Package ‘PsychWordVec’

September 27, 2023

Title Word Embedding Research Framework for Psychological Science
Version 2023.9
Date 2023-09-27
Maintainer Han-Wu-Shuang Bao <baohws@foxmail.com>

Description An integrative toolbox of word embedding research that provides:
(1) a collection of 'pre-trained' static word vectors in the '.RData' compressed format <https://psychbruce.github.io/WordVector_RData.pdf>;
(2) a series of functions to process, analyze, and visualize word vectors;
(3) a range of tests to examine conceptual associations, including the Word Embedding Association Test <doi:10.1126/science.aal4230> and the Relative Norm Distance <doi:10.1073/pnas.1720347115>, with permutation test of significance;
(5) a group of functions to download 'pre-trained' language models (e.g., 'GPT', 'BERT') and extract contextualized (dynamic) word vectors (based on the R package 'text').

License GPL-3
Encoding UTF-8
LazyData true
LazyDataCompression xz

URL https://psychbruce.github.io/PsychWordVec/

BugReports https://github.com/psychbruce/PsychWordVec/issues

Depends R (>= 4.0.0)
Imports bruceR, dplyr, stringr, data.table, purrr, vroom, cli, ggplot2, ggrepel, corrplot, psych, Rtsne, rgl, qgraph, rsparse, text2vec, word2vec, fastTextR, text, reticulate

Suggests wordsalad, sweater, glue

RoxygenNote 7.2.3
NeedsCompilation no
as_embed

Word vectors data class: \texttt{wordvec} and \texttt{embed}.

Description

\texttt{PsychWordVec} uses two types of word vectors data: \texttt{wordvec} (data.table, with two variables \texttt{word} and \texttt{vec}) and \texttt{embed} (matrix, with dimensions as columns and words as row names). Note that matrix operation makes \texttt{embed} much faster than \texttt{wordvec}. Users are suggested to reshape data to \texttt{embed} before using the other functions.
as_embed

Usage

as_embed(x, normalize = FALSE)
as_wordvec(x, normalize = FALSE)

S3 method for class 'embed'
x[i, j]
pattern(pattern)

Arguments

x Object to be reshaped. See examples.
normalize Normalize all word vectors to unit length? Defaults to FALSE. See normalize.
i, j Row (i) and column (j) filter to be used in embed[i, j].
pattern Regular expression to be used in embed[pattern("...")].

Value

A wordvec (data.table) or embed (matrix).

Functions

• as_embed(): From wordvec (data.table) to embed (matrix).
• as_wordvec(): From embed (matrix) to wordvec (data.table).

Download

See Also

load_wordvec/load_embed
normalize
data_transform
data_wordvec_subset

Examples

dt = head(demodata, 10)
str(dt)

embed = as_embed(dt, normalize=TRUE)
embed
str(embed)

wordvec = as_wordvec(embed, normalize=TRUE)
wordvec
str(wordvec)

df = data.frame(token=LETTERS, D1=1:26/10000, D2=26:1/10000)
as_embed(df)
as_wordvec(df)

dd = rbind(dt[1:5], dt[1:5])

dd # duplicate words
unique(dd)

dm = as_embed(dd)
dm # duplicate words
unique(dm)

more examples for extracting a subset using 'x[i, j]'
(3x faster than 'wordvec')
embed = as_embed(demodata)
embed[1]
embed[1:5]
embed["for"]
embed[pattern("^for\.(0,2)$")]
embed[cc("for, in, on, xxx")]
embed[cc("for, in, on, xxx", 5:10)]
embed[1:5, 5:10]
embed[, 5:10]
embed[3, 4]
embed["that", 4]

cosine_similarity

Cosine similarity/distance between two vectors.

Description
Cosine similarity/distance between two vectors.

Usage

\[\text{cosine}_\text{sim}(v1, v2, \text{distance} = \text{FALSE}) \]

\[\text{cos}_\text{sim}(v1, v2) \]

\[\text{cos}_\text{dist}(v1, v2) \]

Arguments

\[v1, v2 \quad \text{Numeric vector (of the same length).} \]

\[\text{distance} \quad \text{Compute cosine distance instead? Defaults to FALSE (cosine similarity).} \]
data_transform

Details

Cosine similarity =
\[
\frac{\sum(v_1 \times v_2)}{\sqrt{\sum(v_1^2)} \times \sqrt{\sum(v_2^2)}}
\]

Cosine distance =
\[
1 - \text{cosine_similarity}(v_1, v_2)
\]

Value

A value of cosine similarity/distance.

See Also

pair_similarity

tab_similarity

most_similar

Examples

```r
cos_sim(v1=c(1,1,1), v2=c(2,2,2)) # 1
cos_sim(v1=c(1,4,1), v2=c(4,1,1)) # 0.5
cos_sim(v1=c(1,1,0), v2=c(0,0,1)) # 0

cos_dist(v1=c(1,1,1), v2=c(2,2,2)) # 0
cos_dist(v1=c(1,4,1), v2=c(4,1,1)) # 0.5
cos_dist(v1=c(1,1,0), v2=c(0,0,1)) # 1
```

Data transformation

Transform plain text of word vectors into wordvec (data.table) or embed (matrix), saved in a compressed ".RData" file.

Description

Transform plain text of word vectors into wordvec (data.table) or embed (matrix), saved in a compressed ".RData" file.

Speed: In total (preprocess + compress + save), it can process about 30000 words/min with the slowest settings (compress="xz", compress.level=9) on a modern computer (HP ProBook 450, Windows 11, Intel i7-1165G7 CPU, 32GB RAM).
Usage

data_transform(
 file.load,
 file.save,
 as = c("wordvec", "embed"),
 sep = " ",
 header = "auto",
 encoding = "auto",
 compress = "bzip2",
 compress.level = 9,
 verbose = TRUE
)

Arguments

file.load File name of raw text (must be plain text).

Data must be in this format (values separated by sep):
 cat 0.001 0.002 0.003 0.004 0.005 ... 0.300
 dog 0.301 0.302 0.303 0.304 0.305 ... 0.600

file.save File name of to-be-saved R data (must be .RData).

as Transform the text to which R object? wordvec (data.table) or embed (matrix).

Defaults to wordvec.

sep Column separator. Defaults to " ".

header Is the 1st row a header (e.g., meta-information such as "2000000 300")? Defaults to "auto", which automatically determines whether there is a header. If TRUE, then the 1st row will be dropped.

encoding File encoding. Defaults to "auto" (using vroom::vroom_lines() to fast read the file). If specified to any other value (e.g., "UTF-8"), then it uses readLines() to read the file, which is much slower than vroom.

compress Compression method for the saved file. Defaults to "bzip2".

Options include:
 • 1 or "gzip": modest file size (fastest)
 • 2 or "bzip2": small file size (fast)
 • 3 or "xz": minimized file size (slow)

compress.level Compression level from 0 (none) to 9 (maximal compression for minimal file size). Defaults to 9.

verbose Print information to the console? Defaults to TRUE.

Value

A wordvec (data.table) or embed (matrix).

Download

Load word vectors data (wordvec or embed) from ".RData" file.

Usage

data_wordvec_load(
 file,
 as = c("wordvec", "embed"),
 normalize = FALSE,
 verbose = TRUE
)

load_wordvec(file, normalize = TRUE)

load_embed(file, normalize = TRUE)
Arguments

- `file`: File name of .RData transformed by `data_transform`. Can also be an .RData file containing an embedding matrix with words as row names.
- `as`: Load as `wordvec` (data.table) or `embed` (matrix). Defaults to the original class of the R object in `file`. The two wrapper functions `load_wordvec` and `load_embed` automatically reshape the data to the corresponding class and normalize all word vectors (for faster future use).
- `normalize`: Normalize all word vectors to unit length? Defaults to FALSE. See `normalize`.
- `verbose`: Print information to the console? Defaults to TRUE.

Value

A `wordvec` (data.table) or `embed` (matrix).

Download

See Also

- `as_wordvec` / `as_embed`
- `normalize`
- `data_transform`
- `data_wordvec_subset`

Examples

```r

d = demodata[1:200]
save(d, file="demo.RData")
d = load_wordvec("demo.RData")
d
```

```r

d = load_embed("demo.RData")
d
```

```r

unlink("demo.RData") # delete file for code check

## Not run:
# please first manually download the .RData file
# (see https://psychbruce.github.io/WordVector_RData.pdf)
# or transform plain text data by using `data_transform()`

# the RData file must be on your disk
# the following code cannot run unless you have the file
library(bruceR)
set.wd()

d = load_embed("../data-raw/GloVe/glove_wiki_50d.RData")
d

## End(Not run)
```
data_wordvec_subset

Extract a subset of word vectors data (with S3 methods).

Description

Extract a subset of word vectors data (with S3 methods). You may specify either a wordvec or embed loaded by data_wordvec_load or an .RData file transformed by data_transform.

Usage

data_wordvec_subset(
 x,
 words = NULL,
 pattern = NULL,
 as = c("wordvec", "embed"),
 file.save,
 compress = "bzip2",
 compress.level = 9,
 verbose = TRUE
)

S3 method for class 'wordvec'
subset(x, ...)

S3 method for class 'embed'
subset(x, ...)

Arguments

x Can be:
 - a wordvec or embed loaded by data_wordvec_load
 - an .RData file transformed by data_transform

words [Option 1] Character string(s).

pattern [Option 2] Regular expression (see str_subset). If neither words nor pattern are specified (i.e., both are NULL), then all words in the data will be extracted.

as Reshape to wordvec (data.table) or embed (matrix). Defaults to the original class of x.

file.save File name of to-be-saved R data (must be .RData).

compress Compression method for the saved file. Defaults to "bzip2".
 Options include:
 - 1 or "gzip": modest file size (fastest)
 - 2 or "bzip2": small file size (fast)
• 3 or "xz": minimized file size (slow)

compress.level Compression level from 0 (none) to 9 (maximal compression for minimal file size). Defaults to 9.

verbose Print information to the console? Defaults to TRUE.

... Parameters passed to `data_wordvec_subset` when using the S3 method subset.

Value

A subset of `wordvec` or `embed` of valid (available) words.

Download

See Also

- `as_wordvec` / `as_embed`
- `load_wordvec` / `load_embed`
- `get_wordvec`
- `data_transform`

Examples

```r
## directly use `embed[i, j]` (3x faster than `wordvec`):
d = as_embed(demodata)
d[1:5]
d[c("people"]
d[c("China", "Japan", "Korea")]

## specify `x` as a `wordvec` or `embed` object:
subset(demodata, c("China", "Japan", "Korea"))
subset(d, pattern="^Chi")

## specify `x` and `pattern`, and save with `file.save`:
subset(demodata, pattern="Chin[a]e|Japan|Korea",
      file.save="subset.RData")

## load the subset:
d.subset = load_wordvec("subset.RData")
d.subset

## specify `x` as an .RData file and save with `file.save`:
data_wordvec_subset("subset.RData",
     words=c("China", "Chinese"),
     file.save="new.subset.RData")
d.new.subset = load_embed("new.subset.RData")
d.new.subset

unlink("subset.RData") # delete file for code check
```
unlink("new.subset.RData") # delete file for code check

demodata

Demo data (pre-trained using word2vec on Google News; 8000 vocab, 300 dims).

Description

This demo data contains a sample of 8000 English words with 300-dimension word vectors pre-trained using the "word2vec" algorithm based on the Google News corpus. Most of these words are from the Top 8000 frequent wordlist, whereas a few are selected from less frequent words and appended.

Usage

data(demodata)

Format

A data.table (of new class wordvec) with two variables word and vec, transformed from the raw data (see the URL in Source) into .RData using the data_transform function.

Source

Google Code - word2vec (https://code.google.com/archive/p/word2vec/)

Examples

class(demodata)
demodata

embed = as_embed(demodata, normalize=TRUE)
class(embed)
embed

dict_expand

Expand a dictionary from the most similar words.

Description

Expand a dictionary from the most similar words.

Usage

dict_expand(data, words, threshold = 0.5, iteration = 5, verbose = TRUE)
dict_expand

Arguments

- **data**: A `wordvec` (data.table) or `embed` (matrix), see `data_wordvec_load`.
- **words**: A single word or a list of words, used to calculate the sum vector.
- **threshold**: Threshold of cosine similarity, used to find all words with similarities higher than this value. Defaults to 0.5. A low threshold may lead to failure of convergence.
- **iteration**: Number of maximum iterations. Defaults to 5.
- **verbose**: Print information to the console? Defaults to TRUE.

Value

An expanded list (character vector) of words.

Download

See Also

- `sum_wordvec`
- `most_similar`
- `dict_reliability`

Examples

```r
dict = dict_expand(demodata, "king")
dict

dict = dict_expand(demodata, cc("king, queen"))
dict

most_similar(demodata, dict)

dict.cn = dict_expand(demodata, "China")
dict.cn # too inclusive if setting threshold = 0.5

dict.cn = dict_expand(demodata,
          cc("China, Chinese"),
          threshold=0.6)
dict.cn # adequate to represent "China"
```
Description

Reliability analysis (Cronbach’s α and average cosine similarity) and Principal Component Analysis (PCA) of a dictionary, with visualization of cosine similarities between words (ordered by the first principal component loading). Note that Cronbach’s α can be misleading when the number of items/words is large.

Usage

dict_reliability(
 data,
 words = NULL,
 pattern = NULL,
 alpha = TRUE,
 sort = TRUE,
 plot = TRUE,
 ...
)

Arguments

data A wordvec (data.table) or embed (matrix), see data_wordvec_load.
words [Option 1] Character string(s).
pattern [Option 2] Regular expression (see str_subset). If neither words nor pattern are specified (i.e., both are NULL), then all words in the data will be extracted.
alpha Estimate the Cronbach’s α? Defaults to TRUE. Note that this can be misleading and time-consuming when the number of items/words is large.
sort Sort items by the first principal component loading (PC1)? Defaults to TRUE.
plot Visualize the cosine similarities? Defaults to TRUE.
...

Value

A list object of new class reliability:

alpha Cronbach’s α
eigen Eigen values from PCA
pca PCA (only 1 principal component)
pca.rotation PCA with varimax rotation (if potential principal components > 1)
items Item statistics
cos.sim.mat A matrix of cosine similarities of all word pairs
cos.sim Lower triangular part of the matrix of cosine similarities
get_wordvec

Extract word vector(s).

Description

Extract word vector(s), using either a list of words or a regular expression.

Usage

get_wordvec(
 data,
 words = NULL,
 pattern = NULL,
 plot = FALSE,
get_wordvec

plot.dims = NULL,
plot.step = 0.05,
plot.border = "white"
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>A wordvec (data.table) or embed (matrix), see data_wordvec_load.</td>
</tr>
<tr>
<td>words</td>
<td>[Option 1] Character string(s).</td>
</tr>
<tr>
<td>pattern</td>
<td>[Option 2] Regular expression (see str_subset). If neither words nor pattern are specified (i.e., both are NULL), then all words in the data will be extracted.</td>
</tr>
<tr>
<td>plot</td>
<td>Generate a plot to illustrate the word vectors? Defaults to FALSE.</td>
</tr>
<tr>
<td>plot.dims</td>
<td>Dimensions to be plotted (e.g., 1:100). Defaults to NULL (plot all dimensions).</td>
</tr>
<tr>
<td>plot.step</td>
<td>Step for value breaks. Defaults to 0.05.</td>
</tr>
<tr>
<td>plot.border</td>
<td>Color of tile border. Defaults to "white". To remove the border color, set plot.border=NA.</td>
</tr>
</tbody>
</table>

Value

A data.table with words as columns and dimensions as rows.

Download

See Also

data_wordvec_subset
plot_wordvec
plot_wordvec_tSNE

Examples

d = as_embed(demodata, normalize=TRUE)

get_wordvec(d, c("China", "Japan", "Korea"))
get_wordvec(d, cc(" China, Japan; Korea "))

specify 'pattern'
get_wordvec(d, pattern="Chin[ae]Japan|Korea")

plot word vectors:
get_wordvec(d, cc("China, Japan, Korea, Mac, Linux, Windows"),
 plot=TRUE, plot.dims=1:100)

a more complex example:
words = cc("China Chinese Japan Japanese good bad great terrible morning evening king queen man woman he she cat dog").

dt = get_wordvec(d, words, plot=TRUE, plot.dims=1:100, plot.step=0.06)

if you want to change something:
attr(dt, "ggplot") +
 scale_fill_viridis_b(n.breaks=10, show.limits=TRUE) +
 theme(legend.key.height=unit(0.1, "npc"))

or to save the plot:
 ggsave(attr(dt, "ggplot"),
 filename="wordvecs.png",
 width=8, height=5, dpi=500)
unlink("wordvecs.png") # delete file for code check

most_similar

Find the Top-N most similar words.

Description

Find the Top-N most similar words, which replicates the results produced by the Python gensim module most_similar() function. (Exact replication of gensim requires the same word vectors data, not the demodata used here in examples.)
Usage

```r
most_similar(
  data,
  x = NULL,
  topn = 10,
  above = NULL,
  keep = FALSE,
  row.id = TRUE,
  verbose = TRUE
)
```

Arguments

data A `wordvec` (data.table) or `embed` (matrix), see `data_wordvec_load`.

x Can be:

- NULL: use the sum of all word vectors in `data`
- a single word:
 "China"
- a list of words:
 `c("king", "queen")`
 `cc(" king , queen ; man \mid woman")`
- an R formula (~ xxx) specifying words that positively and negatively contribute to the similarity (for word analogy):
 ~ boy - he + she
 ~ king - man + woman
 ~ Beijing - China + Japan

`topn` Top-N most similar words. Defaults to 10.
`above` Defaults to NULL. Can be:

- a threshold value to find all words with cosine similarities higher than this value
- a critical word to find all words with cosine similarities higher than that with this critical word

If both `topn` and `above` are specified, above wins.
`keep` Keep words specified in `x` in results? Defaults to FALSE.
`row.id` Return the row number of each word? Defaults to TRUE, which may help determine the relative word frequency in some cases.
`verbose` Print information to the console? Defaults to TRUE.

Value

A data.table with the most similar words and their cosine similarities.

Download

See Also

sum_wordvec
dict_expand
dict_reliability
cosine_similarity
pair_similarity
plot_similarity	tab_similarity

Examples

d = as_embed(demodata, normalize=TRUE)

most_similar(d)
most_similar(d, "China")
most_similar(d, c("king", "queen"))
most_similar(d, cc(" king , queen ; man | woman "))

the same as above:
most_similar(d, ~ China)
most_similar(d, ~ king + queen)
most_similar(d, ~ king + queen + man + woman)

most_similar(d, ~ boy - he + she)
most_similar(d, ~ Jack - he + she)
most_similar(d, ~ Rose - she + he)

most_similar(d, ~ king - man + woman)
most_similar(d, ~ Tokyo - Japan + China)
most_similar(d, ~ Beijing - China + Japan)

most_similar(d, "China", above=0.7)
most_similar(d, "China", above="Shanghai")

automatically normalized for more accurate results
ms = most_similar(demodata, ~ king - man + woman)
ms
str(ms)
normalize

Description

L2-normalization (scaling to unit euclidean length): the norm of each vector in the vector space will be normalized to 1. It is necessary for any linear operation of word vectors.

R code:

- Vector: vec / sqrt(sum(vec^2))
- Matrix: mat / sqrt(rowSums(mat^2))

Usage

normalize(x)

Arguments

x A wordvec (data.table) or embed (matrix), see data_wordvec_load.

Value

A wordvec (data.table) or embed (matrix) with normalized word vectors.

Download

See Also

as_wordvec / as_embed
load_wordvec / load_embed
data_transform
data_wordvec_subset

Examples

d = normalize(demodata)
the same: d = as_wordvec(demodata, normalize=TRUE)
Orthogonal Procrustes rotation for matrix alignment.

Description

In order to compare word embeddings from different time periods, we must ensure that the embedding matrices are aligned to the same semantic space (coordinate axes). The Orthogonal Procrustes solution (Schönemann, 1966) is commonly used to align historical embeddings over time (Hamilton et al., 2016; Li et al., 2020).

Note that this kind of rotation does not change the relative relationships between vectors in the space, and thus does not affect semantic similarities or distances within each embedding matrix. But it does influence the semantic relationships between different embedding matrices, and thus would be necessary for some purposes such as the "semantic drift analysis" (e.g., Hamilton et al., 2016; Li et al., 2020).

This function produces the same results as by cds::orthprocr(), psych::Procrustes(), and pracma::procrustes().

Usage

orth_procrustes(M, X)

Arguments

M, X Two embedding matrices of the same size (rows and columns), can be embed or wordvec objects.

- M is the reference (anchor/baseline/target) matrix, e.g., the embedding matrix learned at the later year ($t + 1$).
- X is the matrix to be transformed/rotated.

Note: The function automatically extracts only the intersection (overlapped part) of words in M and X and sorts them in the same order (according to M).

Value

A matrix or wordvec object of X after rotation, depending on the class of M and X.

References

pair_similarity

See Also

as_wordvec / as_embed

Examples

M = matrix(c(0, 0, 1, 2, 2, 0, 3, 2, 4, 0), ncol=2, byrow=TRUE)
X = matrix(c(0, 0, -2, 1, 0, 2, -2, 3, 0, 4), ncol=2, byrow=TRUE)
rownames(M) = rownames(X) = cc("A, B, C, D, E") # words
colnames(M) = colnames(X) = cc("dim1, dim2") # dimensions

ggplot() +
 geom_path(data=as.data.frame(M), aes(x=dim1, y=dim2),
 color="red") +
 geom_path(data=as.data.frame(X), aes(x=dim1, y=dim2),
 color="blue") +
 coord_equal()

Usage 1: input two matrices (can be 'embed' objects)
XR = orth_procrustes(M, X)
XR # aligned with M

ggplot() +
 geom_path(data=as.data.frame(XR), aes(x=dim1, y=dim2)) +
 coord_equal()

Usage 2: input two 'wordvec' objects
M.wv = as_wordvec(M)
X.wv = as_wordvec(X)
XR.wv = orth_procrustes(M.wv, X.wv)
XR.wv # aligned with M.wv

M and X must have the same set and order of words
and the same number of word vector dimensions.
The function extracts only the intersection of words
and sorts them in the same order according to M.

Y = rbind(X, X[rev(rownames(X)),])
rownames(Y)[1:5] = cc("F, G, H, I, J")
M.wv = as_wordvec(M)
Y.wv = as_wordvec(Y)
M.wv # words: A, B, C, D, E
Y.wv # words: F, G, H, I, J, E, D, C, B, A
YR.wv = orth_procrustes(M.wv, Y.wv)
YR.wv # aligned with M.wv, with the same order of words

pair_similarity

Compute a matrix of cosine similarity/distance of word pairs.
pair_similarity

Description
Compute a matrix of cosine similarity/distance of word pairs.

Usage

```r
pair_similarity(
  data,
  words = NULL,
  pattern = NULL,
  words1 = NULL,
  words2 = NULL,
  distance = FALSE
)
```

Arguments
- `data`: A `wordvec` (data.table) or `embed` (matrix), see `data_wordvec_load`.
- `words` [Option 1]: Character string(s).
- `pattern` [Option 2]: Regular expression (see `str_subset`). If neither `words` nor `pattern` are specified (i.e., both are NULL), then all words in the data will be extracted.
- `words1`, `words2` [Option 3]: Two sets of words for only n1 * n2 word pairs. See examples.
- `distance`: Compute cosine distance instead? Defaults to FALSE (cosine similarity).

Value
A matrix of pairwise cosine similarity/distance.

Download

See Also
- `cosine_similarity`
- `plot_similarity`
- `tab_similarity`
- `most_similar`

Examples
```r
pair_similarity(demodata, c("China", "Chinese"))

pair_similarity(demodata, pattern="^Chi")

pair_similarity(demodata,
  words1=c("China", "Chinese"),
  words2=c("Japan", "Japanese"))
```
plot_network

Visualize a (partial correlation) network graph of words.

Description

Visualize a (partial correlation) network graph of words.

Usage

```r
plot_network(
  data,
  words = NULL,
  pattern = NULL,
  index = c("pcor", "cor", "glasso", "sim"),
  alpha = 0.05,
  bonf = FALSE,
  max = NULL,
  node.size = "auto",
  node.group = NULL,
  node.color = NULL,
  label.text = NULL,
  label.size = 1.2,
  label.size.equal = TRUE,
  label.color = "black",
  edge.color = c("#009900", "#BF0000"),
  edge.label = FALSE,
  edge.label.size = 1,
  edge.label.color = NULL,
  edge.label.bg = "white",
  file = NULL,
  width = 10,
  height = 6,
  dpi = 500,
  ...
)
```

Arguments

- **data** A `wordvec` (data.table) or `embed` (matrix), see `data_wordvec_load`.
- **words** [Option 1] Character string(s).
- **pattern** [Option 2] Regular expression (see `str_subset`). If neither words nor pattern are specified (i.e., both are NULL), then all words in the data will be extracted.
- **index** Use which index to perform network analysis? Can be "pcor" (partial correlation, default and suggested), "cor" (raw correlation), "glasso" (graphical lasso-estimation of partial correlation matrix using the glasso package), or "sim" (pairwise cosine similarity).
alpha Significance level to be used for not showing edges. Defaults to 0.05.
bonf Bonferroni correction of p value. Defaults to FALSE.
max Maximum value for scaling edge widths and colors. Defaults to the highest value of the index. Can be 1 if you want to compare several graphs.
node.size Node size. Defaults to $8 \times \exp(-n\text{Nodes}/80)+1$.
node.group Node group(s). Can be a named list (see examples) in which each element is a vector of integers identifying the numbers of the nodes that belong together, or a factor.
node.color Node color(s). Can be a character vector of colors corresponding to node.group. Defaults to white (if node.group is not specified) or the palette of ggplot2 (if node.group is specified).
label.text Node label of text. Defaults to original words.
label.size Node label font size. Defaults to 1.2.
label.size.equal Make the font size of all labels equal. Defaults to TRUE.
label.color Node label color. Defaults to "black".
edge.color Edge colors for positive and negative values, respectively. Defaults to c("#009900",
#BF0000").
edge.label Edge label of values. Defaults to FALSE.
edge.label.size Edge label font size. Defaults to 1.
edge.label.color Edge label color. Defaults to edge.color.
edge.label.bg Edge label background color. Defaults to "white".
file File name to be saved, should be png or pdf.
width, height Width and height (in inches) for the saved file. Defaults to 10 and 6.
dpi Dots per inch. Defaults to 500 (i.e., file resolution: 4000 * 3000).
... Other parameters passed to qgraph.

Value
Invisibly return a qgraph object, which further can be plotted using plot().

Download

See Also
plot_similarity
plot_wordvec_tSNE
Examples

```r
d = as.embed(demodata, normalize=TRUE)

words = cc("man, woman,
he, she,
boy, girl,
father, mother,
mom, dad,
China, Japan")

plot_network(d, words)

p = plot_network(
  d, words,
  node.group=list(Gender=1:6, Family=7:10, Country=11:12),
  node.color=c("antiquewhite", "lightsalmon", "lightblue"),
  file="network.png")

plot(p)

unlink("network.png") # delete file for code check

# network analysis with centrality plot (see `qgraph` package)
qgraph::centralityPlot(p, include="all", scale="raw",
  orderBy="Strength")

# graphical lasso-estimation of partial correlation matrix
plot_network(
  d, words,
  index="glasso",
  # threshold=TRUE,
  node.group=list(Gender=1:6, Family=7:10, Country=11:12),
  node.color=c("antiquewhite", "lightsalmon", "lightblue"))
```

plot_similarity

Visualize cosine similarity of word pairs.

Description

Visualize cosine similarity of word pairs.

Usage

```r
plot_similarity(
  data,
  words = NULL,
  pattern = NULL,
)```
plot_similarity

words1 = NULL,
words2 = NULL,
label = "auto",
value.color = NULL,
value.percent = FALSE,
order = c("original", "AOE", "FPC", "hclust", "alphabet"),
hclust.method = c("complete", "ward", "ward.D", "ward.D2", "single", "average",
                  "mcquitty", "median", "centroid"),
hclust.n = NULL,
hclust.color = "black",
hclust.line = 2,
file = NULL,
width = 10,
height = 6,
dpi = 500,
...
)

Arguments

data A wordvec (data.table) or embed (matrix), see data_wordvec_load.

words [Option 1] Character string(s).

pattern [Option 2] Regular expression (see str_subset). If neither words nor pattern are specified (i.e., both are NULL), then all words in the data will be extracted.

words1, words2 [Option 3] Two sets of words for only n1 * n2 word pairs. See examples.

label Position of text labels. Defaults to "auto" (add labels if less than 20 words). Can be TRUE (left and top), FALSE (add no labels of words), or a character string (see the usage of tl.pos in corrplot).

value.color Color of values added on the plot. Defaults to NULL (add no values).

value.percent Whether to transform values into percentage style for space saving. Defaults to FALSE.

order Character, the ordering method of the correlation matrix.
  - 'original' for original order (default).
  - 'AOE' for the angular order of the eigenvectors.
  - 'FPC' for the first principal component order.
  - 'hclust' for the hierarchical clustering order.
  - 'alphabet' for alphabetical order.

See function corrMatOrder for details.

hclust.method Character, the agglomeration method to be used when order is hclust. This should be one of 'ward', 'ward.D', 'ward.D2', 'single', 'complete', 'average', 'mcquitty', 'median' or 'centroid'.

hclust.n Number of rectangles to be drawn on the plot according to the hierarchical clusters, only valid when order="hclust". Defaults to NULL (add no rectangles).

hclust.color Color of rectangle border, only valid when hclust.n >= 1. Defaults to "black".
plot_similarity

hclust.line Line width of rectangle border, only valid when hclust.n >= 1. Defaults to 2.
file File name to be saved, should be png or pdf.
width, height Width and height (in inches) for the saved file. Defaults to 10 and 6.
dpi Dots per inch. Defaults to 500 (i.e., file resolution: 4000 * 3000).
... Other parameters passed to corrplot.

Value
Invisibly return a matrix of cosine similarity between each pair of words.

Download

See Also
cosine_similarity
pair_similarity
tab_similarity
most_similar
plot_network

Examples
w1 = cc("king, queen, man, woman")
plot_similarity(demodata, w1)
plot_similarity(demodata, w1,
  value.color="grey",
  value.percent=TRUE)
plot_similarity(demodata, w1,
  value.color="grey",
  order="hclust",
  hclust.n=2)

plot_similarity(  
demodata,
  words1=cc("man, woman, king, queen"),
  words2=cc("he, she, boy, girl, father, mother"),
  value.color="grey20"
  )

w2 = cc("China, Chinese,
  Japan, Japanese,
  Korea, Korean,
  man, woman, boy, girl,
  good, bad, positive, negative")
plot_similarity(demodata, w2,
  order="hclust",  
  ...
plot_wordvec

```
plot_similarity(demodata, w2,
 order="hclust",
 hclust.n=7,
 file="plot.png")

unlink("plot.png") # delete file for code check
```

---

**plot_wordvec**

*Visualize word vectors.*

**Description**

Visualize word vectors.

**Usage**

```
plot_wordvec(x, dims = NULL, step = 0.05, border = "white")
```

**Arguments**

- **x**
  - Can be:
    - a data.table returned by `get_wordvec`
    - a wordvec (data.table) or embed (matrix) loaded by `data_wordvec_load`
- **dims**
  - Dimensions to be plotted (e.g., 1:100). Defaults to NULL (plot all dimensions).
- **step**
  - Step for value breaks. Defaults to 0.05.
- **border**
  - Color of tile border. Defaults to "white". To remove the border color, set border=NA.

**Value**

A ggplot object.

**Download**


**See Also**

- `get_wordvec`
- `plot_similarity`
- `plot_wordvec_tSNE`
plot_wordvec_tSNE

Examples

```r
d = as_embed(demodata, normalize=TRUE)

plot_wordvec(d[,1:10])

dt = get_wordvec(d, cc("king, queen, man, woman"))
dt[, QUEEN := king - man + woman]
dt[, QUEEN := QUEEN / sqrt(sum(QUEEN^2))] # normalize
names(dt)[5] = "king - man + woman"
plot_wordvec(dt[, c(1,3,4,5,2)], dims=1:50)

dt = get_wordvec(d, cc("boy, girl, he, she"))
dt[, GIRL := boy - he + she]
dt[, GIRL := GIRL / sqrt(sum(GIRL^2))] # normalize
names(dt)[5] = "boy - he + she"
plot_wordvec(dt[, c(1,3,4,5,2)], dims=1:50)

dt = get_wordvec(d, cc("male, man, boy, he, his,
female, woman, girl, she, her"))

p = plot_wordvec(dt, dims=1:100)

if you want to change something:
p + theme(legend.key.height=unit(0.1, "npc"))

or to save the plot:
ggsave(p, filename="wordvecs.png",
 width=8, height=5, dpi=500)
unlink("wordvecs.png") # delete file for code check
```
colors = NULL,
seed = NULL,
custom.Rtsne = NULL
)

Arguments

x Can be:
  • a data.table returned by get_wordvec
  • a wordvec (data.table) or embed (matrix) loaded by data_wordvec_load
dims Output dimensionality: 2 (default, the most common choice) or 3.
perplexity Perplexity parameter, should not be larger than (number of words - 1) / 3. De-
defaults to floor((length(dt)-1)/3) (where columns of dt are words). See the Rtsne package for details.
theta Speed/accuracy trade-off (increase for less accuracy), set to 0 for exact t-SNE. De-
defaults to 0.5.
colors A character vector specifying (1) the categories of words (for 2-D plot only) or (2) the exact colors of words (for 2-D and 3-D plot). See examples for its usage.
seed Random seed for reproducible results. Defaults to NULL.
custom.Rtsne User-defined Rtsne object using the same dt.

Value

2-D: A ggplot object. You may extract the data from this object using $data.
3-D: Nothing but only the data was invisibly returned, because rgl::plot3d() is "called for the side effect of drawing the plot" and thus cannot return any 3-D plot object.

Download


References


See Also

plot_wordvec
plot_network
Examples

d = as_embed(demodata, normalize=TRUE)

dt = get_wordvec(d, cc("man, woman, 
                 king, queen, 
                 China, Beijing, 
                 Japan, Tokyo"))

## 2-D (default):
plot_wordvec_tSNE(dt, seed=1234)

plot_wordvec_tSNE(dt, seed=1234)$data

colors = c(rep("#2B579A", 4), rep("#B7472A", 4))
plot_wordvec_tSNE(dt, colors=colors, seed=1234)

category = c(rep("gender", 4), rep("country", 4))
plot_wordvec_tSNE(dt, colors=category, seed=1234) +
  scale_x_continuous(limits=c(-200, 200),
                     labels=function(x) x/100) +
  scale_y_continuous(limits=c(-200, 200),
                     labels=function(x) x/100) +
  scale_color_manual(values=c("#B7472A", "#2B579A"))

## 3-D:
colors = c(rep("#2B579A", 4), rep("#B7472A", 4))
plot_wordvec_tSNE(dt, dims=3, colors=colors, seed=1)

---

**sum_wordvec**

*Calculate the sum vector of multiple words.*

Description

Calculate the sum vector of multiple words.

Usage

`sum_wordvec(data, x = NULL, verbose = TRUE)`

Arguments

data **A wordvec** (data.table) or **embed** (matrix), see `data_wordvec_load`.

x **Can be:**

- `NULL`: use the sum of all word vectors in data
- a single word:
  - "China"
- a list of words:
  c("king", "queen")
  cc("king, queen; man | woman")
- an R formula (~ xxx) specifying words that positively and negatively contribute to the similarity (for word analogy):
  ~ boy - he + she
  ~ king - man + woman
  ~ Beijing - China + Japan

verbosede Print information to the console? Defaults to TRUE.

Value
Normalized sum vector.

Download

See Also
normalize
most_similar
dict_expand
dict_reliability

Examples

sum_wordvec(normalize(demodata), ~ king - man + woman)

---

**tab_similarity**

Tabulate cosine similarity/distance of word pairs.

Description
Tabulate cosine similarity/distance of word pairs.

Usage

```
 tab_similarity(
 data,
 words = NULL,
 pattern = NULL,
 words1 = NULL,
 words2 = NULL,
 unique = FALSE,
 distance = FALSE
)
```
**Arguments**

- **data**  
  A `wordvec` (data.table) or `embed` (matrix), see `data_wordvec_load`.

- **words**  
  [Option 1] Character string(s).

- **pattern**  
  [Option 2] Regular expression (see `str_subset`). If neither `words` nor `pattern` are specified (i.e., both are NULL), then all words in the data will be extracted.

- **words1, words2**  
  [Option 3] Two sets of words for only n1 * n2 word pairs. See examples.

- **unique**  
  Return unique word pairs (TRUE) or all pairs with duplicates (FALSE; default).

- **distance**  
  Compute cosine distance instead? Defaults to FALSE (cosine similarity).

**Value**

A `data.table` of words, word pairs, and their cosine similarity (`cos_sim`) or cosine distance (`cos_dist`).

**Download**


**See Also**

- `cosine_similarity`
- `pair_similarity`
- `plot_similarity`
- `most_similar`
- `test_WEAT`
- `test_RND`

**Examples**

```r
tab_similarity(demodata, cc("king, queen, man, woman"))
tab_similarity(demodata, cc("king, queen, man, woman"),
 unique=TRUE)

tab_similarity(demodata, cc("Beijing, China, Tokyo, Japan"))
tab_similarity(demodata, cc("Beijing, China, Tokyo, Japan"),
 unique=TRUE)

only n1 * n2 word pairs across two sets of words

tab_similarity(demodata,
 words1=cc("king, queen, King, Queen"),
 words2=cc("man, woman"))
```

---

**tab_similarity**

33
Relative Norm Distance (RND) analysis.

Description

Tabulate data and conduct the permutation test of significance for the Relative Norm Distance (RND; also known as Relative Euclidean Distance). This is an alternative method to Single-Category WEAT.

Usage

```r
test_RND(
 data,
 T1,
 A1,
 A2,
 use.pattern = FALSE,
 labels = list(),
 p.perm = TRUE,
 p.nsim = 10000,
 p.side = 2,
 seed = NULL
)
```

Arguments

- `data`: A `wordvec` (data.table) or `embed` (matrix), see `data_wordvec_load`.
- `T1`: Target words of a single category (a vector of words or a pattern of regular expression).
- `A1`, `A2`: Attribute words (a vector of words or a pattern of regular expression). Both must be specified.
- `use.pattern`: Defaults to `FALSE` (using a vector of words). If you use regular expression in `T1`, `T2`, `A1`, and `A2`, please specify this argument as `TRUE`.
- `labels`: Labels for target and attribute concepts (a named list), such as (the default) `list(T1="Target", A1="Attrib1", A2="Attrib2")`.
- `p.perm`: Permutation test to get exact or approximate p value of the overall effect. Defaults to `TRUE`. See also the `sweater` package.
- `p.nsim`: Number of samples for resampling in permutation test. Defaults to `10000`. If `p.nsim` is larger than the number of all possible permutations (rearrangements of data), then it will be ignored and an exact permutation test will be conducted. Otherwise (in most cases for real data and always for SC-WEAT), a resampling test is performed, which takes much less computation time and produces the approximate p value (comparable to the exact one).
p.side One-sided (1) or two-sided (2) \( p \) value. Defaults to 2.

In Caliskan et al.'s (2017) article, they reported one-sided \( p \) value for WEAT. Here, I suggest reporting two-sided \( p \) value as a more conservative estimate. The users take the full responsibility for the choice.

- The one-sided \( p \) value is calculated as the proportion of sampled permutations where the difference in means is greater than the test statistic.
- The two-sided \( p \) value is calculated as the proportion of sampled permutations where the absolute difference is greater than the test statistic.

seed Random seed for reproducible results of permutation test. Defaults to NULL.

Value

A list object of new class rnd:

- words.valid Valid (actually matched) words
- words.not.found Words not found
- data.raw A data.table of (absolute and relative) norm distances
- eff.label Description for the difference between the two attribute concepts
- eff.type Effect type: RND
- eff Raw effect and \( p \) value (if p.perm=TRUE)
- eff.interpretation Interpretation of the RND score

Download


References


See Also

tab_similarity
dict_expand
dict_reliability
test_WEAT
Examples

```r
rnd = test_RND(
demodata,
labels=list(T1="Occupation", A1="Male", A2="Female"),
T1=cc("architect, boss, leader, engineer, CEO, officer, manager,
lawyer, scientist, doctor, psychologist, investigator,
consultant, programmer, teacher, clerk, counselor,
salesperson, therapist, psychotherapist, nurse"),
A1=cc("male, man, boy, brother, he, him, his, son"),
A2=cc("female, woman, girl, sister, she, her, hers, daughter"),
seed=1)
rnd
```

**Description**

Tabulate data (cosine similarity and standardized effect size) and conduct the permutation test of significance for the **Word Embedding Association Test (WEAT)** and **Single-Category Word Embedding Association Test (SC-WEAT)**.

- For WEAT, two-samples permutation test is conducted (i.e., rearrangements of data).
- For SC-WEAT, one-sample permutation test is conducted (i.e., rearrangements of +/- signs to data).

**Usage**

```r
test_WEAT(
data,
T1,
T2,
A1,
A2,
use.pattern = FALSE,
labels = list(),
p.perm = TRUE,
p.nsim = 10000,
p.side = 2,
seed = NULL,
pooled.sd = "Caliskan"
)
```
Arguments

data A wordvec (data.table) or embed (matrix), see data_wordvec_load.
T1, T2 Target words (a vector of words or a pattern of regular expression). If only T1 is specified, it will tabulate data for single-category WEAT (SC-WEAT).
A1, A2 Attribute words (a vector of words or a pattern of regular expression). Both must be specified.
use.pattern Defaults to FALSE (using a vector of words). If you use regular expression in T1, T2, A1, and A2, please specify this argument as TRUE.
labels Labels for target and attribute concepts (a named list), such as (the default) list(T1="Target1", T2="Target2", A1="Attrib1", A2="Attrib2").
p.perm Permutation test to get exact or approximate p value of the overall effect. Defaults to TRUE. See also the sweater package.
p.nsim Number of samples for resampling in permutation test. Defaults to 10000. If p.nsim is larger than the number of all possible permutations (rearrangements of data), then it will be ignored and an exact permutation test will be conducted. Otherwise (in most cases for real data and always for SC-WEAT), a resampling test is performed, which takes much less computation time and produces the approximate p value (comparable to the exact one).
p.side One-sided (1) or two-sided (2) p value. Defaults to 2.
In Caliskan et al.’s (2017) article, they reported one-sided p value for WEAT. Here, I suggest reporting two-sided p value as a more conservative estimate. The users take the full responsibility for the choice.
• The one-sided p value is calculated as the proportion of sampled permutations where the difference in means is greater than the test statistic.
• The two-sided p value is calculated as the proportion of sampled permutations where the absolute difference is greater than the test statistic.
seed Random seed for reproducible results of permutation test. Defaults to NULL.
pooled.sd Method used to calculate the pooled SD for effect size estimate in WEAT.
• Defaults to "Caliskan": sd(data.diff$cos_sim_diff), which is highly suggested and identical to Caliskan et al.’s (2017) original approach.
• Otherwise specified, it will calculate the pooled SD as: \( \sqrt{\frac{(n_1 - 1) * \sigma_1^2 + (n_2 - 1) * \sigma_2^2}{n_1 + n_2}} \). This is NOT suggested because it may overestimate the effect size, especially when there are only a few T1 and T2 words that have small variances.

Value

A list object of new class weat:

words.valid Valid (actually matched) words
words.not.found Words not found
data.raw A data.table of cosine similarities between all word pairs
data.mean A data.table of mean cosine similarities across all attribute words
data.diff A data.table of differential mean cosine similarities between the two attribute concepts
eff.label Description for the difference between the two attribute concepts

eff.type Effect type: WEAT or SC-WEAT

eff Raw effect, standardized effect size, and p value (if p.perm=TRUE)

Download


References


See Also

tab_similarity
dict_expand
dict_reliability
test_RND

Examples

```r
cc() is more convenient than c()!

weat = test_WEAT(
 demodata, # Updated with new argument and values
 labels=list(T1="King", T2="Queen", A1="Male", A2="Female"),
 T1=cc("king, King"),
 T2=cc("queen, Queen"),
 A1=cc("male, man, boy, brother, he, him, his, son"),
 A2=cc("female, woman, girl, sister, she, her, hers, daughter"),
 seed=1)

weat

sc_weat = test_WEAT(
 demodata, # Updated with new argument and values
 labels=list(T1="Occupation", A1="Male", A2="Female"),
 T1=cc("architect, boss, leader, engineer, CEO, officer, manager,
 lawyer, scientist, doctor, psychologist, investigator,
 consultant, programmer, teacher, clerk, counselor,
 salesperson, therapist, psychotherapist, nurse"),
 A1=cc("male, man, boy, brother, he, him, his, son"),
 A2=cc("female, woman, girl, sister, she, her, hers, daughter"),
 seed=1)

sc_weat

Not run:
```
## the same as the first example, but using regular expression

weat = test_WEAT(demodata,
  labels=list(T1="King", T2="Queen", A1="Male", A2="Female"),
  use.pattern=TRUE, # use regular expression below
  T1="^[kK]ing$",
  T2="^[qQ]ueen$",
  A1="^male$|^man$|^boy$|^brother$|^he$|^him$|^his$|^son$",
  A2="^female$|^woman$|^girl$|^sister$|^she$|^her$|^hers$|^daughter$",
  seed=1)
weat

## replicating Caliskan et al.'s (2017) results
## WEAT7 (Table 1): d = 1.06, p = .018
## (requiring installation of the 'sweater' package)

Caliskan.WEAT7 = test_WEAT(as_wordvec(sweater::glove_math),
  labels=list(T1="Math", T2="Arts", A1="Male", A2="Female"),
  T1=cc("math, algebra, geometry, calculus, equations, computation, numbers, addition"),
  T2=cc("poetry, art, dance, literature, novel, symphony, drama, sculpture"),
  A1=cc("male, man, boy, brother, he, him, his, son"),
  A2=cc("female, woman, girl, sister, she, her, hers, daughter"),
  p.side=1, seed=1234)
Caliskan.WEAT7

# d = 1.055, p = .0173 (= 173 counts / 10000 permutation samples)

## replicating Caliskan et al.'s (2017) supplemental results
## WEAT7 (Table S1): d = 0.97, p = .027

Caliskan.WEAT7.supp = test_WEAT(demodata,
  labels=list(T1="Math", T2="Arts", A1="Male", A2="Female"),
  T1=cc("math, algebra, geometry, calculus, equations, computation, numbers, addition"),
  T2=cc("poetry, art, dance, literature, novel, symphony, drama, sculpture"),
  A1=cc("male, man, boy, brother, he, him, his, son"),
  A2=cc("female, woman, girl, sister, she, her, hers, daughter"),
  p.side=1, seed=1234)
Caliskan.WEAT7.supp

# d = 0.966, p = .0221 (= 221 counts / 10000 permutation samples)

## End(Not run)

---

**text_init**

Install required Python modules in a new conda environment and initialize the environment, necessary for all text_\* functions designed for contextualized word embeddings.

## Description

Install required Python modules in a new conda environment and initialize the environment, necessary for all text_\* functions designed for contextualized word embeddings.
Usage

text_init()

Details

Users may first need to manually install Anaconda or Miniconda.

The R package text (https://www.r-text.org/) enables users access to HuggingFace Transformers models in R, through the R package reticulate as an interface to Python and the Python modules torch and transformers.

For advanced usage, see

- text::textrpp_install()
- text::textrpp_install_virtualenv()
- text::textrpp_uninstall()
- text::textrpp_initialize()

See Also

text_model_download
text_model_remove
text_to_vec
text_unmask

Examples

## Not run:
text_init()

# You may need to specify the version of Python:
# RStudio -> Tools -> Global/Project Options
# -> Python -> Select -> Conda Environments
# -> Choose ".../textrpp_condaenv/python.exe"

## End(Not run)

text_model_download  Download pre-trained language models from HuggingFace.

Description

Download pre-trained language models (Transformers Models, such as GPT, BERT, RoBERTa, DeBERTa, DistilBERT, etc.) from HuggingFace to your local ".cache" folder ("C:/Users/[YourUserName]/.cache/"). The models will never be removed unless you run text_model_remove.
text_model_download

Usage

text_model_download(model = NULL)

Arguments

model Character string(s) specifying the pre-trained language model(s) to be downloaded. For a full list of options, see HuggingFace. Defaults to download nothing and check currently downloaded models.

Example choices:
- "gpt2" (50257 vocab, 768 dims, 12 layers)
- "openai-gpt" (40478 vocab, 768 dims, 12 layers)
- "bert-base-uncased" (30522 vocab, 768 dims, 12 layers)
- "bert-large-uncased" (30522 vocab, 1024 dims, 24 layers)
- "bert-base-cased" (28996 vocab, 768 dims, 12 layers)
- "bert-large-cased" (28996 vocab, 1024 dims, 24 layers)
- "bert-base-chinese" (21128 vocab, 768 dims, 12 layers)
- "bert-base-multilingual-uncased" (119547 vocab, 768 dims, 12 layers)
- "distilbert-base-uncased" (30522 vocab, 768 dims, 6 layers)
- "distilbert-base-cased" (28996 vocab, 768 dims, 6 layers)
- "distilbert-base-multilingual-cased" (119547 vocab, 768 dims, 6 layers)
- "albert-base-v2" (30000 vocab, 768 dims, 12 layers)
- "albert-large-v2" (30000 vocab, 1024 dims, 24 layers)
- "roberta-base" (50265 vocab, 768 dims, 12 layers)
- "roberta-large" (50265 vocab, 1024 dims, 24 layers)
- "xlm-roberta-base" (250002 vocab, 768 dims, 12 layers)
- "xlm-roberta-large" (250002 vocab, 1024 dims, 24 layers)
- "xlnet-base-cased" (32000 vocab, 768 dims, 12 layers)
- "xlnet-large-cased" (32000 vocab, 1024 dims, 24 layers)
- "microsoft/deberta-v3-base" (128100 vocab, 768 dims, 12 layers)
- "microsoft/deberta-v3-large" (128100 vocab, 1024 dims, 24 layers)
- ... (see https://huggingface.co/models)

Value

Invisibly return the names of all downloaded models.

See Also

text_init
text_model_remove
text_to_vec
text_unmask
text_model_remove

Remove downloaded models from the local .cache folder.

Description
Remove downloaded models from the local .cache folder.

Usage
text_model_remove(model = NULL)

Arguments
model Model name. See text_model_download. Defaults to automatically find all downloaded models in the .cache folder.

See Also
text_init
text_model_download
text_to_vec
text_unmask

Examples
## Not run:
# text_init() # initialize the environment

text_model_download() # check downloaded models
text_model_download(c(
  "bert-base-uncased",
  "bert-base-cased",
  "bert-base-multilingual-cased"
))

## End(Not run)
text_to_vec

Extract contextualized word embeddings from transformers (pre-trained language models).

Description

Extract hidden layers from a language model and aggregate them to get token (roughly word) embeddings and text embeddings (all reshaped to embed matrix). It is a wrapper function of `text::textEmbed()`.

Usage

text_to_vec(
  text,
  model,
  layers = "all",
  layer.to.token = "concatenate",
  token.to.word = TRUE,
  token.to.text = TRUE,
  encoding = "UTF-8",
  ...
)

Arguments

text Can be:
  • a character string or vector of text (usually sentences)
  • a data frame with at least one character variable (for text from all character variables in a given data frame)
  • a file path on disk containing text

model Model name at HuggingFace. See `text_model_download`. If the model has not been downloaded, it would automatically download the model.

layers Layers to be extracted from the model, which are then aggregated in the function `text::textEmbedLayerAggregation()`. Defaults to "all" which extracts all layers. You may extract only the layers you need (e.g., 11:12). Note that layer 0 is the decontextualized input layer (i.e., not comprising hidden states).

layer.to.token Method to aggregate hidden layers to each token. Defaults to "concatenate", which links together each word embedding layer to one long row. Options include "mean", "min", "max", and "concatenate".

token.to.word Aggregate subword token embeddings (if whole word is out of vocabulary) to whole word embeddings. Defaults to TRUE, which sums up subword token embeddings.

token.to.text Aggregate token embeddings to each text. Defaults to TRUE, which averages all token embeddings. If FALSE, the text embedding will be the token embedding of [CLS] (the special token that is used to represent the beginning of a text sequence).
text_to_vec

encoding Text encoding (only used if text is a file). Defaults to "UTF-8".
...
Other parameters passed to `text::textEmbed()`.

Value

A list of:

token.embed Token (roughly word) embeddings
text.embed Text embeddings, aggregated from token embeddings

See Also
text_init
text_model_download
text_model_remove
text_unmask

Examples

```r
Not run:
text_init() # initialize the environment
text = c("Download models from HuggingFace",
 "Chinese are East Asian",
 "Beijing is the capital of China")
embed = text_to_vec(text, model="bert-base-cased", layers=c(0, 12))

embed1 = embed$token.embed[[1]]
embed2 = embed$token.embed[[2]]
embed3 = embed$token.embed[[3]]

View(embed1)
View(embed2)
View(embed3)
View(embed$text.embed)

plot_similarity(embed1, value.color="grey")
plot_similarity(embed2, value.color="grey")
plot_similarity(embed3, value.color="grey")
plot_similarity(rbind(embed1, embed2, embed3))

End(Not run)
```
Description

*Note:* This function has been deprecated and will not be updated since I have developed new package `FMAT` as the integrative toolbox of *Fill-Mask Association Test* (FMAT).

Predict the probably correct masked token(s) in a sequence, based on the Python module `transformers`.

Usage

```
text_unmask(query, model, targets = NULL, topn = 5)
```

Arguments

- **query**
  A query (sentence/prompt) with masked token(s) `[MASK]`. Multiple queries are also supported. See examples.

- **model**
  Model name at HuggingFace. See `text_model_download`. If the model has not been downloaded, it would automatically download the model.

- **targets**
  Specific target word(s) to be filled in the blank `[MASK]`. Defaults to `NULL` (i.e., return `topn`). If specified, then `topn` will be ignored (see examples).

- **topn**
  Number of the most likely predictions to return. Defaults to 5. If `targets` is specified, then it will automatically change to the length of `targets`.

Details

Masked language modeling is the task of masking some of the words in a sentence and predicting which words should replace those masks. These models are useful when we want to get a statistical understanding of the language in which the model is trained in. See [https://huggingface.co/tasks/fill-mask](https://huggingface.co/tasks/fill-mask) for details.

Value

A data.table of query results:

- **query_id** *(if there are more than one query)* query ID (indicating multiple queries)
- **mask_id** *(if there are more than one [MASK] in query)* [MASK] ID (position in sequence, indicating multiple masks)
- **prob** Probability of the predicted token in the sequence
- **token_id** Predicted token ID (to replace [MASK])
- **token** Predicted token (to replace [MASK])
- **sequence** Complete sentence with the predicted token
See Also

- `text_init`
- `text_model_download`
- `text_model_remove`
- `text_to_vec`

Examples

```r
Not run:
text_init() # initialize the environment

model = "distilbert-base-cased"

text_unmask("Beijing is the [MASK] of China.", model)

multiple [MASK]s:
text_unmask("Beijing is the [MASK] [MASK] of China.", model)

multiple queries:
text_unmask(c("The man worked as a [MASK].",
 "The woman worked as a [MASK]."),
 model)

specific targets:
text_unmask("The [MASK] worked as a nurse.", model, targets=c("man", "woman"))

End(Not run)
```

---

`tokenize`

*Tokenize raw text for training word embeddings.*

**Description**

Tokenize raw text for training word embeddings.

**Usage**

```r
tokenize(
 text,
 tokenizer = text2vec::word_tokenizer,
 split = " ",
 remove = "_|'|
|
|e\.g\.|i\.e\.|",
 encoding = "UTF-8",
 simplify = TRUE,
 verbose = TRUE
)
```
train_wordvec

Arguments

- **text**: A character vector of text, or a file path on disk containing text.
- **tokenizer**: Function used to tokenize the text. Defaults to `text2vec::word_tokenizer`.
- **split**: Separator between tokens, only used when `simplify=TRUE`. Defaults to " ".
- **remove**: Strings (in regular expression) to be removed from the text. Defaults to "_|\'|<br>\|\'\|\<br\>\|\e\.\|\i\.\|\". You may turn off this by specifying `remove=NULL`.
- **encoding**: Text encoding (only used if `text` is a file). Defaults to "UTF-8".
- **simplify**: Return a character vector (TRUE) or a list of character vectors (FALSE). Defaults to TRUE.
- **verbose**: Print information to the console? Defaults to TRUE.

Value

- **simplify=TRUE**: A tokenized character vector, with each element as a sentence.
- **simplify=FALSE**: A list of tokenized character vectors, with each element as a vector of tokens in a sentence.

See Also

- `train_wordvec`

Examples

```r
 txt1 = c(
 "I love natural language processing (NLP)!",
 "I've been in this city for 10 years. I really like here!",
 "However, my computer is not among the "Top 10" list."
)
 tokenize(txt1, simplify=FALSE)
 tokenize(txt1) %>% cat(sep="\n---\n")

 txt2 = text2vec::movie_review$review[1:5]
 texts = tokenize(txt2)

 txt2[1]
 texts[1:20] # all sentences in txt2[1]
```

Description

Train static word embeddings using the Word2Vec, GloVe, or FastText algorithm.
train_wordvec

Usage

train_wordvec(
  text,
  method = c("word2vec", "glove", "fasttext"),
  dims = 300,
  window = 5,
  min.freq = 5,
  threads = 8,
  model = c("skip-gram", "cbow"),
  loss = c("ns", "hs"),
  negative = 5,
  subsample = 1e-04,
  learning = 0.05,
  ngrams = c(3, 6),
  x.max = 10,
  convergence = -1,
  stopwords = character(0),
  encoding = "UTF-8",
  tolower = FALSE,
  normalize = FALSE,
  iteration,
  tokenizer,
  remove,
  file.save,
  compress = "bzip2",
  verbose = TRUE
)

Arguments

text
  A character vector of text, or a file path on disk containing text.

method
  Training algorithm:
  - "word2vec" (default): using the word2vec package
  - "glove": using the rsparse and text2vec packages
  - "fasttext": using the fastTextR package

dims
  Number of dimensions of word vectors to be trained. Common choices include
  50, 100, 200, 300, and 500. Defaults to 300.

window
  Window size (number of nearby words behind/ahead the current word). It de-
  fines how many surrounding words to be included in training: [window] words
  behind and [window] words ahead ([window]*2 in total). Defaults to 5.

min.freq
  Minimum frequency of words to be included in training. Words that appear less
  than this value of times will be excluded from vocabulary. Defaults to 5 (take
  words that appear at least five times).

threads
  Number of CPU threads used for training. A modest value produces the fastest
  training. Too many threads are not always helpful. Defaults to 8.
model
<Only for Word2Vec / FastText>
Learning model architecture:

• "skip-gram" (default): Skip-Gram, which predicts surrounding words given the current word
• "cbow": Continuous Bag-of-Words, which predicts the current word based on the context

loss
<Only for Word2Vec / FastText>
Loss function (computationally efficient approximation):

• "ns" (default): Negative Sampling
• "hs": Hierarchical Softmax

negative
<Only for Negative Sampling in Word2Vec / FastText>
Number of negative examples. Values in the range 5–20 are useful for small training datasets, while for large datasets the value can be as small as 2–5. Defaults to 5.

subsample
<Only for Word2Vec / FastText>
Subsampling of frequent words (threshold for occurrence of words). Those that appear with higher frequency in the training data will be randomly down-sampled. Defaults to 0.0001 (1e-04).

learning
<Only for Word2Vec / FastText>
Initial (starting) learning rate, also known as alpha. Defaults to 0.05.

ngrams
<Only for FastText>
Minimal and maximal ngram length. Defaults to c(3, 6).

x.max
<Only for GloVe>
Maximum number of co-occurrences to use in the weighting function. Defaults to 10.

convergence
<Only for GloVe>
Convergence tolerance for SGD iterations. Defaults to -1.

stopwords
<Only for Word2Vec / GloVe>
A character vector of stopwords to be excluded from training.

encoding
Text encoding. Defaults to "UTF-8".

tolower
Convert all upper-case characters to lower-case? Defaults to FALSE.

normalize
Normalize all word vectors to unit length? Defaults to FALSE. See normalize.

iteration
Number of training iterations. More iterations makes a more precise model, but computational cost is linearly proportional to iterations. Defaults to 5 for Word2Vec and FastText while 10 for GloVe.

tokenizer
Function used to tokenize the text. Defaults to text2vec::word_tokenizer.

remove
Strings (in regular expression) to be removed from the text. Defaults to "_" | \<br \>\| e\.| i\.| e\.". You may turn off this by specifying remove=NULL.

file.save
File name of to-be-saved R data (must be .RData).

compress
Compression method for the saved file. Defaults to "bzip2". Options include:
train_wordvec

- 1 or "gzip": modest file size (fastest)
- 2 or "bzip2": small file size (fast)
- 3 or "xz": minimized file size (slow)

verbose Print information to the console? Defaults to TRUE.

Value

A wordvec (data.table) with three variables: word, vec, freq.

Download


References

All-in-one package:

- https://CRAN.R-project.org/package=wordsalad

Word2Vec:

- https://code.google.com/archive/p/word2vec/
- https://CRAN.R-project.org/package=word2vec
- https://github.com/maxoodf/word2vec

GloVe:

- https://nlp.stanford.edu/projects/glove/
- https://text2vec.org/glove.html
- https://CRAN.R-project.org/package=text2vec
- https://CRAN.R-project.org/package=rsparse

FastText:

- https://fasttext.cc/
- https://CRAN.R-project.org/package=fastTextR

See Also
tokenize
### Examples

```r
review = text2vec::movie_review # a data.frame
text = review$review

Note: All the examples train 50 dims for faster code check.

Word2Vec (SGNS)
dt1 = train_wordvec(
 text,
 method="word2vec",
 model="skip-gram",
 dims=50, window=5,
 normalize=TRUE)

dt1
most_similar(dt1, "Ive") # evaluate performance
most_similar(dt1, ~ man - he + she, topn=5) # evaluate performance
most_similar(dt1, ~ boy - he + she, topn=5) # evaluate performance

GloVe
dt2 = train_wordvec(
 text,
 method="glove",
 dims=50, window=5,
 normalize=TRUE)

dt2
most_similar(dt2, "Ive") # evaluate performance
most_similar(dt2, ~ man - he + she, topn=5) # evaluate performance
most_similar(dt2, ~ boy - he + she, topn=5) # evaluate performance

FastText
dt3 = train_wordvec(
 text,
 method="fasttext",
 model="skip-gram",
 dims=50, window=5,
 normalize=TRUE)

dt3
most_similar(dt3, "Ive") # evaluate performance
most_similar(dt3, ~ man - he + she, topn=5) # evaluate performance
most_similar(dt3, ~ boy - he + she, topn=5) # evaluate performance
```
Index

<table>
<thead>
<tr>
<th>.embed (as_embed), 2</th>
<th>pair_similarity, 5, 14, 18, 21, 27, 33</th>
</tr>
</thead>
<tbody>
<tr>
<td>as_embed, 2, 7, 8, 10, 19, 21</td>
<td>pattern (as_embed), 2</td>
</tr>
<tr>
<td>as_wordvec, 7, 8, 10, 19, 21</td>
<td>plot_network, 23, 27, 30</td>
</tr>
<tr>
<td>as_wordvec (as_embed), 2</td>
<td>plot_similarity, 13, 14, 18, 22, 24, 25, 28, 33</td>
</tr>
<tr>
<td>corrMatOrder, 26</td>
<td>plot_wordvec, 15, 28, 30</td>
</tr>
<tr>
<td>corrplot, 26, 27</td>
<td>plot_wordvec_tSNE, 15, 24, 28, 29</td>
</tr>
<tr>
<td>cos_dist (cosine_similarity), 4</td>
<td>qgraph, 24</td>
</tr>
<tr>
<td>cos_sim (cosine_similarity), 4</td>
<td>readLines(), 6</td>
</tr>
<tr>
<td>cosine_similarity, 4, 14, 18, 22, 27, 33</td>
<td>rgl::plot3d(), 30</td>
</tr>
<tr>
<td>data_transform, 3, 5, 8–11, 19</td>
<td>rsparse, 48</td>
</tr>
<tr>
<td>data_wordvec_load, 7, 9, 12, 13, 15, 17, 19, 22, 23, 26, 28, 30, 31, 33, 34, 37</td>
<td>Rtsne, 30</td>
</tr>
<tr>
<td>data_wordvec_subset, 3, 7, 8, 9, 15, 19</td>
<td>Rtsne::Rtsne(), 29</td>
</tr>
<tr>
<td>demodata, 11</td>
<td>Single-Category WEAT, 34</td>
</tr>
<tr>
<td>dict_expand, 11, 14, 18, 32, 35, 38</td>
<td>str_subset, 9, 13, 15, 22, 23, 26, 33</td>
</tr>
<tr>
<td>dict_reliability, 12, 13, 18, 32, 35, 38</td>
<td>subset.emb (data_wordvec_subset), 9</td>
</tr>
<tr>
<td>embed, 6, 8, 9, 12, 13, 15, 17, 19, 20, 22, 23, 26, 28, 30, 31, 33, 34, 37, 43</td>
<td>sum vector, 12</td>
</tr>
<tr>
<td>FastText, 47</td>
<td>sum_wordvec, 12, 18, 31</td>
</tr>
<tr>
<td>fastTextR, 48</td>
<td>sweater, 34, 37</td>
</tr>
<tr>
<td>get_wordvec, 10, 14, 28, 30</td>
<td>tab_similarity, 5, 14, 18, 22, 27, 32, 35, 38</td>
</tr>
<tr>
<td>GloVe, 47</td>
<td>test_RND, 33, 34, 38</td>
</tr>
<tr>
<td>hclust, 26</td>
<td>test_WEAT, 33, 35, 36</td>
</tr>
<tr>
<td>load_embed, 3, 7, 10, 19</td>
<td>text2vec, 48</td>
</tr>
<tr>
<td>load_embed (data_wordvec_load), 7</td>
<td>text2vec::word_tokenizer, 47, 49</td>
</tr>
<tr>
<td>load_wordvec, 3, 7, 10, 19</td>
<td>text::textEmbed(), 43, 44</td>
</tr>
<tr>
<td>load_wordvec (data_wordvec_load), 7</td>
<td>text::textEmbedLayerAggregation(), 43</td>
</tr>
<tr>
<td>most_similar, 5, 12, 14, 16, 22, 27, 32, 33</td>
<td>text::textrpp_initialize(), 40</td>
</tr>
<tr>
<td>normalize, 3, 7, 8, 18, 32, 49</td>
<td>text::textrpp_install(), 40</td>
</tr>
<tr>
<td>orth_procrustes, 20</td>
<td>text::textrpp_install_virtualenv(), 40</td>
</tr>
<tr>
<td></td>
<td>text::textrpp_uninstall(), 40</td>
</tr>
<tr>
<td></td>
<td>text_init, 39, 41, 42, 44, 46</td>
</tr>
<tr>
<td></td>
<td>text_model_download, 40, 40, 42–46</td>
</tr>
<tr>
<td></td>
<td>text_model_remove, 40, 41, 42, 44, 46</td>
</tr>
<tr>
<td></td>
<td>text_to_vec, 40–42, 43, 46</td>
</tr>
<tr>
<td></td>
<td>text_unmask, 40–42, 44, 45</td>
</tr>
</tbody>
</table>
INDEX

 tokenize. 46, 50
 train_wordvec. 47, 47

 visualization of cosine similarities. 13
 vroom::vroom_lines(). 6

 Word2Vec. 47
 word2vec. 48
 wordvec, 6, 8, 9, 12, 13, 15, 17, 19, 20, 22, 23,
 26, 28, 30, 31, 33, 34, 37