Package ‘RESTK’

August 22, 2023

Title An Implementation of the RESTK Algorithm
Version 1.0.0
Description Implementation of the RESTK algorithm based on Markov's Inequality from Vilardell, Sergi, Serra, Isabel, Mezzetti, Enrico, Abella, Jaume, Cazorla, Francisco J. and Del Castillo, J. (2022). "Using Markov's Inequality with Power-Of-k Function for Probabilistic WCET Estimation". In 34th Euromicro Conference on Real-Time Systems (ECRTS 2022). Leibniz International Proceedings in Informatics (LIPIcs) 231 20:1-20:24. <doi:10.4230/LIPIcs.ECRTS.2022.20>. This work has been supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 772773).
License GPL-3
Encoding UTF-8
RoxygenNote 7.2.3
Imports purrr
Suggests knitr, rmarkdown
NeedsCompilation no
Author Sergi Vilardell [aut, cre]
Maintainer Sergi Vilardell <sergi.vilardell@bsc.es>
Repository CRAN
Date/Publication 2023-08-22 18:20:02 UTC

R topics documented:

 compute_maxk ... 2
 estimate_quantiles_maxk ... 2
 get_min_maxk .. 3
 linear_adjust .. 4
 RESTK ... 4
 RESTK_training ... 5
 RESTK_validation ... 6
 sample_quantile_estimation ... 7
 tightness .. 8
compute_maxk

Compute the maximum k for a given sample

Description

compute_maxk returns the estimated quantiles for the chosen probabilities from the input sample. This method uses the sample quantile method number 8 from the default quantile function.

Usage

```
compute_maxk(samp = NULL, probs = NULL, quants = NULL, k_range = c(1, 120))
```

Arguments

- **samp**: Sample of data to model
- **probs**: Probabilities of interest to generate the max_k line
- **quants**: Estimated quantiles of interest to generate the max_k line
- **k_range**: Range of k values for the optimization function

Value

Returns estimated maxk for the sample and quantiles given.

Examples

```
samp <- rnorm(1e3, mean = 100, sd = 10)
probs <- c(1-1e-1, 1-0.5e-1, 1-1e-2)
quants <- c(100, 125, 150)
estimated_max_k <- compute_maxk(samp = samp, probs = probs, quants = quants, k_range = c(1,100))
```

estimate_quantiles_maxk

Estimate Quantiles with Maxk

Description

estimate_quantiles_maxk use the maxk line obtained to estimate quantiles with MIK

Usage

```
estimate_quantiles_maxk(samp = NULL, maxk_line = NULL, probs_interest = NULL)
```
get_min_maxk

Description

get_min_maxk get the minimum maxk from a set of maxks and tightness

Usage

```
get_min_maxk(samp_tightness = NULL, k_seq = NULL)
```

Arguments

- samp_tightness tightness from a given sample and maxk
- k_seq sequence of maxk to evaluate

Value

Returns the minimum maxk

Examples

```
get_min_maxk(samp_tightness = c(1.5, 1.2, 0.98),
            k_seq = c(20, 30, 40))
```
linear_adjust
Linear adjust

Description

`linear_adjust` function used to project the max_k line into the probabilities of interest

Usage

```r
linear_adjust(min_maxk = NULL, probs = NULL, probs_interest)
```

Arguments

- `min_maxk` minimum maxk found for each probability of interest
- `probs` Probabilities where maxk was evaluated
- `probs_interest` Probabilities of interest to estimate

Value

Returns the maxk line for the probabilities of interest

Examples

```r
linear_adjust(min_maxk = c(10, 15, 20),
              probs = c(1-1e-1, 1-1e-2, 1-1e-3),
              probs_interest = c(1-1e-6, 1-1e-7, 1-1e-8))
```

RESTK
RESTK

Description

`RESTK` function used to project the maxk line into the probabilities of interest

Usage

```r
RESTK(
    training_data = NULL,
    validation_data = NULL,
    probs = NULL,
    probs_interest = NULL,
    bootstrap_size = NULL,
    bootstrap_training_sims = NULL,
    bootstrap_validation_sims = NULL
)
```
RESTK_training

Arguments

- `training_data` training data
- `validation_data` validation data
- `probs` Probabilities where maxk was evaluated
- `probs_interest` Probabilities of interest to estimate
- `bootstrap_size` size of bootstrap simulations on the training data
- `bootstrap_training_sims` number of bootstrap simulations on the training data
- `bootstrap_validation_sims` number of bootstrap simulations on the validation data

Value

Returns the maxk line for the probabilities of interest

Examples

```r
training_data <- rnorm(1e3, mean = 100, sd = 10)
validation_data <- rnorm(1e3, mean = 100, sd = 10)
bootstrap_size <- 1000
bootstrap_training_sims <- 10
bootstrap_validation_sims <- 10
probs <- c(1-1e-1, 1-0.5e-1, 1-1e-2)
probs_interest <- c(1-1e-6, 1-1e-7)
maxk_line <- c(100, 125, 150)

estimated_quants <- RESTK(training_data = training_data,
                          validation_data = validation_data,
                          probs = probs,
                          probs_interest = probs_interest,
                          bootstrap_size = bootstrap_size,
                          bootstrap_training_sims = bootstrap_training_sims,
                          bootstrap_validation_sims = bootstrap_validation_sims)
```

Description

RESTK_training function used to project the maxk line into the probabilities of interest
RESTK_validation

Usage

RESTK_training(
 training_data = NULL,
 probs = NULL,
 probs_interest = NULL,
 bootstrap_size = NULL,
 bootstrap_training_sims = NULL
)

Arguments

 training_data training data
 probs Probabilities where maxk was evaluated
 probs_interest Probabilities of interest to estimate
 bootstrap_size size of bootstrap simulations on the training data
 bootstrap_training_sims number of bootstrap simulations on the training data

Value

 Returns the estimated maxk line from the probabilities of interest

Examples

 training_data <- rnorm(1e3, mean = 100, sd = 10)
 probs <- c(1-1e-1, 1-0.5e-1, 1-1e-2)
 probs_interest <- c(1-1e-6, 1-1e-7)
 bootstrap_size <- 1000
 bootstrap_training_sims <- 100

 maxk_line <- RESTK_training(training_data = training_data,
 probs = probs,
 probs_interest = probs_interest,
 bootstrap_size = bootstrap_size,
 bootstrap_training_sims = bootstrap_training_sims)

Description

 RESTK_validation main function for the validation of the RESTK methodology by using the maxk
 line
sample_quantile_estimation

Usage

RESTK_validation(
 validation_data = NULL,
 maxk_line = NULL,
 probs_interest = NULL,
 bootstrap_size = NULL,
 bootstrap_validation_sims = NULL
)

Arguments

validation_data
 validation data
maxk_line
 maxk line obtained from RESTK_training
probs_interest
 Probabilities of interest to estimate
bootstrap_size
 size of bootstrap simulations on the validation data
bootstrap_validation_sims
 number of bootstrap simulations on the validation data

Value

Returns the estimated quantiles from the probabilities of interest

Examples

validation_data <- rnorm(1e3, mean = 100, sd = 10)
probs_interest <- c(1-1e-6, 1-1e-7)
bootstrap_size <- 1000
bootstrap_validation_sims <- 100
maxk_line <- c(100, 125, 150)
estimated_quants <- RESTK_validation(validation_data = validation_data,
 maxk_line = maxk_line,
 probs_interest = probs_interest,
 bootstrap_size = bootstrap_size,
 bootstrap_validation_sims = bootstrap_validation_sims)

Description

sample_quantile_estimation returns the estimated quantiles for the chosen probabilities from the input sample. This method uses the sample quantile method number 8 from the default quantile function.
Usage

```r
tightness_estimation(samp = NULL, probs = NULL, bootstrap_sims = NULL)
```

Arguments

- `samp`: Sample of data to model
- `probs`: Probabilities of interest to generate the max_k line
- `bootstrap_sims`: Number of bootstrap simulations to estimate the quantiles

Value

Returns estimated quantiles for the chosen probabilities.

Examples

```r
samp <- rnorm(1e3, mean = 100, sd = 10)
probs <- c(1-1e-1, 1-0.5e-1, 1-1e-2)
bootstrap_training_sims <- 100
estimated_quantiles <- tightness_estimation(samp = samp,
                                          probs = probs,
                                          bootstrap_sims = bootstrap_training_sims)
```

tightness

Tightness function

Description

tightness function used to minimized the tightness as a function of the value of k

Usage

```r
tightness(samp = NULL, prob = NULL, quant = NULL, k = NULL)
```

Arguments

- `samp`: Sample of data to model
- `prob`: Probability of interest
- `quant`: Quantile of interest
- `k`: value of k to check tightness

Value

Returns the squared difference between the tightness and 1
Examples

samp <- rnorm(1e3, mean = 100, sd = 10)
prob <- c(1-1e-2)
k <- 1:100
quant <- qnorm(p = prob, mean = 100, sd = 10)
tightness(samp = samp, prob = prob, quant = quant, k = k)
Index

* **RESTK**
 - compute_maxk, 2
 - estimate_quantiles_maxk, 2
 - get_min_maxk, 3
 - linear_adjust, 4
 - RESTK, 4
 - RESTK_training, 5
 - RESTK_validation, 6
 - sample_quantile_estimation, 7
 - tightness, 8

compute_maxk, 2

estimate_quantiles_maxk, 2

get_min_maxk, 3

linear_adjust, 4

RESTK, 4

RESTK_training, 5

RESTK_validation, 6

sample_quantile_estimation, 7

tightness, 8