at the environmental variable JULIA_HOME, if still not found, JuliaCall will try to use the julia in path.
Function needed before using RTIGER() function. It loads the scripts in Julia that fit the rHMM.

Description
Function needed before using RTIGER() function. It loads the scripts in Julia that fit the rHMM.

Usage
sourceJulia()

Value
empty
Index

* data
 ATseqlengths, 2
 myDat, 5
 .RTIGER (RTIGER-class), 8
ATseqlengths, 2
calcCOnumber, 2
dev, 3
fit, 3
generateObject, 4
myDat, 5
plotCOS, 6
RTIGER, 6
RTIGER-class, 8
setupJulia, 8
sourceJulia, 9